Beispiel #1
0
def get_ec50(model: IfnModel, times: list or int, dose_species: str, response_species: str, custom_parameters={},
             rflag=False):
    if type(times) == int or type(times) == float:
        dr_curve = [el[0] for el in model.doseresponse([times], response_species, dose_species, list(logspace(-3, 5)),
                                      parameters=custom_parameters, return_type='list')[response_species]]

        top, K = fit_MM(list(logspace(-3, 5)), dr_curve, [max(dr_curve), 1000])
        if rflag:
            return top, K
        else:
            return K

    elif type(times) == list:
        dr_curve = model.doseresponse(times, response_species, dose_species, list(logspace(-3, 5)),
                                      parameters=custom_parameters, return_type='list')[response_species]

        top_list = []
        K_list = []
        for t in range(len(times)):
            tslice = [el[t] for el in dr_curve]
            top, K = fit_MM(list(logspace(-3, 5)), tslice, [max(tslice), 1000])
            top_list.append(top)
            K_list.append(K)
        if rflag:
            return top_list, K_list
        else:
            return K_list

    else:
        raise TypeError("Could not identify type for variable times")
Beispiel #2
0
def chi2(model: IfnModel, new_parameters: dict, times: list):
    reset_dict = dict(
        zip(new_parameters,
            [model.parameters[key] for key in new_parameters.keys()]))
    dra1 = model.doseresponse(times,
                              'TotalpSTAT',
                              'Ia',
                              list(logspace(-1, 5)),
                              parameters={'Ib': 0},
                              return_type='list')['TotalpSTAT']
    drb1 = model.doseresponse(times,
                              'TotalpSTAT',
                              'Ib',
                              list(logspace(-2, 4)),
                              parameters={'Ia': 0},
                              return_type='list')['TotalpSTAT']
    model.set_parameters(new_parameters)

    dra2 = model.doseresponse(times,
                              'TotalpSTAT',
                              'Ia',
                              list(logspace(-1, 5)),
                              parameters={'Ib': 0},
                              return_type='list')['TotalpSTAT']
    drb2 = model.doseresponse(times,
                              'TotalpSTAT',
                              'Ib',
                              list(logspace(-2, 4)),
                              parameters={'Ia': 0},
                              return_type='list')['TotalpSTAT']
    model.set_parameters(reset_dict)
    alpha_norm = max(max([item for sublist in dra1 for item in sublist]),
                     max([item for sublist in dra2 for item in sublist]))
    beta_norm = max(max([item for sublist in drb1 for item in sublist]),
                    max([item for sublist in drb2 for item in sublist]))

    value = (np.sum(np.square(np.divide(np.subtract(dra1, dra2), alpha_norm)))
             + np.sum(np.square(np.divide(np.subtract(drb1, drb2),
                                          beta_norm)))) / times[-1]
    value = np.nan_to_num(value)
    return value
Beispiel #3
0
    def likelihood(parameter_vector, sampled_parameter_names=param_names):
        # Make model
        from ifnclass.ifnmodel import IfnModel
        import numpy as np
        model = IfnModel(model_name)

        # Change model parameter values to current location in parameter space (values are in log10(value) format)
        param_dict = {
            pname: 10**pvalue
            for pname, pvalue in zip(sampled_parameter_names, parameter_vector)
        }
        model.set_parameters(param_dict)

        # Simulate experimentally measured values.

        total_simulation_data = model.doseresponse(
            times,
            response_species,
            dose_species,
            doses,
            parameters={n: 0
                        for n in IC_names if n != dose_species},
            return_type='dataframe',
            dataframe_labels=dose_species,
            scale_factor=100.0 / model.parameters['EpoR_IC'])

        sim_data = np.array([[el[0] for el in dose]
                             for dose in total_simulation_data.values
                             ]).flatten()

        # Calculate log probability contribution from simulated experimental values.

        logp_ctotal = np.sum(like_ctot.logpdf(sim_data))

        # If model simulation failed due to integrator errors, return a log probability of -inf.
        if np.isnan(logp_ctotal):
            logp_ctotal = -np.inf

        return logp_ctotal
Beispiel #4
0
        'krecT_a': 0.001,
        'krecT_b': 0.001,
        'kpa_IntTa': 0.001,
        'kpa_IntTb': 0.000005
    })

    scale_factor = 0.242052437849
    scale_data = lambda q: (scale_factor * q[0], scale_factor * q[1])

    times = [1, 5, 60]
    experimental_doses = [0.051, 0.51, 1.54, 5.13, 15.4, 51.3]
    simulation_doses = list(logspace(log10(0.01), log10(2000)))
    dradf = Mixed_Model.doseresponse(times,
                                     'TotalpSTAT',
                                     'Ia',
                                     simulation_doses,
                                     parameters={'Ib': 0},
                                     return_type='dataframe',
                                     dataframe_labels='Alpha')
    drbdf = Mixed_Model.doseresponse(times,
                                     'TotalpSTAT',
                                     'Ib',
                                     simulation_doses,
                                     parameters={'Ia': 0},
                                     return_type='dataframe',
                                     dataframe_labels='Beta')

    for i in range(len(times)):
        dradf.loc['Alpha'].iloc[:, i] = dradf.loc['Alpha'].iloc[:, i].apply(
            scale_data)
        drbdf.loc['Beta'].iloc[:,
Beispiel #5
0
        'kd4': 1.0,
        'kd3': 0.001,
        'kint_a': 0.0014,
        'krec_a1': 9e-03,
        'krec_a2': 0.05
    })
    scale_factor = 0.036
    scale_data = lambda q: (scale_factor * q[0], scale_factor * q[1])

    dose_list = list(logspace(-2, 8, num=35))

    times = [2.5, 5, 15, 20, 30, 60]
    dradf = Mixed_Model.doseresponse(times,
                                     'TotalpSTAT',
                                     'Ia',
                                     list(logspace(-1, 5)),
                                     parameters={'Ib': 0},
                                     return_type='dataframe',
                                     dataframe_labels='Alpha')
    drbdf = Mixed_Model.doseresponse(times,
                                     'TotalpSTAT',
                                     'Ib',
                                     list(logspace(-2, 4)),
                                     parameters={'Ia': 0},
                                     return_type='dataframe',
                                     dataframe_labels='Beta')

    for i in range(len(times)):
        dradf.loc['Alpha'].iloc[:, i] = dradf.loc['Alpha'].iloc[:, i].apply(
            scale_data)
        drbdf.loc['Beta'].iloc[:,
Beispiel #6
0
    # ---------------------------------
    # Make theory dose response curves
    # ---------------------------------
    IC_names = ['Epo_IC', 'EMP1_IC', 'EMP33_IC']
    # Make predictions
    response_species = 'T_Epo'
    dose_species = 'Epo_IC'
    times = [60.0]  # min
    Epo_doses = Moraga_data.get_doses()['T_Epo']  # pM
    dr_Epo = IfnData(
        'custom',
        df=model.doseresponse(
            times,
            response_species,
            dose_species,
            Epo_doses,
            parameters={n: 0
                        for n in IC_names if n != dose_species},
            return_type='dataframe',
            dataframe_labels=dose_species,
            scale_factor=100.0 / model.parameters['EpoR_IC']),
        conditions={})

    # -------------------------------
    # Plot model dose response curves
    # -------------------------------
    palette = sns.color_palette("muted")

    Epo_plot = DoseresponsePlot((1, 1))
    # Add data
    Epo_plot.add_trajectory(Moraga_data,
                            60,
Beispiel #7
0
    #print(scale_factor)
    #Mixed_Model = stepfit.model

    # -----------------------------
    # End Stepwise Fit
    # -----------------------------

    scale_factor = 0.2050499
    scale_data = lambda q: (scale_factor * q[0], scale_factor * q[1])

    # Make predictions
    dradf = Mixed_Model.doseresponse(times,
                                     'TotalpSTAT',
                                     'Ia',
                                     list(
                                         logspace(
                                             log10(alpha_doses_20190108[1]),
                                             log10(alpha_doses_20190108[-1]))),
                                     parameters={'Ib': 0},
                                     return_type='dataframe',
                                     dataframe_labels='Alpha')
    drbdf = Mixed_Model.doseresponse(times,
                                     'TotalpSTAT',
                                     'Ib',
                                     list(
                                         logspace(
                                             log10(beta_doses_20190108[1]),
                                             log10(beta_doses_20190108[-1]))),
                                     parameters={'Ia': 0},
                                     return_type='dataframe',
                                     dataframe_labels='Beta')
    for i in range(len(times)):
Beispiel #8
0
    plt.title('Fraction pSTAT vs Cell Radius\n 20 pM IFN at 60 minutes')
    plt.show()

    # --------------------------------------------------------------
    # Two dose response curves
    # Large cells are 20% of population
    # Small cells have 20% R1 and R2 but are 80% of the population
    # --------------------------------------------------------------
    # Small cells
    radius = 1E-6
    volPM = 2 * radius ** 2 + 4 * radius * 8E-6
    volCP = 8E-6 * radius ** 2
    small_cells_alpha = Mixed_Model.doseresponse(times, 'TotalpSTAT', 'Ia',
                                                 list(np.logspace(np.log10(doses_alpha[0]), np.log10(doses_alpha[-1]))),
                                                 parameters={'Ib': 0,
                                                             'R1': 1200 * 0.20,
                                                             'R2': 4920 * 0.20},
                                                 return_type='dataframe', dataframe_labels='Alpha',
                                                 scale_factor=scale_factor * 0.8)
    small_cells_beta = Mixed_Model.doseresponse(times, 'TotalpSTAT', 'Ib',
                                                list(np.logspace(np.log10(doses_beta[0]), np.log10(doses_beta[-1]))),
                                                parameters={'Ia': 0,
                                                            'R1': 1200 * 0.20,
                                                            'R2': 4920 * 0.20},
                                                return_type='dataframe', dataframe_labels='Beta',
                                                scale_factor=scale_factor * 0.8)
    small_cells_alpha_IFNdata = IfnData('custom', df=small_cells_alpha, conditions={'Alpha': {'Ib': 0}})
    small_cells_beta_IFNdata = IfnData('custom', df=small_cells_beta, conditions={'Beta': {'Ia': 0}})

    # Large (normal) cells
    radius = 30E-6
        'R1': 9000.0,
        'R2': 1511.1
    }
    testModel = IfnModel('Mixed_IFN_ppCompatible')
    testModel.set_parameters(best_fit_params)

    # --------------------
    # Perform simulations
    # --------------------
    times = [2.5, 5.0, 10.0, 20.0, 30.0, 60.0]
    doses = [10, 100, 300, 1000, 3000, 10000, 100000]

    df = testModel.doseresponse(times,
                                'TotalpSTAT',
                                'Ia',
                                doses,
                                parameters={'Ib': 0},
                                scale_factor=4.1,
                                return_type='dataframe',
                                dataframe_labels='Alpha')
    print(df)
    DR_Simulation = IfnData('custom', df=df, conditions={'Alpha': {'Ib': 0}})
    DR_Simulation.drop_sigmas()

    # -----------------------------------------------------------
    # Load several sets of experimental data and align them
    # -----------------------------------------------------------

    # These datasets are already prepared for use in /ifndatabase
    expdata_1 = IfnData("20190214_pSTAT1_IFN_Bcell")
    expdata_2 = IfnData("20190121_pSTAT1_IFN_Bcell")
    expdata_3 = IfnData("20190119_pSTAT1_IFN_Bcell")
                                'krec_a1': 0.01, 'krec_a2': 0.01, 'krec_b1': 0.005, 'krec_b2': 0.05})
    scale_factor = 1.46182313424

    # ------------------------------------------
    # Make model predictions for mixtures of IFN
    # ------------------------------------------
    times = newdata_4.get_times('Alpha')
    doses_alpha = newdata_4.get_doses('Alpha')
    doses_alpha = [0.0] + [round(el, 2) for el in list(np.logspace(np.log10(doses_alpha[0]), np.log10(doses_alpha[-1])))]
    doses_beta = newdata_4.get_doses('Beta')
    doses_beta = [0.0] + [round(el, 2) for el in list(np.logspace(np.log10(doses_beta[0]), np.log10(doses_beta[-1])))]

    model_scan = {}
    for d in doses_beta:
        dradf = Mixed_Model.doseresponse(times, 'TotalpSTAT', 'Ia', doses_alpha,
                                         parameters={'Ib': d*1E-12*6.022E23*1E-5}, return_type='dataframe', dataframe_labels='Alpha',
                                         scale_factor=scale_factor)
        model_scan.update({d: dradf})
    # -------------------------------
    # Plot Heatmaps
    # -------------------------------
    fig, axes = plt.subplots(nrows=1, ncols=len(times))
    for ax in axes:
        ax.set_xlabel(r'IFN$\alpha$ (pM)')
        ax.set_ylabel(r'IFN$\beta$ (pM)')
    fig.set_size_inches(8*6, 8)
    for t_idx, t in enumerate(times):
        axes[t_idx].set_title('{} min'.format(t))
        response_data = [[]]*len(doses_beta)
        for d_idx, d in enumerate(doses_beta):
            row = [el[0] for el in model_scan[d].loc['Alpha'].iloc[:, t_idx].values]
ImmuneCell_Model = IfnModel('Immune_Cell_model')

IFNg_doses = list(logspace(-1.5, 2, num=15))
times = [15, 30, 60]
fig = DoseresponsePlot((2, 2))
fig.axes[0][0].set_title('pSTAT1')
fig.axes[0][1].set_title('pSTAT3')

print("Dose-response 1")
IFNg_naive_res = ImmuneCell_Model.doseresponse(times, ['pSTAT1', 'pSTAT3'],
                                               'IFN_gamma_IC',
                                               IFNg_doses,
                                               parameters={
                                                   'IFNAR1_IC': 0,
                                                   'IFNAR2_IC': 0,
                                                   'IFN_alpha2_IC': 0,
                                                   'IFN_beta_IC': 0,
                                                   'SOCS2_IC': 0
                                               },
                                               return_type='dataframe',
                                               dataframe_labels='IFNgamma')
naive_IFNg_pSTAT1_df = IfnData(name='custom', df=IFNg_naive_res.xs(['pSTAT1']))
naive_IFNg_pSTAT3_df = IfnData(name='custom', df=IFNg_naive_res.xs(['pSTAT3']))

print("Dose-response 2")
IFNg_SOCS_res = ImmuneCell_Model.doseresponse(times, ['pSTAT1', 'pSTAT3'],
                                              'IFN_gamma_IC',
                                              IFNg_doses,
                                              parameters={
                                                  'IFNAR1_IC': 0,
                                                  'IFNAR2_IC': 0,
Beispiel #12
0
ImmuneCell_Model = IfnModel('Immune_Cell_model')
# -------------------------------------------
# Get naive responses (i.e. one IFN at a time)
# -------------------------------------------
IFNg_doses = list(logspace(-2, 2, num=30))
IFNa_doses = list(logspace(0, 4, num=30))  # (pM)
IFNb_doses = list(logspace(-1, 3, num=30))  # (pM)

times = [15, 30, 60]
# IFN gamma
IFNg_naive_res = ImmuneCell_Model.doseresponse(times, ['pSTAT1', 'pSTAT3'],
                                               'IFN_gamma_IC',
                                               IFNg_doses,
                                               parameters={
                                                   'IFNAR1_IC': 0,
                                                   'IFNAR2_IC': 0,
                                                   'IFN_alpha2_IC': 0,
                                                   'IFN_beta_IC': 0
                                               },
                                               return_type='dataframe',
                                               dataframe_labels='IFNgamma')
naive_IFNg_pSTAT1_df = IfnData(name='custom', df=IFNg_naive_res.xs(['pSTAT1']))
naive_IFNg_pSTAT3_df = IfnData(name='custom', df=IFNg_naive_res.xs(['pSTAT3']))
naive_IFNgec50_pSTAT1 = naive_IFNg_pSTAT1_df.get_ec50s()
naive_IFNgec50_pSTAT3 = naive_IFNg_pSTAT3_df.get_ec50s()

naive_pSTAT1_response_at_IFNgec50 = {
    key: val / 2
    for (key, val) in naive_IFNg_pSTAT1_df.get_max_responses()['IFNgamma']
}
naive_pSTAT3_response_at_IFNgec50 = {
Beispiel #13
0
        'kd3': 0.001,
        'kint_a': 0.0014,
        'krec_a1': 9e-03,
        'krec_a2': 0.05
    })

    dose_list = list(logspace(-2, 8, num=35))

    # ---------------------------------------------------
    # First make the figure where we increase K4
    # ---------------------------------------------------
    dr_curve_a = [
        el[0]
        for el in Mixed_Model.doseresponse([60],
                                           'TotalpSTAT',
                                           'Ia',
                                           dose_list,
                                           parameters={'Ib': 0},
                                           return_type='list')['TotalpSTAT']
    ]
    dr_curve_b = [
        el[0]
        for el in Mixed_Model.doseresponse([60],
                                           'TotalpSTAT',
                                           'Ib',
                                           dose_list,
                                           parameters={'Ia': 0},
                                           return_type='list')['TotalpSTAT']
    ]
    # Now compute the 20* refractory response
    k4sf1 = 2
    Mixed_Model.set_parameters({'kd4': 1.0 * k4sf1, 'k_d4': 0.06 * k4sf1})
Beispiel #14
0
class DualMixedPopulation:
    """
        Documentation - A DualMixedPopulation instance contains two IfnModels which describe two subpopulations.

        Attributes
        ----------
        name = name of model (for import)
        model_1 = IfnModel(name)
        model_2 = IfnModel(name)
        w1 = float in [0,1] reflecting fraction of total population described by model_1
        w2 = float in [0,1] reflecting fraction of total population described by model_2

        Methods
        -------
        mixed_dose_response(): perform a dose response as per any IfnModel, but weighted by each subpopulation
        stepwise_fit(): perform a stepwise fit of the mixed population model to given data
        """
    def __init__(self, name, pop1_weight, pop2_weight):
        self.name = name
        self.model_1 = IfnModel(name)
        self.model_2 = IfnModel(name)
        self.w1 = pop1_weight
        self.w2 = pop2_weight

    def set_parameters(self, param_dict):
        self.model_1.set_parameters(param_dict)
        self.model_2.set_parameters(param_dict)

    def reset_global_parameters(self):
        """
        This method is not safe for maintaining detailed balance (ie. no D.B. check)
        :return: None
        """
        self.model_1.reset_parameters()
        self.model_2.reset_parameters()

    def update_parameters(self, param_dict):
        """
        This method will act like set_parameters for any parameters that do not end in '_1' or '_2'.
        Parameters with names ending in '_1' or '_2' will be updated only in Model 1 or Model 2 respectively.
        :param param_dict: dictionary of parameter names and the values to use
        :return: 0
        """
        shared_parameters = {
            key: value
            for key, value in param_dict.items() if key[-2] != '_'
        }
        model1_parameters = {
            key[:-2]: value
            for key, value in param_dict.items() if key[-2:] == '_1'
        }
        model2_parameters = {
            key[:-2]: value
            for key, value in param_dict.items() if key[-2:] == '_2'
        }
        self.model_1.set_parameters(shared_parameters)
        self.model_2.set_parameters(shared_parameters)
        self.model_1.set_parameters(model1_parameters)
        self.model_2.set_parameters(model2_parameters)
        return 0

    def get_parameters(self):
        """
        This method will retrieve all parameters from each of model_1 and model_2, and return a parameter dictionary
        of the form {pname: pvalue} where the pname will have '_1' if its value is unique to model_1 and '_2' if it is
        unique to model_2.
        :return: dict
        """
        all_parameters = {}
        for key, value in self.model_1.parameters.items():
            if self.model_1.parameters[key] != self.model_2.parameters[key]:
                all_parameters[key + '_1'] = self.model_1.parameters[key]
                all_parameters[key + '_2'] = self.model_2.parameters[key]
            else:
                all_parameters[key] = self.model_1.parameters[key]
        return all_parameters

    def mixed_dose_response(self,
                            times,
                            observable,
                            dose_species,
                            doses,
                            parameters={},
                            sf=1,
                            **kwargs):
        return_type = kwargs.get('return_type', 'DataFrame')
        if return_type not in ['DataFrame', 'IfnData']:
            raise TypeError('Invalid return type requested')

        response_1 = self.model_1.doseresponse(
            times, observable, dose_species, doses,
            parameters=parameters)[observable]
        response_2 = self.model_2.doseresponse(
            times, observable, dose_species, doses,
            parameters=parameters)[observable]

        weighted_sum_response = np.add(np.multiply(response_1, self.w1),
                                       np.multiply(response_2, self.w2))
        if sf != 1:
            weighted_sum_response = [[el * sf for el in row]
                                     for row in weighted_sum_response]
        if dose_species == 'Ia':
            labelled_data = [[
                'Alpha', doses[row], *[(el, nan)
                                       for el in weighted_sum_response[row]]
            ] for row in range(0, len(weighted_sum_response))]
        elif dose_species == 'Ib':
            labelled_data = [[
                'Beta', doses[row], *[(el, nan)
                                      for el in weighted_sum_response[row]]
            ] for row in range(0, len(weighted_sum_response))]
        else:
            labelled_data = [[
                'Cytokine', doses[row], *[(el, nan)
                                          for el in weighted_sum_response[row]]
            ] for row in range(0, len(weighted_sum_response))]

        column_labels = ['Dose_Species', 'Dose (pM)'
                         ] + [str(el) for el in times]

        drdf = pd.DataFrame.from_records(labelled_data, columns=column_labels)
        drdf.set_index(['Dose_Species', 'Dose (pM)'], inplace=True)

        if return_type == 'DataFrame':
            return drdf
        if return_type == 'IfnData':
            return IfnData(name='custom', df=drdf, conditions=parameters)

    def __score_mixed_models__(self, shared_parameters, mixed_parameters,
                               data):
        # ------------------------------
        # Initialize variables
        # ------------------------------
        times = data.get_times(species='Alpha')
        alpha_doses = data.get_doses(species='Alpha')
        beta_doses = data.get_doses(species='Beta')

        model_1_old_parameters = self.model_1.parameters
        model_2_old_parameters = self.model_2.parameters

        # Set parameters for each population
        self.model_1.set_parameters(shared_parameters)
        self.model_1.set_parameters(mixed_parameters[0])

        self.model_2.set_parameters(shared_parameters)
        self.model_1.set_parameters(mixed_parameters[1])

        # -------------------------
        # Make predictions
        # -------------------------
        alpha_response = self.mixed_dose_response(times,
                                                  'TotalpSTAT',
                                                  'Ia',
                                                  alpha_doses,
                                                  parameters={'Ib': 0})
        beta_response = self.mixed_dose_response(times,
                                                 'TotalpSTAT',
                                                 'Ib',
                                                 beta_doses,
                                                 parameters={'Ia': 0})
        total_response = pd.concat([alpha_response, beta_response])

        # -------------------------
        # Score predictions vs data
        # -------------------------
        def __score_target__(scf, data, sim):
            diff_table = np.zeros((len(data), len(data[0])))
            for r in range(len(data)):
                for c in range(len(data[r])):
                    if not np.isnan(data[r][c][1]):
                        diff_table[r][c] = (sim[r][c][0] * scf -
                                            data[r][c][0]) / data[r][c][1]
                    else:
                        diff_table[r][c] = (sim[r][c][0] * scf - data[r][c][0])
            return np.sum(np.square(diff_table))

        opt = minimize(__score_target__, [0.1],
                       args=(data.data_set.values, total_response.values))
        sf = opt['x'][0]
        score = opt['fun']

        self.model_1.set_parameters(model_1_old_parameters)
        self.model_2.set_parameters(model_2_old_parameters)
        return score, sf

    def stepwise_fit(self, data, parameters_to_test, ntest_per_param, mixed_p):
        number_of_parameters = len(parameters_to_test.keys())
        final_fit = OrderedDict({})

        # Local scope function
        def separate_parameters(p_to_test, mixed_p_list):
            shared_variables = {}
            mixed_variables = [{}, {}]
            for key, value in p_to_test.items():
                if key[-3:] == '__1':
                    if key[0:-3] in mixed_p_list:
                        mixed_variables[0].update({key[0:-3]: value})
                elif key[-3:] == '__2':
                    if key[0:-3] in mixed_p_list:
                        mixed_variables[1].update({key[0:-3]: value})
                else:
                    shared_variables.update({key: value})
            return shared_variables, mixed_variables,

        # Fit each parameter, ordered from most important to least
        initial_score, _ = self.__score_mixed_models__({}, [{}, {}], data)
        for i in range(number_of_parameters):
            print("{}% of the way done".format(i * 100 / number_of_parameters))
            reference_score = 0
            best_scale_factor = 1
            best_parameter = []
            # Test all remaining parameters, using previously fit values
            for p, (min_test_val, max_test_val) in parameters_to_test.items():
                residuals = []
                scale_factor_list = []
                # Try all test values for current parameter
                for j in np.linspace(min_test_val, max_test_val,
                                     ntest_per_param):
                    test_parameters = {
                        p: j,
                        **final_fit
                    }  # Includes previously fit parameters
                    base_parameters, subpopulation_parameters = separate_parameters(
                        test_parameters, mixed_p)
                    score, scale_factor = self.__score_mixed_models__(
                        base_parameters, subpopulation_parameters, data)
                    residuals.append(score)
                    scale_factor_list.append(scale_factor)
                # Choose best value for current parameter
                best_parameter_value = np.linspace(
                    min_test_val, max_test_val,
                    ntest_per_param)[residuals.index(min(residuals))]
                # Decide if this is the best parameter so far in this round of 'i' loop
                if min(residuals) < reference_score or reference_score == 0:
                    reference_score = min(residuals)
                    best_scale_factor = scale_factor_list[residuals.index(
                        min(residuals))]
                    best_parameter = [p, best_parameter_value]
            # Record the next best parameter and remove it from parameters left to test
            final_fit.update({best_parameter[0]: best_parameter[1]})
            final_scale_factor = best_scale_factor
            del parameters_to_test[best_parameter[0]]
        print("Score improved from {} to {} after {} iterations".format(
            initial_score, reference_score, number_of_parameters))
        final_shared_parameters, final_mixed_parameters = separate_parameters(
            final_fit, mixed_p)
        return final_shared_parameters, final_mixed_parameters, final_scale_factor
     'kd3': 6.52e-05,
     'kint_a': 0.0015, 'kint_b': 0.002,
     'krec_a1': 0.01, 'krec_a2': 0.01, 'krec_b1': 0.005, 'krec_b2': 0.05}

    scale_factor = 1.46182313424

    Mixed_Model.set_parameters(default_parameters)
    Mixed_Model.default_parameters.update(default_parameters)

    # Produce plots
    times = [60]
    # No Negative Feedback
    Mixed_Model.set_parameters({'kSOCSon': 0, 'kIntBasal_r1': 0, 'kIntBasal_r2': 0, 'kint_a': 0, 'kint_b': 0})

    dradf = Mixed_Model.doseresponse(times, 'TotalpSTAT', 'Ia', list(logspace(-2, 8)),
                                     parameters={'Ib': 0}, return_type='dataframe', dataframe_labels='Alpha',
                                     scale_factor=scale_factor)
    drbdf = Mixed_Model.doseresponse(times, 'TotalpSTAT', 'Ib', list(logspace(-2, 8)),
                                     parameters={'Ia': 0}, return_type='dataframe', dataframe_labels='Beta',
                                     scale_factor=scale_factor)

    # Show internalization effects
    Mixed_Model.reset_parameters()
    Mixed_Model.set_parameters({'kSOCSon': 0})
    dradf_int = Mixed_Model.doseresponse(times, 'TotalpSTAT', 'Ia', list(logspace(-2, 8)),
                                         parameters={'Ib': 0}, return_type='dataframe', dataframe_labels='Alpha',
                                         scale_factor=scale_factor)
    drbdf_int = Mixed_Model.doseresponse(times, 'TotalpSTAT', 'Ib', list(logspace(-2, 8)),
                                         parameters={'Ia': 0}, return_type='dataframe', dataframe_labels='Beta',
                                         scale_factor=scale_factor)
Beispiel #16
0
    #                      {'kSOCSon': (5e-8, 8e-7),
    #                       'kint_a': (0.0001, 0.002), 'kint_b': (0.002, 0.0001),
    #                       'krec_a1': (1e-03, 1e-02), 'krec_a2': (0.1, 0.01),
    #                       'krec_b1': (0.005, 0.0005), 'krec_b2': (0.05, 0.005)}, n=6)
    #best_parameters, scale_factor = stepfit.fit()
    #print(best_parameters)
    #print(scale_factor)
    #Mixed_Model = stepfit.model

    # -------------------------------
    # Make predictions
    # -------------------------------
    dradf = Mixed_Model.doseresponse(
        times,
        'TotalpSTAT',
        'Ia',
        list(np.logspace(np.log10(doses_alpha[0]), np.log10(doses_alpha[-1]))),
        parameters={'Ib': 0},
        return_type='dataframe',
        dataframe_labels='Alpha')
    drbdf = Mixed_Model.doseresponse(
        times,
        'TotalpSTAT',
        'Ib',
        list(np.logspace(np.log10(doses_beta[0]), np.log10(doses_beta[-1]))),
        parameters={'Ia': 0},
        return_type='dataframe',
        dataframe_labels='Beta')
    for i in range(len(times)):
        dradf.loc['Alpha'].iloc[:, i] = dradf.loc['Alpha'].iloc[:, i].apply(
            scale_data)
        drbdf.loc['Beta'].iloc[:,
Beispiel #17
0
IFN_Model = IfnModel('Mixed_IFN_ppCompatible')
IFN_Model.set_parameters(initial_parameters)
IFN_Model.set_parameters({'R1': 12000.0, 'R2': 1511.1})

# ---------------------------------
# Make theory dose response curves
# ---------------------------------
# Make predictions
times = [2.5, 5.0, 7.5, 10.0, 20.0, 60.0]
alpha_doses_20190108 = [0, 10, 100, 300, 1000, 3000, 10000, 100000]
beta_doses_20190108 = [0, 0.2, 6, 20, 60, 200, 600, 2000]

dradf = IFN_Model.doseresponse(times,
                               'TotalpSTAT',
                               'Ia',
                               list(logspace(1, 5.2)),
                               parameters={'Ib': 0},
                               scale_factor=scale_factor,
                               return_type='dataframe',
                               dataframe_labels='Alpha')
drbdf = IFN_Model.doseresponse(times,
                               'TotalpSTAT',
                               'Ib',
                               list(logspace(-1, 4)),
                               parameters={'Ia': 0},
                               scale_factor=scale_factor,
                               return_type='dataframe',
                               dataframe_labels='Beta')

dra60 = IfnData('custom', df=dradf, conditions={'Alpha': {'Ib': 0}})
drb60 = IfnData('custom', df=drbdf, conditions={'Beta': {'Ia': 0}})