def generate_gauss_data(n_replications=1, discrete=False):
    settings = {'discretise_method': 'equal',
                'n_discrete_bins': 5}
    est = JidtDiscreteCMI(settings)
    covariance_1 = 0.4
    covariance_2 = 0.3
    n = 10000
    delay = 1
    if discrete:
        d = np.zeros((3, n - 2*delay, n_replications), dtype=int)
    else:
        d = np.zeros((3, n - 2*delay, n_replications))
    for r in range(n_replications):
        proc_1 = np.random.normal(0, 1, size=n)
        proc_2 = (covariance_1 * proc_1 + (1 - covariance_1) *
                  np.random.normal(0, 1, size=n))
        proc_3 = (covariance_2 * proc_2 + (1 - covariance_2) *
                  np.random.normal(0, 1, size=n))
        proc_1 = proc_1[(2*delay):]
        proc_2 = proc_2[delay:-delay]
        proc_3 = proc_3[:-(2*delay)]

        if discrete:  # discretise data
            proc_1_dis, proc_2_dis = est._discretise_vars(
                var1=proc_1, var2=proc_2)
            proc_1_dis, proc_3_dis = est._discretise_vars(
                var1=proc_1, var2=proc_3)
            d[0, :, r] = proc_1_dis
            d[1, :, r] = proc_2_dis
            d[2, :, r] = proc_3_dis
        else:
            d[0, :, r] = proc_1
            d[1, :, r] = proc_2
            d[2, :, r] = proc_3
    return d
Beispiel #2
0
def test_analytical_surrogates():
    # Test generation of analytical surrogates.
    # Generate data and discretise it such that we can use analytical
    # surrogates.
    expected_mi, source1, source2, target = _get_gauss_data(covariance=0.4)
    settings = {'discretise_method': 'equal', 'n_discrete_bins': 5}
    est = JidtDiscreteCMI(settings)
    source_dis, target_dis = est._discretise_vars(var1=source1, var2=target)
    data = Data(np.hstack((source_dis, target_dis)),
                dim_order='sp',
                normalise=False)
    settings = {
        'cmi_estimator': 'JidtDiscreteCMI',
        'n_discrete_bins': 5,  # alphabet size of the variables analysed
        'n_perm_max_stat': 100,
        'n_perm_min_stat': 21,
        'n_perm_omnibus': 21,
        'n_perm_max_seq': 21,
        'max_lag_sources': 5,
        'min_lag_sources': 1,
        'max_lag_target': 5
    }
    nw = MultivariateTE()
    res = nw.analyse_single_target(settings, data, target=1)
    # Check if generation of analytical surrogates is documented in the
    # settings.
    assert res.settings.analytical_surrogates, (
        'Surrogates were not created analytically.')
Beispiel #3
0
def generate_gauss_data(n_replications=1, discrete=False):
    settings = {'discretise_method': 'equal', 'n_discrete_bins': 5}
    est = JidtDiscreteCMI(settings)
    covariance_1 = 0.4
    covariance_2 = 0.3
    n = 10000
    delay = 1
    if discrete:
        d = np.zeros((3, n - 2 * delay, n_replications), dtype=int)
    else:
        d = np.zeros((3, n - 2 * delay, n_replications))
    for r in range(n_replications):
        proc_1 = np.random.normal(0, 1, size=n)
        proc_2 = (covariance_1 * proc_1 +
                  (1 - covariance_1) * np.random.normal(0, 1, size=n))
        proc_3 = (covariance_2 * proc_2 +
                  (1 - covariance_2) * np.random.normal(0, 1, size=n))
        proc_1 = proc_1[(2 * delay):]
        proc_2 = proc_2[delay:-delay]
        proc_3 = proc_3[:-(2 * delay)]

        if discrete:  # discretise data
            proc_1_dis, proc_2_dis = est._discretise_vars(var1=proc_1,
                                                          var2=proc_2)
            proc_1_dis, proc_3_dis = est._discretise_vars(var1=proc_1,
                                                          var2=proc_3)
            d[0, :, r] = proc_1_dis
            d[1, :, r] = proc_2_dis
            d[2, :, r] = proc_3_dis
        else:
            d[0, :, r] = proc_1
            d[1, :, r] = proc_2
            d[2, :, r] = proc_3
    return d
def test_discrete_input():
    """Test AIS estimation from discrete data."""
    # Generate AR data
    order = 1
    n = 10000 - order
    self_coupling = 0.5
    process = np.zeros(n + order)
    process[0:order] = np.random.normal(size=(order))
    for n in range(order, n + order):
        process[n] = self_coupling * process[n - 1] + np.random.normal()

    # Discretise data
    settings = {'discretise_method': 'equal', 'n_discrete_bins': 5}
    est = JidtDiscreteCMI(settings)
    process_dis, temp = est._discretise_vars(var1=process, var2=process)
    data = Data(process_dis, dim_order='s', normalise=False)
    settings = {
        'cmi_estimator': 'JidtDiscreteCMI',
        'discretise_method': 'none',
        'n_discrete_bins': 5,  # alphabet size of the variables
        'n_perm_max_stat': 21,
        'n_perm_min_stat': 21,
        'n_perm_mi': 21,
        'max_lag': 2
    }
    nw = ActiveInformationStorage()
    nw.analyse_single_process(settings=settings, data=data, process=0)
Beispiel #5
0
def test_analytical_surrogates():
    # Generate discrete test data.
    covariance = 0.4
    n = 10000
    delay = 1
    source = np.random.normal(0, 1, size=n)
    target = (covariance * source + (1 - covariance) *
              np.random.normal(0, 1, size=n))
    source = source[delay:]
    target = target[:-delay]
    settings = {'discretise_method': 'equal',
                'n_discrete_bins': 5}
    est = JidtDiscreteCMI(settings)
    source_dis, target_dis = est._discretise_vars(var1=source, var2=target)
    data = Data(np.vstack((source_dis, target_dis)),
                dim_order='ps', normalise=False)
    settings = {
        'cmi_estimator': 'JidtDiscreteCMI',
        'n_discrete_bins': 5,  # alphabet size of the variables analysed
        'n_perm_max_stat': 100,
        'n_perm_min_stat': 21,
        'n_perm_omnibus': 21,
        'n_perm_max_seq': 21,
        'max_lag_sources': 5,
        'min_lag_sources': 1,
        'max_lag_target': 5
        }
    nw = MultivariateTE()
    res = nw.analyse_single_target(settings, data, target=1)
    assert res.settings.analytical_surrogates, (
        'Surrogates were not created analytically.')
def test_discrete_input():
    """Test AIS estimation from discrete data."""
    # Generate AR data
    order = 1
    n = 10000 - order
    self_coupling = 0.5
    process = np.zeros(n + order)
    process[0:order] = np.random.normal(size=(order))
    for n in range(order, n + order):
        process[n] = self_coupling * process[n - 1] + np.random.normal()

    # Discretise data
    settings = {'discretise_method': 'equal',
                'n_discrete_bins': 5}
    est = JidtDiscreteCMI(settings)
    process_dis, temp = est._discretise_vars(var1=process, var2=process)
    data = Data(process_dis, dim_order='s', normalise=False)
    settings = {
        'cmi_estimator': 'JidtDiscreteCMI',
        'discretise_method': 'none',
        'n_discrete_bins': 5,  # alphabet size of the variables
        'n_perm_max_stat': 21,
        'n_perm_min_stat': 21,
        'n_perm_mi': 21,
        'max_lag': 2}
    nw = ActiveInformationStorage()
    nw.analyse_single_process(settings=settings, data=data, process=0)
def test_plot_network():
    """Test results class for multivariate TE network inference."""
    covariance = 0.4
    n = 10000
    delay = 1
    normalisation = False
    source = np.random.normal(0, 1, size=n)
    target_1 = (covariance * source +
                (1 - covariance) * np.random.normal(0, 1, size=n))
    target_2 = (covariance * source +
                (1 - covariance) * np.random.normal(0, 1, size=n))
    source = source[delay:]
    target_1 = target_1[:-delay]
    target_2 = target_2[:-delay]

    # Discretise data for speed
    settings_dis = {'discretise_method': 'equal', 'n_discrete_bins': 5}
    est = JidtDiscreteCMI(settings_dis)
    source_dis, target_1_dis = est._discretise_vars(var1=source, var2=target_1)
    source_dis, target_2_dis = est._discretise_vars(var1=source, var2=target_2)

    data = Data(np.vstack((source_dis, target_1_dis, target_2_dis)),
                dim_order='ps',
                normalise=normalisation)

    settings = {
        'cmi_estimator': 'JidtDiscreteCMI',
        'discretise_method': 'none',
        'n_discrete_bins': 5,  # alphabet size of the variables analysed
        'n_perm_max_stat': 21,
        'n_perm_omnibus': 30,
        'n_perm_max_seq': 30,
        'min_lag_sources': 1,
        'max_lag_sources': 2,
        'max_lag_target': 1,
        'alpha_fdr': 0.5
    }
    nw = MultivariateTE()

    # Analyse a single target and the whole network
    res_single = nw.analyse_single_target(settings=settings,
                                          data=data,
                                          target=1)
    res_network = nw.analyse_network(settings=settings, data=data)
    graph, fig = plot_network(res_single, 'max_te_lag', fdr=False)
    plt.close(fig)
    graph, fig = plot_network(res_network, 'max_te_lag', fdr=False)
    plt.close(fig)
    for sign_sources in [True, False]:
        graph, fig = plot_selected_vars(res_network,
                                        target=1,
                                        sign_sources=True,
                                        fdr=False)
        plt.close(fig)
Beispiel #8
0
def test_one_two_dim_input_discrete():
    """Test one- and two-dimensional input for discrete estimators."""
    expected_mi, src_one, s, target_one = _get_gauss_data(expand=False,
                                                          seed=SEED)
    src_two = np.expand_dims(src_one, axis=1)
    target_two = np.expand_dims(target_one, axis=1)
    ar_src_one, s = _get_ar_data(expand=False, seed=SEED)
    ar_src_two = np.expand_dims(ar_src_one, axis=1)

    settings = {
        'discretise_method': 'equal',
        'n_discrete_bins': 4,
        'history_target': 1,
        'history': 2
    }
    # MI
    mi_estimator = JidtDiscreteMI(settings=settings)
    mi_cor_one = mi_estimator.estimate(src_one, target_one)
    _assert_result(mi_cor_one, expected_mi, 'JidtDiscreteMI', 'MI',
                   0.08)  # More variability here
    mi_cor_two = mi_estimator.estimate(src_two, target_two)
    _assert_result(mi_cor_two, expected_mi, 'JidtDiscreteMI', 'MI',
                   0.08)  # More variability here
    _compare_result(mi_cor_one, mi_cor_two, 'JidtDiscreteMI one dim',
                    'JidtDiscreteMI two dim', 'MI')
    # CMI
    cmi_estimator = JidtDiscreteCMI(settings=settings)
    mi_cor_one = cmi_estimator.estimate(src_one, target_one)
    _assert_result(mi_cor_one, expected_mi, 'JidtDiscreteCMI', 'CMI',
                   0.08)  # More variability here
    mi_cor_two = cmi_estimator.estimate(src_two, target_two)
    _assert_result(mi_cor_two, expected_mi, 'JidtDiscreteCMI', 'CMI',
                   0.08)  # More variability here
    _compare_result(mi_cor_one, mi_cor_two, 'JidtDiscreteMI one dim',
                    'JidtDiscreteMI two dim', 'CMI')
    # TE
    te_estimator = JidtDiscreteTE(settings=settings)
    mi_cor_one = te_estimator.estimate(src_one[1:], target_one[:-1])
    _assert_result(mi_cor_one, expected_mi, 'JidtDiscreteTE', 'TE',
                   0.08)  # More variability here
    mi_cor_two = te_estimator.estimate(src_one[1:], target_one[:-1])
    _assert_result(mi_cor_two, expected_mi, 'JidtDiscreteTE', 'TE',
                   0.08)  # More variability here
    _compare_result(mi_cor_one, mi_cor_two, 'JidtDiscreteMI one dim',
                    'JidtDiscreteMI two dim', 'TE')
    # AIS
    ais_estimator = JidtDiscreteAIS(settings=settings)
    mi_cor_one = ais_estimator.estimate(ar_src_one)
    mi_cor_two = ais_estimator.estimate(ar_src_two)
    _compare_result(mi_cor_one, mi_cor_two, 'JidtDiscreteAIS one dim',
                    'JidtDiscreteAIS two dim', 'AIS (AR process)')
Beispiel #9
0
def _generate_gauss_data(covariance=0.4, n=10000, delay=1, normalise=False):
    # Generate two coupled Gaussian time series
    source = np.random.normal(0, 1, size=n)
    target = (covariance * source +
              (1 - covariance) * np.random.normal(0, 1, size=n))
    source = source[delay:]
    target = target[:-delay]

    # Discretise data for speed
    settings = {'discretise_method': 'equal', 'n_discrete_bins': 5}
    est = JidtDiscreteCMI(settings)
    source_dis, target_dis = est._discretise_vars(var1=source, var2=target)
    return Data(np.vstack((source_dis, target_dis)),
                dim_order='ps',
                normalise=normalise)
Beispiel #10
0
def _generate_gauss_data(covariance=0.4, n=10000, delay=1, normalise=False):
    # Generate two coupled Gaussian time series
    source = np.random.normal(0, 1, size=n)
    target = (covariance * source + (1 - covariance) *
              np.random.normal(0, 1, size=n))
    source = source[delay:]
    target = target[:-delay]

    # Discretise data for speed
    settings = {'discretise_method': 'equal',
                'n_discrete_bins': 5}
    est = JidtDiscreteCMI(settings)
    source_dis, target_dis = est._discretise_vars(var1=source, var2=target)
    return Data(np.vstack((source_dis, target_dis)),
                dim_order='ps', normalise=normalise)
def test_cmi_gauss_data_no_cond():
    """Test estimators on correlated Gauss data without a conditional.

    The estimators should return the MI if no conditional variable is
    provided.

    Note that the calculation is based on a random variable (because the
    generated data is a set of random variables) - the result will be of the
    order of what we expect, but not exactly equal to it; in fact, there will
    be a large variance around it.
    """
    expected_mi, source1, source2, target = _get_gauss_data()

    # Test Kraskov
    mi_estimator = JidtKraskovCMI(settings={})
    mi_cor = mi_estimator.estimate(source1, target)
    mi_uncor = mi_estimator.estimate(source2, target)
    _assert_result(mi_cor, expected_mi, 'JidtKraskovCMI', 'CMI (no cond.)')
    _assert_result(mi_uncor, 0, 'JidtKraskovCMI', 'CMI (uncorr., no cond.)')

    # Test Gaussian
    mi_estimator = JidtGaussianCMI(settings={})
    mi_cor = mi_estimator.estimate(source1, target)
    mi_uncor = mi_estimator.estimate(source2, target)
    _assert_result(mi_cor, expected_mi, 'JidtGaussianCMI', 'CMI (no cond.)')
    _assert_result(mi_uncor, 0, 'JidtGaussianCMI', 'CMI (uncorr., no cond.)')

    # Test Discrete
    settings = {'discretise_method': 'equal', 'num_discrete_bins': 5}
    mi_estimator = JidtDiscreteCMI(settings=settings)
    mi_cor = mi_estimator.estimate(source1, target)
    mi_uncor = mi_estimator.estimate(source2, target)
    _assert_result(mi_cor, expected_mi, 'JidtDiscreteCMI', 'CMI (no cond.)')
    _assert_result(mi_uncor, 0, 'JidtDiscreteCMI', 'CMI (uncorr., no cond.)')
def test_cmi_gauss_data():
    """Test CMI estimation on two sets of Gaussian random data.

    The first test is on correlated variables, the second on uncorrelated
    variables.

    Note that the calculation is based on a random variable (because the
    generated data is a set of random variables) - the result will be of the
    order of what we expect, but not exactly equal to it; in fact, there will
    be a large variance around it.
    """
    expected_mi, source1, source2, target = _get_gauss_data()

    # Test Kraskov
    mi_estimator = JidtKraskovCMI(settings={})
    mi_cor = mi_estimator.estimate(source1, target)
    mi_uncor = mi_estimator.estimate(source2, target)
    _assert_result(mi_cor, expected_mi, 'JidtKraskovCMI', 'CMI (corr.)')
    _assert_result(mi_uncor, 0, 'JidtKraskovCMI', 'CMI (uncorr.)')

    # Test Gaussian
    mi_estimator = JidtGaussianCMI(settings={})
    mi_cor = mi_estimator.estimate(source1, target)
    mi_uncor = mi_estimator.estimate(source2, target)
    _assert_result(mi_cor, expected_mi, 'JidtGaussianCMI', 'CMI (corr.)')
    _assert_result(mi_uncor, 0, 'JidtGaussianCMI', 'CMI (uncorr.)')

    # Test Discrete
    settings = {'discretise_method': 'equal', 'num_discrete_bins': 5}
    mi_estimator = JidtDiscreteCMI(settings=settings)
    mi_cor = mi_estimator.estimate(source1, target)
    mi_uncor = mi_estimator.estimate(source2, target)
    _assert_result(mi_cor, expected_mi, 'JidtDiscreteCMI', 'CMI (corr.)')
    _assert_result(mi_uncor, 0, 'JidtDiscreteCMI', 'CMI (uncorr.)')
def test_one_two_dim_input_discrete():
    """Test one- and two-dimensional input for discrete estimators."""
    expected_mi, src_one, s, target_one = _get_gauss_data(expand=False)
    src_two = np.expand_dims(src_one, axis=1)
    target_two = np.expand_dims(target_one, axis=1)
    ar_src_one, s = _get_ar_data(expand=False)
    ar_src_two = np.expand_dims(ar_src_one, axis=1)

    settings = {'discretise_method': 'equal',
                'n_discrete_bins': 4,
                'history_target': 1,
                'history': 2}
    # MI
    mi_estimator = JidtDiscreteMI(settings=settings)
    mi_cor_one = mi_estimator.estimate(src_one, target_one)
    _assert_result(mi_cor_one, expected_mi, 'JidtDiscreteMI', 'MI')
    mi_cor_two = mi_estimator.estimate(src_two, target_two)
    _assert_result(mi_cor_two, expected_mi, 'JidtDiscreteMI', 'MI')
    _compare_result(mi_cor_one, mi_cor_two,
                    'JidtDiscreteMI one dim', 'JidtDiscreteMI two dim', 'MI')
    # CMI
    cmi_estimator = JidtDiscreteCMI(settings=settings)
    mi_cor_one = cmi_estimator.estimate(src_one, target_one)
    _assert_result(mi_cor_one, expected_mi, 'JidtDiscreteCMI', 'CMI')
    mi_cor_two = cmi_estimator.estimate(src_two, target_two)
    _assert_result(mi_cor_two, expected_mi, 'JidtDiscreteCMI', 'CMI')
    _compare_result(mi_cor_one, mi_cor_two,
                    'JidtDiscreteMI one dim', 'JidtDiscreteMI two dim', 'CMI')
    # TE
    te_estimator = JidtDiscreteTE(settings=settings)
    mi_cor_one = te_estimator.estimate(src_one[1:], target_one[:-1])
    _assert_result(mi_cor_one, expected_mi, 'JidtDiscreteTE', 'TE')
    mi_cor_two = te_estimator.estimate(src_one[1:], target_one[:-1])
    _assert_result(mi_cor_two, expected_mi, 'JidtDiscreteTE', 'TE')
    _compare_result(mi_cor_one, mi_cor_two,
                    'JidtDiscreteMI one dim', 'JidtDiscreteMI two dim', 'TE')
    # AIS
    ais_estimator = JidtDiscreteAIS(settings=settings)
    mi_cor_one = ais_estimator.estimate(ar_src_one)
    mi_cor_two = ais_estimator.estimate(ar_src_two)
    _compare_result(mi_cor_one, mi_cor_two,
                    'JidtDiscreteAIS one dim', 'JidtDiscreteAIS two dim',
                    'AIS (AR process)')
Beispiel #14
0
def test_discrete_input():
    """Test bivariate TE estimation from discrete data."""
    # Generate Gaussian test data
    covariance = 0.4
    n = 10000
    delay = 1
    source = np.random.normal(0, 1, size=n)
    target = (covariance * source +
              (1 - covariance) * np.random.normal(0, 1, size=n))
    corr_expected = covariance / (1 * np.sqrt(covariance**2 +
                                              (1 - covariance)**2))
    expected_mi = calculate_mi(corr_expected)
    source = source[delay:]
    target = target[:-delay]

    # Discretise data
    settings = {'discretise_method': 'equal', 'n_discrete_bins': 5}
    est = JidtDiscreteCMI(settings)
    source_dis, target_dis = est._discretise_vars(var1=source, var2=target)
    data = Data(np.vstack((source_dis, target_dis)),
                dim_order='ps',
                normalise=False)
    settings = {
        'cmi_estimator': 'JidtDiscreteCMI',
        'discretise_method': 'none',
        'n_discrete_bins': 5,  # alphabet size of the variables analysed
        'n_perm_max_stat': 21,
        'n_perm_omnibus': 30,
        'n_perm_max_seq': 30,
        'min_lag_sources': 1,
        'max_lag_sources': 2,
        'max_lag_target': 1
    }
    nw = BivariateTE()
    res = nw.analyse_single_target(settings=settings, data=data, target=1)
    assert np.isclose(
        res._single_target[1].omnibus_te, expected_mi, atol=0.05), (
            'Estimated TE for discrete variables is not correct. Expected: '
            '{0}, Actual results: {1}.'.format(
                expected_mi, res._single_target[1].omnibus_te))
def test_discrete_input():
    """Test bivariate TE estimation from discrete data."""
    # Generate Gaussian test data
    covariance = 0.4
    n = 10000
    delay = 1
    source = np.random.normal(0, 1, size=n)
    target = (covariance * source + (1 - covariance) *
              np.random.normal(0, 1, size=n))
    corr_expected = covariance / (
        1 * np.sqrt(covariance**2 + (1-covariance)**2))
    expected_mi = calculate_mi(corr_expected)
    source = source[delay:]
    target = target[:-delay]

    # Discretise data
    settings = {'discretise_method': 'equal',
                'n_discrete_bins': 5}
    est = JidtDiscreteCMI(settings)
    source_dis, target_dis = est._discretise_vars(var1=source, var2=target)
    data = Data(np.vstack((source_dis, target_dis)),
                dim_order='ps', normalise=False)
    settings = {
        'cmi_estimator': 'JidtDiscreteCMI',
        'discretise_method': 'none',
        'n_discrete_bins': 5,  # alphabet size of the variables analysed
        'n_perm_max_stat': 21,
        'n_perm_omnibus': 30,
        'n_perm_max_seq': 30,
        'min_lag_sources': 1,
        'max_lag_sources': 2,
        'max_lag_target': 1}
    nw = BivariateTE()
    res = nw.analyse_single_target(settings=settings, data=data, target=1)
    assert np.isclose(
        res._single_target[1].omnibus_te, expected_mi, atol=0.05), (
            'Estimated TE for discrete variables is not correct. Expected: '
            '{0}, Actual results: {1}.'.format(
                expected_mi, res._single_target[1].omnibus_te))
Beispiel #16
0
def test_results_network_inference():
    """Test results class for multivariate TE network inference."""
    covariance = 0.4
    n = 10000
    delay = 1
    normalisation = False
    source = np.random.normal(0, 1, size=n)
    target_1 = (covariance * source + (1 - covariance) *
                np.random.normal(0, 1, size=n))
    target_2 = (covariance * source + (1 - covariance) *
                np.random.normal(0, 1, size=n))
    corr_expected = covariance / (
        1 * np.sqrt(covariance**2 + (1-covariance)**2))
    expected_mi = calculate_mi(corr_expected)
    source = source[delay:]
    target_1 = target_1[:-delay]
    target_2 = target_2[:-delay]

    # Discretise data for speed
    settings_dis = {'discretise_method': 'equal',
                    'n_discrete_bins': 5}
    est = JidtDiscreteCMI(settings_dis)
    source_dis, target_1_dis = est._discretise_vars(var1=source, var2=target_1)
    source_dis, target_2_dis = est._discretise_vars(var1=source, var2=target_2)
    data = Data(np.vstack((source_dis, target_1_dis, target_2_dis)),
                dim_order='ps', normalise=normalisation)

    nw = MultivariateTE()
    # TE - single target
    res_single_multi_te = nw.analyse_single_target(
        settings=settings, data=data, target=1)
    # TE whole network
    res_network_multi_te = nw.analyse_network(settings=settings, data=data)

    nw = BivariateTE()
    # TE - single target
    res_single_biv_te = nw.analyse_single_target(
        settings=settings, data=data, target=1)
    # TE whole network
    res_network_biv_te = nw.analyse_network(settings=settings, data=data)

    nw = MultivariateMI()
    # TE - single target
    res_single_multi_mi = nw.analyse_single_target(
        settings=settings, data=data, target=1)
    # TE whole network
    res_network_multi_mi = nw.analyse_network(settings=settings, data=data)

    nw = BivariateMI()
    # TE - single target
    res_single_biv_mi = nw.analyse_single_target(
        settings=settings, data=data, target=1)
    # TE whole network
    res_network_biv_mi = nw.analyse_network(settings=settings, data=data)

    res_te = [res_single_multi_te, res_network_multi_te, res_single_biv_te,
              res_network_biv_te]
    res_mi = [res_single_multi_mi, res_network_multi_mi, res_single_biv_mi,
              res_network_biv_mi]
    res_all = res_te + res_mi

    # Check estimated values
    for res in res_te:
        est_te = res._single_target[1].omnibus_te
        assert np.isclose(est_te, expected_mi, atol=0.05), (
            'Estimated TE for discrete variables is not correct. Expected: '
            '{0}, Actual results: {1}.'.format(expected_mi, est_te))
    for res in res_mi:
        est_mi = res._single_target[1].omnibus_mi
        assert np.isclose(est_mi, expected_mi, atol=0.05), (
            'Estimated TE for discrete variables is not correct. Expected: '
            '{0}, Actual results: {1}.'.format(expected_mi, est_mi))

    est_te = res_network_multi_te._single_target[2].omnibus_te
    assert np.isclose(est_te, expected_mi, atol=0.05), (
        'Estimated TE for discrete variables is not correct. Expected: {0}, '
        'Actual results: {1}.'.format(expected_mi, est_te))
    est_mi = res_network_multi_mi._single_target[2].omnibus_mi
    assert np.isclose(est_mi, expected_mi, atol=0.05), (
        'Estimated TE for discrete variables is not correct. Expected: {0}, '
        'Actual results: {1}.'.format(expected_mi, est_mi))

    # Check data parameters in results objects
    n_nodes = 3
    n_realisations = n - delay - max(
        settings['max_lag_sources'], settings['max_lag_target'])
    for res in res_all:
        assert res.data_properties.n_nodes == n_nodes, 'Incorrect no. nodes.'
        assert res.data_properties.n_nodes == n_nodes, 'Incorrect no. nodes.'
        assert res.data_properties.n_realisations == n_realisations, (
            'Incorrect no. realisations.')
        assert res.data_properties.n_realisations == n_realisations, (
            'Incorrect no. realisations.')
        assert res.data_properties.normalised == normalisation, (
            'Incorrect value for data normalisation.')
        assert res.data_properties.normalised == normalisation, (
            'Incorrect value for data normalisation.')
        adj_matrix = res.get_adjacency_matrix('binary', fdr=False)
        assert adj_matrix.shape[0] == n_nodes, (
            'Incorrect number of rows in adjacency matrix.')
        assert adj_matrix.shape[1] == n_nodes, (
            'Incorrect number of columns in adjacency matrix.')
        assert adj_matrix.shape[0] == n_nodes, (
            'Incorrect number of rows in adjacency matrix.')
        assert adj_matrix.shape[1] == n_nodes, (
            'Incorrect number of columns in adjacency matrix.')
Beispiel #17
0
from idtxl.data import Data
from idtxl.multivariate_te import MultivariateTE

# 1 Use core esimtators with data discretisation. Generate Gaussian test data
# and call JIDT Discrete estimators using the build-in discretization.
n = 1000
covariance = 0.4
corr_expected = covariance / (1 * np.sqrt(covariance**2 + (1 - covariance)**2))
expected_mi = calculate_mi(corr_expected)
source_cor = np.random.normal(0, 1, size=n)  # correlated src
source_uncor = np.random.normal(0, 1, size=n)  # uncorrelated src
target = (covariance * source_cor +
          (1 - covariance) * np.random.normal(0, 1, size=n))

settings = {'discretise_method': 'equal', 'n_discrete_bins': 5}
est = JidtDiscreteCMI(settings)
cmi = est.estimate(source_cor, target, source_uncor)
print('Estimated CMI: {0:.5f}, expected CMI: {1:.5f}'.format(cmi, expected_mi))
settings['history_target'] = 1
est = JidtDiscreteTE(settings)
te = est.estimate(source_cor[1:n], target[0:n - 1])
print('Estimated TE: {0:.5f}, expected TE: {1:.5f}'.format(te, expected_mi))

# 2 Use network inference algorithms on discrete data.
n_procs = 5
alphabet_size = 5
data = Data(np.random.randint(0, alphabet_size, size=(n, n_procs)),
            dim_order='sp',
            normalise=False)  # don't normalize discrete data

# Initialise analysis object and define settings
Beispiel #18
0
def test_delay_reconstruction():
    """Test the reconstruction of information transfer delays from results."""
    covariance = 0.4
    corr_expected = covariance / (
        1 * np.sqrt(covariance**2 + (1-covariance)**2))
    expected_mi = calculate_mi(corr_expected)
    n = 10000
    delay_1 = 1
    delay_2 = 3
    delay_3 = 5
    normalisation = False
    source = np.random.normal(0, 1, size=n)
    target_1 = (covariance * source + (1 - covariance) *
                np.random.normal(0, 1, size=n))
    target_2 = (covariance * source + (1 - covariance) *
                np.random.normal(0, 1, size=n))
    target_3 = (covariance * source + (1 - covariance) *
                np.random.normal(0, 1, size=n))
    source = source[delay_3:]
    target_1 = target_1[(delay_3-delay_1):-delay_1]
    target_2 = target_2[(delay_3-delay_2):-delay_2]
    target_3 = target_3[:-delay_3]

    # Discretise data for speed
    settings_dis = {'discretise_method': 'equal',
                    'n_discrete_bins': 5}
    est = JidtDiscreteCMI(settings_dis)
    source_dis, target_1_dis = est._discretise_vars(var1=source, var2=target_1)
    source_dis, target_2_dis = est._discretise_vars(var1=source, var2=target_2)
    source_dis, target_3_dis = est._discretise_vars(var1=source, var2=target_3)
    data = Data(
        np.vstack((source_dis, target_1_dis, target_2_dis, target_3_dis)),
        dim_order='ps', normalise=normalisation)

    nw = MultivariateTE()
    settings = {
        'cmi_estimator': 'JidtDiscreteCMI',
        'discretise_method': 'none',
        'n_discrete_bins': 5,  # alphabet size of the variables analysed
        'n_perm_max_stat': 21,
        'n_perm_omnibus': 30,
        'n_perm_max_seq': 30,
        'min_lag_sources': 1,
        'max_lag_sources': delay_3 + 1,
        'max_lag_target': 1}

    res_network = nw.analyse_single_target(
        settings=settings, data=data, target=1)
    res_network.combine_results(nw.analyse_single_target(
        settings=settings, data=data, target=2))
    res_network.combine_results(nw.analyse_single_target(
        settings=settings, data=data, target=3))
    adj_mat = res_network.get_adjacency_matrix('max_te_lag', fdr=False)
    print(adj_mat)
    assert adj_mat[0, 1] == delay_1, ('Estimate for delay 1 is not correct.')
    assert adj_mat[0, 2] == delay_2, ('Estimate for delay 2 is not correct.')
    assert adj_mat[0, 3] == delay_3, ('Estimate for delay 3 is not correct.')

    for target in range(1, 4):
        est_mi = res_network._single_target[target].omnibus_te
        assert np.isclose(est_mi, expected_mi, atol=0.05), (
            'Estimated TE for target {0} is not correct. Expected: {1}, '
            'Actual results: {2}.'.format(target, expected_mi, est_mi))
Beispiel #19
0
def test_delay_reconstruction():
    """Test the reconstruction of information transfer delays from results."""
    covariance = 0.4
    corr_expected = covariance / (1 * np.sqrt(covariance**2 +
                                              (1 - covariance)**2))
    expected_mi = calculate_mi(corr_expected)
    n = 10000
    delay_1 = 1
    delay_2 = 3
    delay_3 = 5
    normalisation = False
    source = np.random.normal(0, 1, size=n)
    target_1 = (covariance * source +
                (1 - covariance) * np.random.normal(0, 1, size=n))
    target_2 = (covariance * source +
                (1 - covariance) * np.random.normal(0, 1, size=n))
    target_3 = (covariance * source +
                (1 - covariance) * np.random.normal(0, 1, size=n))
    source = source[delay_3:]
    target_1 = target_1[(delay_3 - delay_1):-delay_1]
    target_2 = target_2[(delay_3 - delay_2):-delay_2]
    target_3 = target_3[:-delay_3]

    # Discretise data for speed
    settings_dis = {'discretise_method': 'equal', 'n_discrete_bins': 5}
    est = JidtDiscreteCMI(settings_dis)
    source_dis, target_1_dis = est._discretise_vars(var1=source, var2=target_1)
    source_dis, target_2_dis = est._discretise_vars(var1=source, var2=target_2)
    source_dis, target_3_dis = est._discretise_vars(var1=source, var2=target_3)
    data = Data(np.vstack(
        (source_dis, target_1_dis, target_2_dis, target_3_dis)),
                dim_order='ps',
                normalise=normalisation)

    nw = MultivariateTE()
    settings = {
        'cmi_estimator': 'JidtDiscreteCMI',
        'discretise_method': 'none',
        'n_discrete_bins': 5,  # alphabet size of the variables analysed
        'n_perm_max_stat': 21,
        'n_perm_omnibus': 30,
        'n_perm_max_seq': 30,
        'min_lag_sources': 1,
        'max_lag_sources': delay_3 + 1,
        'max_lag_target': 1
    }

    res_network = nw.analyse_single_target(settings=settings,
                                           data=data,
                                           target=1)
    res_network.combine_results(
        nw.analyse_single_target(settings=settings, data=data, target=2))
    res_network.combine_results(
        nw.analyse_single_target(settings=settings, data=data, target=3))
    adj_mat = res_network.get_adjacency_matrix('max_te_lag', fdr=False)
    adj_mat.print_matrix()
    assert adj_mat._weight_matrix[0, 1] == delay_1, (
        'Estimate for delay 1 is not correct.')
    assert adj_mat._weight_matrix[0, 2] == delay_2, (
        'Estimate for delay 2 is not correct.')
    assert adj_mat._weight_matrix[0, 3] == delay_3, (
        'Estimate for delay 3 is not correct.')

    for target in range(1, 4):
        est_mi = res_network._single_target[target].omnibus_te
        assert np.isclose(est_mi, expected_mi, atol=0.05), (
            'Estimated TE for target {0} is not correct. Expected: {1}, '
            'Actual results: {2}.'.format(target, expected_mi, est_mi))
Beispiel #20
0
def test_invalid_settings_input():
    """Test handling of wrong inputs for settings dictionary."""

    # Wrong input type for settings dict.
    with pytest.raises(TypeError):
        JidtDiscreteMI(settings=1)
    with pytest.raises(TypeError):
        JidtDiscreteCMI(settings=1)
    with pytest.raises(TypeError):
        JidtDiscreteAIS(settings=1)
    with pytest.raises(TypeError):
        JidtDiscreteTE(settings=1)
    with pytest.raises(TypeError):
        JidtGaussianMI(settings=1)
    with pytest.raises(TypeError):
        JidtGaussianCMI(settings=1)
    with pytest.raises(TypeError):
        JidtGaussianAIS(settings=1)
    with pytest.raises(TypeError):
        JidtGaussianTE(settings=1)
    with pytest.raises(TypeError):
        JidtKraskovMI(settings=1)
    with pytest.raises(TypeError):
        JidtKraskovCMI(settings=1)
    with pytest.raises(TypeError):
        JidtKraskovAIS(settings=1)
    with pytest.raises(TypeError):
        JidtKraskovTE(settings=1)

    # Test if settings dict is initialised correctly.
    e = JidtDiscreteMI()
    assert type(
        e.settings) is dict, 'Did not initialise settings as dictionary.'
    e = JidtDiscreteCMI()
    assert type(
        e.settings) is dict, 'Did not initialise settings as dictionary.'
    e = JidtGaussianMI()
    assert type(
        e.settings) is dict, 'Did not initialise settings as dictionary.'
    e = JidtGaussianCMI()
    assert type(
        e.settings) is dict, 'Did not initialise settings as dictionary.'
    e = JidtKraskovMI()
    assert type(
        e.settings) is dict, 'Did not initialise settings as dictionary.'
    e = JidtKraskovCMI()
    assert type(
        e.settings) is dict, 'Did not initialise settings as dictionary.'

    # History parameter missing for AIS and TE estimation.
    with pytest.raises(RuntimeError):
        JidtDiscreteAIS(settings={})
    with pytest.raises(RuntimeError):
        JidtDiscreteTE(settings={})
    with pytest.raises(RuntimeError):
        JidtGaussianAIS(settings={})
    with pytest.raises(RuntimeError):
        JidtGaussianTE(settings={})
    with pytest.raises(RuntimeError):
        JidtKraskovAIS(settings={})
    with pytest.raises(RuntimeError):
        JidtKraskovTE(settings={})
Beispiel #21
0
def test_local_values():
    """Test estimation of local values and their return type."""
    expected_mi, source, s, target = _get_gauss_data(expand=False)
    ar_proc, s = _get_ar_data(expand=False)

    settings = {
        'discretise_method': 'equal',
        'n_discrete_bins': 4,
        'history_target': 1,
        'history': 2,
        'local_values': True
    }

    # MI - Discrete
    mi_estimator = JidtDiscreteMI(settings=settings)
    mi = mi_estimator.estimate(source, target)
    _assert_result(np.mean(mi), expected_mi, 'JidtDiscreteMI', 'MI',
                   0.08)  # More variability here
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # MI - Gaussian
    mi_estimator = JidtGaussianMI(settings=settings)
    mi = mi_estimator.estimate(source, target)
    _assert_result(np.mean(mi), expected_mi, 'JidtGaussianMI', 'MI')
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # MI - Kraskov
    mi_estimator = JidtKraskovMI(settings=settings)
    mi = mi_estimator.estimate(source, target)
    _assert_result(np.mean(mi), expected_mi, 'JidtKraskovMI', 'MI')
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # CMI - Discrete
    cmi_estimator = JidtDiscreteCMI(settings=settings)
    mi = cmi_estimator.estimate(source, target)
    _assert_result(np.mean(mi), expected_mi, 'JidtDiscreteCMI', 'CMI',
                   0.08)  # More variability here
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # MI - Gaussian
    mi_estimator = JidtGaussianCMI(settings=settings)
    mi = mi_estimator.estimate(source, target)
    _assert_result(np.mean(mi), expected_mi, 'JidtGaussianCMI', 'MI')
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # MI - Kraskov
    mi_estimator = JidtKraskovCMI(settings=settings)
    mi = mi_estimator.estimate(source, target)
    _assert_result(np.mean(mi), expected_mi, 'JidtKraskovCMI', 'MI')
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # TE - Discrete
    te_estimator = JidtDiscreteTE(settings=settings)
    mi = te_estimator.estimate(source[1:], target[:-1])
    _assert_result(np.mean(mi), expected_mi, 'JidtDiscreteTE', 'TE',
                   0.08)  # More variability here
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # TE - Gaussian
    mi_estimator = JidtGaussianTE(settings=settings)
    mi = mi_estimator.estimate(source[1:], target[:-1])
    _assert_result(np.mean(mi), expected_mi, 'JidtGaussianTE', 'MI')
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # TE - Kraskov
    mi_estimator = JidtKraskovTE(settings=settings)
    mi = mi_estimator.estimate(source[1:], target[:-1])
    _assert_result(np.mean(mi), expected_mi, 'JidtKraskovTE', 'MI')
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # AIS - Kraskov
    ais_estimator = JidtKraskovAIS(settings=settings)
    mi_k = ais_estimator.estimate(ar_proc)
    assert type(mi_k) is np.ndarray, 'Local values are not a numpy array.'

    # AIS - Discrete
    ais_estimator = JidtDiscreteAIS(settings=settings)
    mi_d = ais_estimator.estimate(ar_proc)
    assert type(mi_d) is np.ndarray, 'Local values are not a numpy array.'
    # TODO should we compare these?
    # _compare_result(np.mean(mi_k), np.mean(mi_d),
    #                 'JidtKraskovAIS', 'JidtDiscreteAIS', 'AIS (AR process)')

    # AIS - Gaussian
    ais_estimator = JidtGaussianAIS(settings=settings)
    mi_g = ais_estimator.estimate(ar_proc)
    assert type(mi_g) is np.ndarray, 'Local values are not a numpy array.'
    _compare_result(np.mean(mi_k), np.mean(mi_g), 'JidtKraskovAIS',
                    'JidtGaussianAIS', 'AIS (AR process)')
Beispiel #22
0
def test_results_network_inference():
    """Test results class for multivariate TE network inference."""
    covariance = 0.4
    n = 10000
    delay = 1
    normalisation = False
    source = np.random.normal(0, 1, size=n)
    target_1 = (covariance * source +
                (1 - covariance) * np.random.normal(0, 1, size=n))
    target_2 = (covariance * source +
                (1 - covariance) * np.random.normal(0, 1, size=n))
    corr_expected = covariance / (1 * np.sqrt(covariance**2 +
                                              (1 - covariance)**2))
    expected_mi = calculate_mi(corr_expected)
    source = source[delay:]
    target_1 = target_1[:-delay]
    target_2 = target_2[:-delay]

    # Discretise data for speed
    settings_dis = {'discretise_method': 'equal', 'n_discrete_bins': 5}
    est = JidtDiscreteCMI(settings_dis)
    source_dis, target_1_dis = est._discretise_vars(var1=source, var2=target_1)
    source_dis, target_2_dis = est._discretise_vars(var1=source, var2=target_2)
    data = Data(np.vstack((source_dis, target_1_dis, target_2_dis)),
                dim_order='ps',
                normalise=normalisation)

    nw = MultivariateTE()
    # TE - single target
    res_single_multi_te = nw.analyse_single_target(settings=settings,
                                                   data=data,
                                                   target=1)
    # TE whole network
    res_network_multi_te = nw.analyse_network(settings=settings, data=data)

    nw = BivariateTE()
    # TE - single target
    res_single_biv_te = nw.analyse_single_target(settings=settings,
                                                 data=data,
                                                 target=1)
    # TE whole network
    res_network_biv_te = nw.analyse_network(settings=settings, data=data)

    nw = MultivariateMI()
    # TE - single target
    res_single_multi_mi = nw.analyse_single_target(settings=settings,
                                                   data=data,
                                                   target=1)
    # TE whole network
    res_network_multi_mi = nw.analyse_network(settings=settings, data=data)

    nw = BivariateMI()
    # TE - single target
    res_single_biv_mi = nw.analyse_single_target(settings=settings,
                                                 data=data,
                                                 target=1)
    # TE whole network
    res_network_biv_mi = nw.analyse_network(settings=settings, data=data)

    res_te = [
        res_single_multi_te, res_network_multi_te, res_single_biv_te,
        res_network_biv_te
    ]
    res_mi = [
        res_single_multi_mi, res_network_multi_mi, res_single_biv_mi,
        res_network_biv_mi
    ]
    res_all = res_te + res_mi

    # Check estimated values
    for res in res_te:
        est_te = res._single_target[1].omnibus_te
        assert np.isclose(est_te, expected_mi, atol=0.05), (
            'Estimated TE for discrete variables is not correct. Expected: '
            '{0}, Actual results: {1}.'.format(expected_mi, est_te))
    for res in res_mi:
        est_mi = res._single_target[1].omnibus_mi
        assert np.isclose(est_mi, expected_mi, atol=0.05), (
            'Estimated TE for discrete variables is not correct. Expected: '
            '{0}, Actual results: {1}.'.format(expected_mi, est_mi))

    est_te = res_network_multi_te._single_target[2].omnibus_te
    assert np.isclose(est_te, expected_mi, atol=0.05), (
        'Estimated TE for discrete variables is not correct. Expected: {0}, '
        'Actual results: {1}.'.format(expected_mi, est_te))
    est_mi = res_network_multi_mi._single_target[2].omnibus_mi
    assert np.isclose(est_mi, expected_mi, atol=0.05), (
        'Estimated TE for discrete variables is not correct. Expected: {0}, '
        'Actual results: {1}.'.format(expected_mi, est_mi))

    # Check data parameters in results objects
    n_nodes = 3
    n_realisations = n - delay - max(settings['max_lag_sources'],
                                     settings['max_lag_target'])
    for res in res_all:
        assert res.data_properties.n_nodes == n_nodes, 'Incorrect no. nodes.'
        assert res.data_properties.n_nodes == n_nodes, 'Incorrect no. nodes.'
        assert res.data_properties.n_realisations == n_realisations, (
            'Incorrect no. realisations.')
        assert res.data_properties.n_realisations == n_realisations, (
            'Incorrect no. realisations.')
        assert res.data_properties.normalised == normalisation, (
            'Incorrect value for data normalisation.')
        assert res.data_properties.normalised == normalisation, (
            'Incorrect value for data normalisation.')
        adj_matrix = res.get_adjacency_matrix('binary', fdr=False)
        assert adj_matrix._edge_matrix.shape[0] == n_nodes, (
            'Incorrect number of rows in adjacency matrix.')
        assert adj_matrix._edge_matrix.shape[1] == n_nodes, (
            'Incorrect number of columns in adjacency matrix.')
        assert adj_matrix._edge_matrix.shape[0] == n_nodes, (
            'Incorrect number of rows in adjacency matrix.')
        assert adj_matrix._edge_matrix.shape[1] == n_nodes, (
            'Incorrect number of columns in adjacency matrix.')
from idtxl.estimators_pid import SydneyPID, TartuPID
from idtxl.idtxl_utils import calculate_mi

# Generate Gaussian test data
n = 10000
covariance = 0.4
corr_expected = covariance / (1 * np.sqrt(covariance**2 + (1-covariance)**2))
expected_mi = calculate_mi(corr_expected)
source_cor = np.random.normal(0, 1, size=n)  # correlated src
source_uncor = np.random.normal(0, 1, size=n)  # uncorrelated src
target = (covariance * source_cor +
          (1 - covariance) * np.random.normal(0, 1, size=n))

# JIDT Discrete estimators
settings = {'discretise_method': 'equal', 'alph1': 5, 'alph2': 5}
est = JidtDiscreteCMI(settings)
cmi = est.estimate(source_cor, target, source_uncor)
print('Estimated CMI: {0:.5f}, expected CMI: {1:.5f}'.format(cmi, expected_mi))
est = JidtDiscreteMI(settings)
mi = est.estimate(source_cor, target)
print('Estimated MI: {0:.5f}, expected MI: {1:.5f}'.format(mi, expected_mi))
settings['history_target'] = 1
est = JidtDiscreteTE(settings)
te = est.estimate(source_cor[1:n], target[0:n - 1])
print('Estimated TE: {0:.5f}, expected TE: {1:.5f}'.format(te, expected_mi))
settings['history'] = 1
est = JidtDiscreteAIS(settings)
ais = est.estimate(target)
print('Estimated AIS: {0:.5f}, expected AIS: ~0'.format(ais))

# JIDT Kraskov estimators
def test_local_values():
    """Test estimation of local values and their return type."""
    expected_mi, source, s, target = _get_gauss_data(expand=False)
    ar_proc, s = _get_ar_data(expand=False)

    settings = {'discretise_method': 'equal',
                'n_discrete_bins': 4,
                'history_target': 1,
                'history': 2,
                'local_values': True}

    # MI - Discrete
    mi_estimator = JidtDiscreteMI(settings=settings)
    mi = mi_estimator.estimate(source, target)
    _assert_result(np.mean(mi), expected_mi, 'JidtDiscreteMI', 'MI')
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # MI - Gaussian
    mi_estimator = JidtGaussianMI(settings=settings)
    mi = mi_estimator.estimate(source, target)
    _assert_result(np.mean(mi), expected_mi, 'JidtGaussianMI', 'MI')
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # MI - Kraskov
    mi_estimator = JidtKraskovMI(settings=settings)
    mi = mi_estimator.estimate(source, target)
    _assert_result(np.mean(mi), expected_mi, 'JidtKraskovMI', 'MI')
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # CMI - Discrete
    cmi_estimator = JidtDiscreteCMI(settings=settings)
    mi = cmi_estimator.estimate(source, target)
    _assert_result(np.mean(mi), expected_mi, 'JidtDiscreteCMI', 'CMI')
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # MI - Gaussian
    mi_estimator = JidtGaussianCMI(settings=settings)
    mi = mi_estimator.estimate(source, target)
    _assert_result(np.mean(mi), expected_mi, 'JidtGaussianCMI', 'MI')
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # MI - Kraskov
    mi_estimator = JidtKraskovCMI(settings=settings)
    mi = mi_estimator.estimate(source, target)
    _assert_result(np.mean(mi), expected_mi, 'JidtKraskovCMI', 'MI')
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # TE - Discrete
    te_estimator = JidtDiscreteTE(settings=settings)
    mi = te_estimator.estimate(source[1:], target[:-1])
    _assert_result(np.mean(mi), expected_mi, 'JidtDiscreteTE', 'TE')
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # TE - Gaussian
    mi_estimator = JidtGaussianTE(settings=settings)
    mi = mi_estimator.estimate(source[1:], target[:-1])
    _assert_result(np.mean(mi), expected_mi, 'JidtGaussianTE', 'MI')
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # TE - Kraskov
    mi_estimator = JidtKraskovTE(settings=settings)
    mi = mi_estimator.estimate(source[1:], target[:-1])
    _assert_result(np.mean(mi), expected_mi, 'JidtKraskovTE', 'MI')
    assert type(mi) is np.ndarray, 'Local values are not a numpy array.'

    # AIS - Kraskov
    ais_estimator = JidtKraskovAIS(settings=settings)
    mi_k = ais_estimator.estimate(ar_proc)
    assert type(mi_k) is np.ndarray, 'Local values are not a numpy array.'

    # AIS - Discrete
    ais_estimator = JidtDiscreteAIS(settings=settings)
    mi_d = ais_estimator.estimate(ar_proc)
    assert type(mi_d) is np.ndarray, 'Local values are not a numpy array.'
    # TODO should we compare these?
    # _compare_result(np.mean(mi_k), np.mean(mi_d),
    #                 'JidtKraskovAIS', 'JidtDiscreteAIS', 'AIS (AR process)')

    # AIS - Gaussian
    ais_estimator = JidtGaussianAIS(settings=settings)
    mi_g = ais_estimator.estimate(ar_proc)
    assert type(mi_g) is np.ndarray, 'Local values are not a numpy array.'
    _compare_result(np.mean(mi_k), np.mean(mi_g),
                    'JidtKraskovAIS', 'JidtGaussianAIS', 'AIS (AR process)')