Beispiel #1
0
    def test_solve_setpoint_unsteady(self):
        controller = self.make_controller()
        time = controller.time
        t0 = time.first()
        setpoint = [
            (controller.mod.flow_in[t0], 3.0),
            (controller.mod.conc[t0, 'A'], 5.0),
        ]
        weights = [
            (controller.mod.flow_in[t0], 1.0),
            (controller.mod.conc[t0, 'A'], 1.0),
        ]
        controller.add_setpoint_objective(setpoint, weights)
        controller.mod.flow_in[:].set_value(3.0)
        initialize_t0(controller.mod)

        dof_prior = degrees_of_freedom(controller)
        controller.solve_setpoint(solver, require_steady=False)
        dof_post = degrees_of_freedom(controller)

        assert dof_prior == dof_post

        assert controller.differential_vars[0].setpoint == \
                pytest.approx(5.0, abs=1e-3)
        assert controller.differential_vars[1].setpoint == \
                pytest.approx(7.11, abs=1e-3)
        assert controller.algebraic_vars[0].setpoint == \
                pytest.approx(3.0, abs=1e-3)
        assert controller.algebraic_vars[1].setpoint == \
                pytest.approx(-5.0, abs=1e-3)
        assert controller.algebraic_vars[2].setpoint == \
                pytest.approx(5.0, abs=1e-3)
        assert controller.input_vars[0].setpoint == \
                pytest.approx(3.0, abs=1e-3)
Beispiel #2
0
    def test_init_samples_by_element(self):
        blk = self.make_block()
        time = blk.time
        blk.mod.flow_in[:].set_value(3.0)
        initialize_t0(blk.mod)
        copy_values_forward(blk.mod)
        blk.mod.flow_in[:].set_value(2.0)
        blk.set_sample_time(0.5)
        blk.initialize_samples_by_element((1,2), solver)

        t0 = time.first()
        tl = time.last()
        vectors = blk.vectors
        assert vectors.input[0,tl].value == 2.0
        assert vectors.differential[0,tl].value == pytest.approx(3.185595567867036)
        assert vectors.differential[1,tl].value == pytest.approx(1.1532474073395755)
        assert vectors.derivative[0,tl].value == pytest.approx(0.44321329639889284)
        assert vectors.derivative[1,tl].value == pytest.approx(0.8791007531878847)

        blk.vectors.input.set_setpoint(3.0)
        blk.initialize_samples_by_element(1, solver, input_option=InputOption.SETPOINT)
        blk.initialize_samples_by_element(2, solver, input_option=InputOption.SETPOINT)
        for t in time:
            if t == t0:
                assert vectors.input[0,t].value == 2.0
            else:
                assert vectors.input[0,t].value == 3.0
        assert vectors.differential[0,tl].value == pytest.approx(3.7037037037037037)
        assert vectors.differential[1,tl].value == pytest.approx(1.0746896480968502)
        assert vectors.derivative[0,tl].value == pytest.approx(0.1851851851851849)
        assert vectors.derivative[1,tl].value == pytest.approx(0.47963475941315314)
    def test_initialize_only_measurement_input(self):
        model = make_model(horizon=1, nfe=2)
        time = model.time
        t0 = time.first()
        inputs = [model.flow_in]
        measurements = [
            pyo.Reference(model.conc[:, 'A']),
            pyo.Reference(model.conc[:, 'B']),
        ]
        category_dict = {
            VC.INPUT: inputs,
            VC.MEASUREMENT: measurements,
        }
        db = DynamicBlock(
            model=model,
            time=time,
            category_dict={None: category_dict},
        )
        db.construct()
        db.set_sample_time(0.5)

        db.mod.flow_in[:].set_value(3.0)
        initialize_t0(db.mod)
        copy_values_forward(db.mod)
        db.mod.flow_in[:].set_value(2.0)

        # Don't need to know any of the special categories to initialize
        # by element. This is only because we have an implicit discretization.
        db.initialize_by_solving_elements(solver)

        t0 = time.first()
        tl = time.last()
        vectors = db.vectors
        assert vectors.input[0, tl].value == 2.0
        assert vectors.measurement[0, tl].value == pytest.approx(
            3.185595567867036)
        assert vectors.measurement[1, tl].value == pytest.approx(
            1.1532474073395755)
        assert model.dcdt[tl, 'A'].value == pytest.approx(0.44321329639889284)
        assert model.dcdt[tl, 'B'].value == pytest.approx(0.8791007531878847)
Beispiel #4
0
    def test_add_setpoint_objective(self):
        controller = self.make_controller()
        time = controller.time
        t0 = time.first()
        setpoint = [
            (controller.mod.flow_in[t0], 3.0),
        ]
        weights = [
            (controller.mod.flow_in[t0], 2.0),
        ]
        controller.mod.flow_in[:].set_value(3.0)
        initialize_t0(controller.mod)

        controller.add_setpoint_objective(setpoint, weights)

        assert hasattr(controller, 'setpoint_objective')

        pred_obj_expr = (2.0 * (controller.mod.flow_in[t0] - 3.0)**2)
        obj_expr = controller.setpoint_objective.expr
        assert pyo.value(pred_obj_expr) == pyo.value(obj_expr)
        assert pred_obj_expr.to_string() == obj_expr.to_string()

        controller.del_component(controller.setpoint_objective)

        setpoint = [
            (controller.mod.flow_in[t0], 3.0),
            (controller.mod.conc[t0, 'A'], 1.5),
        ]
        weights = [
            (controller.mod.flow_in[t0], 1.0),
            (controller.mod.conc[t0, 'A'], 5.0),
        ]
        controller.add_setpoint_objective(setpoint, weights)
        pred_obj_expr = (1.0 * (controller.mod.flow_in[t0] - 3.0)**2 + 5.0 *
                         (controller.mod.conc[t0, 'A'] - 1.5)**2)
        obj_expr = controller.setpoint_objective.expr
        assert pyo.value(pred_obj_expr) == pyo.value(obj_expr)
        assert pred_obj_expr.to_string() == obj_expr.to_string()
Beispiel #5
0
    def test_add_tracking_objective(self):
        controller = self.make_controller()
        time = controller.time
        t0 = time.first()
        setpoint = [
            (controller.mod.flow_in[t0], 3.0),
        ]
        weights = [
            (controller.mod.flow_in[t0], 1.0),
        ]
        controller.mod.flow_in[:].set_value(3.0)
        initialize_t0(controller.mod)
        copy_values_forward(controller.mod)
        controller.add_setpoint_objective(setpoint, weights)
        controller.solve_setpoint(solver)

        # Re-initialize inputs so they are not at the setpoint
        # for objective evaluation.
        controller.mod.flow_in[:].set_value(2.5)

        weights = [
            (controller.mod.conc[t0, 'A'], 1),
            (controller.mod.conc[t0, 'B'], 1),
            (controller.mod.rate[t0, 'A'], 1),
            (controller.mod.rate[t0, 'B'], 1),
            (controller.mod.flow_out[t0], 1),
            (controller.mod.flow_in[t0], 1),
        ]

        # Construct predicted objective functions:
        pred_obj = {i: 0. for i in range(1, 4)}
        sample_points = controller.sample_points[1:]
        sample_time = controller.sample_time
        for v in controller.component_objects(DiffVar):
            for t in sample_points:
                pred_obj[1] += (v[t] - v.setpoint)**2
                pred_obj[2] += (v[t] - v.setpoint)**2
                pred_obj[3] += (v[t] - v.setpoint)**2
        for v in controller.component_objects(AlgVar):
            for t in sample_points:
                pred_obj[3] += (v[t] - v.setpoint)**2
        for v in controller.component_objects(InputVar):
            for t in sample_points:
                i_prev = time.find_nearest_index(t - sample_time,
                                                 tolerance=1e-8)
                t_prev = time[i_prev]
                pred_obj[1] += (v[t] - v.setpoint)**2
                pred_obj[2] += (v[t] - v[t_prev])**2
                pred_obj[3] += (v[t] - v[t_prev])**2

        controller.add_tracking_objective(
            weights,
            control_penalty_type=ControlPenaltyType.ERROR,
            state_ctypes=DiffVar,
        )
        assert pyo.value(controller.tracking_objective.expr == pred_obj[1])
        assert pyo.value(controller.tracking_objective.expr) > 0
        controller.del_component(controller.tracking_objective)

        controller.add_tracking_objective(
            weights,
            control_penalty_type=ControlPenaltyType.ACTION,
            state_ctypes=DiffVar,
        )
        assert pyo.value(controller.tracking_objective.expr == pred_obj[2])
        assert pyo.value(controller.tracking_objective.expr) > 0
        controller.del_component(controller.tracking_objective)

        controller.add_tracking_objective(
            weights,
            control_penalty_type=ControlPenaltyType.ACTION,
            state_ctypes=(DiffVar, AlgVar),
        )
        assert pyo.value(controller.tracking_objective.expr == pred_obj[3])
        assert pyo.value(controller.tracking_objective.expr) > 0