def test_process_project_data_and_account(self):
     fa=Find_and_register_new_project_data(projet_info_path=os.path.join('.','data/check_project_data'),\
                                         dbconfig=self.dbconfig,\
                                         user_account_template='template/email_notification/send_new_account_info.txt',\
                                         log_slack=False,\
                                         setup_irods=False,\
                                         notify_user=False,\
                                         check_hpc_user=False,\
                                         )
     fa.process_project_data_and_account()
     dbparam = None
     with open(self.dbconfig, 'r') as json_data:
       dbparam = json.load(json_data)
     base = BaseAdaptor(**dbparam)
     base.start_session()
     pa=ProjectAdaptor(**{'session':base.session})
     project_exists=pa.check_project_records_igf_id(project_igf_id='IGFP0002_test_23-5-2017_rna')
     self.assertTrue(project_exists)
     ua=UserAdaptor(**{'session':base.session})
     user_exists=ua.check_user_records_email_id(email_id='*****@*****.**')
     self.assertTrue(user_exists)
     user1=ua.fetch_user_records_email_id(user_email_id='*****@*****.**')
     self.assertEqual(user1.name,'User2')
     sa=SampleAdaptor(**{'session':base.session})
     sample_exists=sa.check_sample_records_igf_id(sample_igf_id='IGF00006')
     self.assertTrue(sample_exists)
     project_user_exists=pa.check_existing_project_user(project_igf_id='IGFP0002_test_23-5-2017_rna',\
                                                        email_id='*****@*****.**')
     self.assertTrue(project_user_exists)
     project_user_exists=pa.check_existing_project_user(project_igf_id='IGFP0002_test_23-5-2017_rna',\
                                                        email_id='*****@*****.**')
     self.assertTrue(project_user_exists)
     base.close_session()
 def test_check_project_and_sample(self):
     sa = SampleAdaptor(**{'session_class': self.session_class})
     sample_data = [
         {
             'sample_igf_id': 'IGFS001',
             'library_id': 'IGFS001',
             'project_igf_id': 'IGFP0001_test_22-8-2017_rna',
         },
         {
             'sample_igf_id': 'IGFS002',
             'library_id': 'IGFS002',
             'project_igf_id': 'IGFP0001_test_22-8-2017_rna',
         },
         {
             'sample_igf_id': 'IGFS003',
             'library_id': 'IGFS003',
             'project_igf_id': 'IGFP0001_test_22-8-2017_rna',
         },
         {
             'sample_igf_id': 'IGFS004',
             'library_id': 'IGFS004',
             'project_igf_id': 'IGFP0001_test_22-8-2017_rna',
         },
     ]
     sa.start_session()
     sa.store_sample_and_attribute_data(data=sample_data)
     sa1=sa.check_project_and_sample(project_igf_id='IGFP0001_test_22-8-2017_rna',\
                                     sample_igf_id='IGFS001')
     self.assertEqual(sa1, True)
     sa2=sa.check_project_and_sample(project_igf_id='IGFP0001_test_22-8-2017_rna',\
                                     sample_igf_id='IGFS0011')
     self.assertEqual(sa2, False)
     sa.close_session()
 def setUp(self):
   self.dbconfig='data/dbconfig.json'
   self.new_project_data='data/check_project_data/new_project_data.csv'
   dbparam = None
   with open(self.dbconfig, 'r') as json_data:
     dbparam = json.load(json_data)
   base = BaseAdaptor(**dbparam)
   self.engine = base.engine
   self.dbname=dbparam['dbname']
   Base.metadata.create_all(self.engine)
   self.session_class=base.session_class
   base.start_session()
   ua=UserAdaptor(**{'session':base.session})
   user_data=[{'name':'user1','email_id':'*****@*****.**','username':'******'},
              {'name':'igf','email_id':'*****@*****.**','username':'******'}]
   ua.store_user_data(data=user_data)
   project_data=[{'project_igf_id':'IGFP0001_test_22-8-2017_rna',
                  'project_name':'test_22-8-2017_rna',
                  'description':'Its project 1',
                  'project_deadline':'Before August 2017',
                  'comments':'Some samples are treated with drug X',
                }]
   pa=ProjectAdaptor(**{'session':base.session})
   pa.store_project_and_attribute_data(data=project_data)
   project_user_data=[{'project_igf_id':'IGFP0001_test_22-8-2017_rna',
                       'email_id':'*****@*****.**',
                       'data_authority':True}]
   pa.assign_user_to_project(data=project_user_data)
   sample_data=[{'sample_igf_id':'IGF00001',
                 'project_igf_id':'IGFP0001_test_22-8-2017_rna',},
                {'sample_igf_id':'IGF00002',
                 'project_igf_id':'IGFP0001_test_22-8-2017_rna',},
                {'sample_igf_id':'IGF00003',
                 'project_igf_id':'IGFP0001_test_22-8-2017_rna',},
                {'sample_igf_id':'IGF00004',
                 'project_igf_id':'IGFP0001_test_22-8-2017_rna',},
                {'sample_igf_id':'IGF00005', 
                 'project_igf_id':'IGFP0001_test_22-8-2017_rna',},
               ]
   sa=SampleAdaptor(**{'session':base.session})
   sa.store_sample_and_attribute_data(data=sample_data)
   base.close_session()
   new_project_data=[{'project_igf_id':'IGFP0002_test_23-5-2017_rna',
                      'name':'user2',
                      'email_id':'*****@*****.**',
                      'sample_igf_id':'IGF00006',
                     },
                     {'project_igf_id':'IGFP0003_test_24-8-2017_rna',
                      'name':'user2',
                      'email_id':'*****@*****.**',
                      'sample_igf_id':'IGF00007',
                      'barcode_check':'OFF'
                     }]
   pd.DataFrame(new_project_data).to_csv(os.path.join('.',self.new_project_data))
  def setUp(self):
    self.dbconfig = 'data/dbconfig.json'
    dbparam=read_dbconf_json(self.dbconfig)
    base = BaseAdaptor(**dbparam)
    self.engine = base.engine
    self.dbname=dbparam['dbname']
    Base.metadata.drop_all(self.engine)
    if os.path.exists(self.dbname):
      os.remove(self.dbname)
    Base.metadata.create_all(self.engine)
    self.session_class=base.get_session_class()

    base = BaseAdaptor(**{'session_class':self.session_class})
    base.start_session()
    platform_data=[{ "platform_igf_id" : "M001",
                     "model_name" : "MISEQ" ,
                     "vendor_name" : "ILLUMINA" ,
                     "software_name" : "RTA",
                     "software_version" : "RTA1.18.54"}]                        # platform data
    flowcell_rule_data=[{"platform_igf_id":"M001",
                         "flowcell_type":"MISEQ",
                         "index_1":"NO_CHANGE",
                         "index_2":"NO_CHANGE"}]                                # flowcell rule data
    pl=PlatformAdaptor(**{'session':base.session})
    pl.store_platform_data(data=platform_data)                                  # loading platform data
    pl.store_flowcell_barcode_rule(data=flowcell_rule_data)                     # loading flowcell rules data
    project_data=[{'project_igf_id':'ProjectA'}]                                # project data
    pa=ProjectAdaptor(**{'session':base.session})
    pa.store_project_and_attribute_data(data=project_data)                      # load project data
    sample_data=[{'sample_igf_id':'SampleA',
                  'project_igf_id':'ProjectA'}]                                 # sample data
    sa=SampleAdaptor(**{'session':base.session})
    sa.store_sample_and_attribute_data(data=sample_data)                        # store sample data
    seqrun_data=[{'seqrun_igf_id':'SeqrunA', 
                  'flowcell_id':'000000000-D0YLK', 
                  'platform_igf_id':'M001',
                  'flowcell':'MISEQ'}]                                          # seqrun data
    sra=SeqrunAdaptor(**{'session':base.session})
    sra.store_seqrun_and_attribute_data(data=seqrun_data)                       # load seqrun data
    experiment_data=[{'experiment_igf_id':'ExperimentA',
                      'sample_igf_id':'SampleA',
                      'library_name':'SampleA',
                      'platform_name':'MISEQ',
                      'project_igf_id':'ProjectA'}]                             # experiment data
    ea=ExperimentAdaptor(**{'session':base.session})
    ea.store_project_and_attribute_data(data=experiment_data)                   # load experiment data
    base.commit_session()
    base.close_session()
Beispiel #5
0
 def setUp(self):
   self.dbconfig = 'data/dbconfig.json'
   dbparam=read_dbconf_json(self.dbconfig)
   base = BaseAdaptor(**dbparam)
   self.engine = base.engine
   self.dbname=dbparam['dbname']
   Base.metadata.drop_all(self.engine)
   if os.path.exists(self.dbname):
     os.remove(self.dbname)
   Base.metadata.create_all(self.engine)
   self.session_class=base.get_session_class()
   base.start_session()
   project_data=[{'project_igf_id':'ProjectA'}]
   pa=ProjectAdaptor(**{'session':base.session})
   pa.store_project_and_attribute_data(data=project_data)                      # load project data
   sample_data=[{'sample_igf_id':'SampleA',
                 'project_igf_id':'ProjectA'}]                                 # sample data
   sa=SampleAdaptor(**{'session':base.session})
   sa.store_sample_and_attribute_data(data=sample_data)                        # store sample data
   experiment_data=[{'experiment_igf_id':'ExperimentA',
                     'sample_igf_id':'SampleA',
                     'library_name':'SampleA',
                     'platform_name':'MISEQ',
                     'project_igf_id':'ProjectA'}]                             # experiment data
   ea=ExperimentAdaptor(**{'session':base.session})
   ea.store_project_and_attribute_data(data=experiment_data)
   self.temp_dir=get_temp_dir()
   temp_files=['a.csv','b.csv']
   for temp_file in temp_files:
     with open(os.path.join(self.temp_dir,temp_file),'w') as fp:
       fp.write('A')
   collection_data=[{'name':'ExperimentA',
                     'type':'AnalysisA_html',
                     'table':'experiment',
                     'file_path':os.path.join(self.temp_dir,temp_file)}
                     for temp_file in temp_files]
   ca=CollectionAdaptor(**{'session':base.session})
   ca.load_file_and_create_collection(data=collection_data,
                                      calculate_file_size_and_md5=False)
   base.close_session()
Beispiel #6
0
    def setUp(self):
        self.path = 'data/seqrun_dir'
        self.dbconfig = 'data/dbconfig.json'
        self.md5_out_path = 'data/md5_dir'
        self.pipeline_name = 'demultiplexing_fastq'

        seqrun_json = 'data/seqrun_db_data.json'
        platform_json = 'data/platform_db_data.json'
        pipeline_json = 'data/pipeline_data.json'

        os.mkdir(self.md5_out_path)
        dbparam = None
        with open(self.dbconfig, 'r') as json_data:
            dbparam = json.load(json_data)
        base = BaseAdaptor(**dbparam)
        self.engine = base.engine
        self.dbname = dbparam['dbname']
        self.pipeline_name = ''
        Base.metadata.create_all(self.engine)
        base.start_session()
        user_data = [
            {
                'name': 'user1',
                'email_id': '*****@*****.**',
                'username': '******'
            },
        ]
        ua = UserAdaptor(**{'session': base.session})
        ua.store_user_data(data=user_data)
        project_data = [{
            'project_igf_id': 'project_1',
            'project_name': 'test_22-8-2017_rna',
            'description': 'Its project 1',
            'project_deadline': 'Before August 2017',
            'comments': 'Some samples are treated with drug X',
        }]
        pa = ProjectAdaptor(**{'session': base.session})
        pa.store_project_and_attribute_data(data=project_data)
        project_user_data = [{
            'project_igf_id': 'project_1',
            'email_id': '*****@*****.**',
            'data_authority': True
        }]
        pa.assign_user_to_project(data=project_user_data)
        sample_data = [
            {
                'sample_igf_id': 'IGF0001',
                'project_igf_id': 'project_1',
            },
            {
                'sample_igf_id': 'IGF0002',
                'project_igf_id': 'project_1',
            },
            {
                'sample_igf_id': 'IGF0003',
                'project_igf_id': 'project_1',
            },
        ]
        sa = SampleAdaptor(**{'session': base.session})
        sa.store_sample_and_attribute_data(data=sample_data)
        base.commit_session()
        with open(pipeline_json,
                  'r') as json_data:  # store pipeline data to db
            pipeline_data = json.load(json_data)
            pa = PipelineAdaptor(**{'session': base.session})
            pa.store_pipeline_data(data=pipeline_data)

        with open(platform_json,
                  'r') as json_data:  # store platform data to db
            platform_data = json.load(json_data)
            pl = PlatformAdaptor(**{'session': base.session})
            pl.store_platform_data(data=platform_data)

        with open(seqrun_json, 'r') as json_data:  # store seqrun data to db
            seqrun_data = json.load(json_data)
            sra = SeqrunAdaptor(**{'session': base.session})
            sra.store_seqrun_and_attribute_data(data=seqrun_data)
            base.close_session()
    def load_file_to_disk_and_db(self,
                                 input_file_list,
                                 withdraw_exisitng_collection=True,
                                 autosave_db=True,
                                 file_suffix=None,
                                 force=True,
                                 remove_file=False):
        '''
    A method for loading analysis results to disk and database. File will be moved to a new path if base_path is present.
    Directory structure of the final path is based on the collection_table information.
    
    Following will be the final directory structure if base_path is present
    
    project - base_path/project_igf_id/analysis_name
    sample - base_path/project_igf_id/sample_igf_id/analysis_name
    experiment - base_path/project_igf_id/sample_igf_id/experiment_igf_id/analysis_name
    run - base_path/project_igf_id/sample_igf_id/experiment_igf_id/run_igf_id/analysis_name
    
    :param input_file_list: A list of input file to load, all using the same collection info
    :param withdraw_exisitng_collection: Remove existing collection group, DO NOT use this while loading a list of files
    :param autosave_db: Save changes to database, default True
    :param file_suffix: Use a specific file suffix, use None if it should be same as original file
                        e.g. input.vcf.gz to  output.vcf.gz
    :param force: Toggle for removing existing file, default True
    :param remove_file: A toggle for removing existing file from disk, default False
    :returns: A list of final filepath
    '''
        try:
            project_igf_id = None
            sample_igf_id = None
            experiment_igf_id = None
            experiment_igf_id = None
            run_igf_id = None
            output_path_list = list()  # define empty output list
            dbconnected = False
            if self.collection_name is None or \
               self.collection_type is None or \
               self.collection_table is None:
                raise ValueError('File collection information is incomplete'
                                 )  # check for collection information

            base = BaseAdaptor(**{'session_class': self.dbsession_class})
            base.start_session()  # connect to db
            dbconnected = True
            if self.base_path is not None:
                if self.collection_table == 'sample':
                    sa = SampleAdaptor(**{'session': base.session})
                    sample_igf_id = self.collection_name
                    sample_exists = sa.check_sample_records_igf_id(
                        sample_igf_id=sample_igf_id)
                    if not sample_exists:
                        raise ValueError('Sample {0} not found in db'.\
                                         format(sample_igf_id))

                    project_igf_id = \
                      sa.fetch_sample_project(sample_igf_id=sample_igf_id)                # fetch project id for sample
                elif self.collection_table == 'experiment':
                    ea = ExperimentAdaptor(**{'session': base.session})
                    experiment_igf_id = self.collection_name
                    experiment_exists = \
                      ea.check_experiment_records_id(
                        experiment_igf_id=experiment_igf_id)
                    if not experiment_exists:
                        raise ValueError('Experiment {0} not present in database'.\
                                         format(experiment_igf_id))

                    (project_igf_id,sample_igf_id) = \
                        ea.fetch_project_and_sample_for_experiment(
                          experiment_igf_id=experiment_igf_id)                            # fetch project and sample id for experiment
                elif self.collection_table == 'run':
                    ra = RunAdaptor(**{'session': base.session})
                    run_igf_id = self.collection_name
                    run_exists = ra.check_run_records_igf_id(
                        run_igf_id=run_igf_id)
                    if not run_exists:
                        raise ValueError('Run {0} not found in database'.\
                                         format(run_igf_id))

                    (project_igf_id,sample_igf_id,experiment_igf_id) = \
                      ra.fetch_project_sample_and_experiment_for_run(
                        run_igf_id=run_igf_id)                                            # fetch project, sample and experiment id for run
                elif self.collection_table == 'project':
                    pa = ProjectAdaptor(**{'session': base.session})
                    project_igf_id = self.collection_name
                    project_exists = \
                      pa.check_project_records_igf_id(
                        project_igf_id=project_igf_id)
                    if not project_exists:
                        raise ValueError('Project {0} not found in database'.\
                                         format(project_igf_id))

            if self.rename_file and self.analysis_name is None:
                raise ValueError('Analysis name is required for renaming file'
                                 )  # check analysis name

            for input_file in input_file_list:
                final_path = ''
                if self.base_path is None:  # do not move file if base_path is absent
                    final_path = os.path.dirname(input_file)
                else:  # move file path
                    if self.collection_table == 'project':
                        if project_igf_id is None:
                            raise ValueError('Missing project id for collection {0}'.\
                                             format(self.collection_name))

                        final_path = \
                          os.path.join(
                            self.base_path,
                            project_igf_id,
                            self.analysis_name)                                             # final path for project
                    elif self.collection_table == 'sample':
                        if project_igf_id is None or \
                           sample_igf_id is None:
                            raise ValueError('Missing project and sample id for collection {0}'.\
                                             format(self.collection_name))

                        final_path = \
                          os.path.join(
                            self.base_path,
                            project_igf_id,
                            sample_igf_id,
                            self.analysis_name)                                             # final path for sample
                    elif self.collection_table == 'experiment':
                        if project_igf_id is None or \
                           sample_igf_id is None or \
                           experiment_igf_id is None:
                            raise ValueError('Missing project,sample and experiment id for collection {0}'.\
                                             format(self.collection_name))

                        final_path = \
                          os.path.join(
                            self.base_path,
                            project_igf_id,
                            sample_igf_id,
                            experiment_igf_id,
                            self.analysis_name)                                             # final path for experiment
                    elif self.collection_table == 'run':
                        if project_igf_id is None or \
                           sample_igf_id is None or \
                           experiment_igf_id is None or \
                           run_igf_id is None:
                            raise ValueError('Missing project,sample,experiment and run id for collection {0}'.\
                                             format(self.collection_name))

                        final_path = \
                          os.path.join(\
                            self.base_path,
                            project_igf_id,
                            sample_igf_id,
                            experiment_igf_id,
                            run_igf_id,
                            self.analysis_name)                                             # final path for run

                if self.rename_file:
                    new_filename = \
                      self.get_new_file_name(
                        input_file=input_file,
                        file_suffix=file_suffix)
                    final_path = \
                      os.path.join(
                        final_path,
                        new_filename)                                                     # get new filepath
                else:
                    final_path = \
                      os.path.join(
                        final_path,
                        os.path.basename(input_file))

                if final_path != input_file:  # move file if its required
                    final_path = preprocess_path_name(
                        input_path=final_path
                    )  # remove unexpected characters from file path
                    move_file(source_path=input_file,
                              destinationa_path=final_path,
                              force=force
                              )  # move or overwrite file to destination dir

                output_path_list.append(
                    final_path)  # add final path to the output list
                self.create_or_update_analysis_collection(
                    file_path=final_path,
                    dbsession=base.session,
                    withdraw_exisitng_collection=withdraw_exisitng_collection,
                    remove_file=remove_file,
                    autosave_db=autosave_db)  # load new file collection in db
                if autosave_db:
                    base.commit_session()  # save changes to db for each file

            base.commit_session()  # save changes to db
            base.close_session()  # close db connection
            return output_path_list
        except:
            if dbconnected:
                base.rollback_session()
                base.close_session()
            raise
 def setUp(self):
     self.dbconfig = 'data/dbconfig.json'
     dbparam = read_dbconf_json(self.dbconfig)
     base = BaseAdaptor(**dbparam)
     self.engine = base.engine
     self.dbname = dbparam['dbname']
     Base.metadata.create_all(self.engine)
     self.session_class = base.get_session_class()
     base.start_session()
     platform_data = [{
         "platform_igf_id": "M03291",
         "model_name": "MISEQ",
         "vendor_name": "ILLUMINA",
         "software_name": "RTA",
         "software_version": "RTA1.18.54"
     }, {
         "platform_igf_id": "NB501820",
         "model_name": "NEXTSEQ",
         "vendor_name": "ILLUMINA",
         "software_name": "RTA",
         "software_version": "RTA2"
     }, {
         "platform_igf_id": "K00345",
         "model_name": "HISEQ4000",
         "vendor_name": "ILLUMINA",
         "software_name": "RTA",
         "software_version": "RTA2"
     }]
     flowcell_rule_data = [{
         "platform_igf_id": "K00345",
         "flowcell_type": "HiSeq 3000/4000 SR",
         "index_1": "NO_CHANGE",
         "index_2": "NO_CHANGE"
     }, {
         "platform_igf_id": "K00345",
         "flowcell_type": "HiSeq 3000/4000 PE",
         "index_1": "NO_CHANGE",
         "index_2": "REVCOMP"
     }, {
         "platform_igf_id": "NB501820",
         "flowcell_type": "NEXTSEQ",
         "index_1": "NO_CHANGE",
         "index_2": "REVCOMP"
     }, {
         "platform_igf_id": "M03291",
         "flowcell_type": "MISEQ",
         "index_1": "NO_CHANGE",
         "index_2": "NO_CHANGE"
     }]
     pl = PlatformAdaptor(**{'session': base.session})
     pl.store_platform_data(data=platform_data)
     pl.store_flowcell_barcode_rule(data=flowcell_rule_data)
     seqrun_data = [{
         'seqrun_igf_id': '180416_M03291_0139_000000000-BRN47',
         'flowcell_id': '000000000-BRN47',
         'platform_igf_id': 'M03291',
         'flowcell': 'MISEQ',
     }, {
         'seqrun_igf_id': '180416_NB03291_013_000000001-BRN47',
         'flowcell_id': '000000001-BRN47',
         'platform_igf_id': 'NB501820',
         'flowcell': 'NEXTSEQ',
     }]
     sra = SeqrunAdaptor(**{'session': base.session})
     sra.store_seqrun_and_attribute_data(data=seqrun_data)
     project_data = [{'project_igf_id': 'projectA'}]
     pa = ProjectAdaptor(**{'session': base.session})
     pa.store_project_and_attribute_data(data=project_data)
     sample_data = [
         {
             'sample_igf_id': 'sampleA',
             'project_igf_id': 'projectA',
             'species_name': 'HG38'
         },
         {
             'sample_igf_id': 'sampleB',
             'project_igf_id': 'projectA',
             'species_name': 'UNKNOWN'
         },
     ]
     sa = SampleAdaptor(**{'session': base.session})
     sa.store_sample_and_attribute_data(data=sample_data)
     experiment_data = [
         {
             'project_igf_id': 'projectA',
             'sample_igf_id': 'sampleA',
             'experiment_igf_id': 'sampleA_MISEQ',
             'library_name': 'sampleA',
             'library_source': 'TRANSCRIPTOMIC_SINGLE_CELL',
             'library_strategy': 'RNA-SEQ',
             'experiment_type': 'TENX-TRANSCRIPTOME-3P',
             'library_layout': 'PAIRED',
             'platform_name': 'MISEQ',
         },
         {
             'project_igf_id': 'projectA',
             'sample_igf_id': 'sampleA',
             'experiment_igf_id': 'sampleA_NEXTSEQ',
             'library_name': 'sampleA',
             'library_source': 'UNKNOWN',
             'library_strategy': 'RNA-SEQ',
             'experiment_type': 'TENX-TRANSCRIPTOME-3P',
             'library_layout': 'PAIRED',
             'platform_name': 'NEXTSEQ',
         },
         {
             'project_igf_id': 'projectA',
             'sample_igf_id': 'sampleB',
             'experiment_igf_id': 'sampleB_MISEQ',
             'library_name': 'sampleB',
             'library_source': 'TRANSCRIPTOMIC_SINGLE_CELL',
             'library_strategy': 'RNA-SEQ',
             'experiment_type': 'TENX-TRANSCRIPTOME-3P',
             'library_layout': 'PAIRED',
             'platform_name': 'MISEQ',
         },
     ]
     ea = ExperimentAdaptor(**{'session': base.session})
     ea.store_project_and_attribute_data(data=experiment_data)
     run_data = [{
         'experiment_igf_id': 'sampleA_MISEQ',
         'seqrun_igf_id': '180416_M03291_0139_000000000-BRN47',
         'run_igf_id': 'sampleA_MISEQ_000000000-BRN47_1',
         'lane_number': '1'
     }, {
         'experiment_igf_id': 'sampleA_NEXTSEQ',
         'seqrun_igf_id': '180416_NB03291_013_000000001-BRN47',
         'run_igf_id': 'sampleA_NEXTSEQ_000000001-BRN47_2',
         'lane_number': '2'
     }, {
         'experiment_igf_id': 'sampleB_MISEQ',
         'seqrun_igf_id': '180416_M03291_0139_000000000-BRN47',
         'run_igf_id': 'sampleB_MISEQ_HVWN7BBXX_1',
         'lane_number': '1'
     }]
     ra = RunAdaptor(**{'session': base.session})
     ra.store_run_and_attribute_data(data=run_data)
     file_data = [
         {
             'file_path':
             '/path/sampleA_MISEQ_000000000-BRN47_1_R1.fastq.gz',
             'location': 'HPC_PROJECT',
             'md5': 'fd5a95c18ebb7145645e95ce08d729e4',
             'size': '1528121404',
         },
         {
             'file_path':
             '/path/sampleA_NEXTSEQ_000000001-BRN47_2_R1.fastq.gz',
             'location': 'HPC_PROJECT',
             'md5': 'fd5a95c18ebb7145645e95ce08d729e4',
             'size': '1528121404',
         },
         {
             'file_path': '/path/sampleB_MISEQ_HVWN7BBXX_1_R1.fastq.gz',
             'location': 'HPC_PROJECT',
             'md5': 'fd5a95c18ebb7145645e95ce08d729e4',
             'size': '1528121404',
         },
     ]
     fa = FileAdaptor(**{'session': base.session})
     fa.store_file_and_attribute_data(data=file_data)
     collection_data = [{
         'name': 'sampleA_MISEQ_000000000-BRN47_1',
         'type': 'demultiplexed_fastq',
         'table': 'run'
     }, {
         'name': 'sampleA_NEXTSEQ_000000001-BRN47_2',
         'type': 'demultiplexed_fastq',
         'table': 'run'
     }, {
         'name': 'sampleB_MISEQ_HVWN7BBXX_1',
         'type': 'demultiplexed_fastq',
         'table': 'run'
     }]
     collection_files_data = [{
         'name':
         'sampleA_MISEQ_000000000-BRN47_1',
         'type':
         'demultiplexed_fastq',
         'file_path':
         '/path/sampleA_MISEQ_000000000-BRN47_1_R1.fastq.gz'
     }, {
         'name':
         'sampleA_NEXTSEQ_000000001-BRN47_2',
         'type':
         'demultiplexed_fastq',
         'file_path':
         '/path/sampleA_NEXTSEQ_000000001-BRN47_2_R1.fastq.gz'
     }, {
         'name':
         'sampleB_MISEQ_HVWN7BBXX_1',
         'type':
         'demultiplexed_fastq',
         'file_path':
         '/path/sampleB_MISEQ_HVWN7BBXX_1_R1.fastq.gz'
     }]
     ca = CollectionAdaptor(**{'session': base.session})
     ca.store_collection_and_attribute_data(data=collection_data)
     ca.create_collection_group(data=collection_files_data)
     base.close_session()
Beispiel #9
0
    def setUp(self):
        self.dbconfig = 'data/dbconfig.json'
        self.fastq_dir = 'data/collect_fastq_dir/sc_1_8'
        self.model_name = 'NEXTSEQ'
        self.flowcell_id = 'TESTABC'
        self.seqrun_igf_id = '171003_NB500000_0089_TESTABC'
        self.file_location = 'HPC_PROJECT'
        self.samplesheet_file = 'data/collect_fastq_dir/sc_1_8/SampleSheet.csv'
        self.samplesheet_filename = 'SampleSheet.csv'
        self.manifest_name = 'file_manifest.csv'
        dbparam = read_dbconf_json(self.dbconfig)
        base = BaseAdaptor(**dbparam)
        self.engine = base.engine
        self.dbname = dbparam['dbname']
        Base.metadata.create_all(self.engine)
        self.session_class = base.session_class
        base.start_session()
        platform_data = [{
            "platform_igf_id": "M00001",
            "model_name": "MISEQ",
            "vendor_name": "ILLUMINA",
            "software_name": "RTA",
            "software_version": "RTA1.18.54"
        }, {
            "platform_igf_id": "NB500000",
            "model_name": "NEXTSEQ",
            "vendor_name": "ILLUMINA",
            "software_name": "RTA",
            "software_version": "RTA2"
        }, {
            "platform_igf_id": "K00000",
            "model_name": "HISEQ4000",
            "vendor_name": "ILLUMINA",
            "software_name": "RTA",
            "software_version": "RTA2"
        }]
        flowcell_rule_data = [{
            "platform_igf_id": "K00000",
            "flowcell_type": "HiSeq 3000/4000 SR",
            "index_1": "NO_CHANGE",
            "index_2": "NO_CHANGE"
        }, {
            "platform_igf_id": "K00000",
            "flowcell_type": "HiSeq 3000/4000 PE",
            "index_1": "NO_CHANGE",
            "index_2": "REVCOMP"
        }, {
            "platform_igf_id": "NB500000",
            "flowcell_type": "NEXTSEQ",
            "index_1": "NO_CHANGE",
            "index_2": "REVCOMP"
        }, {
            "platform_igf_id": "M00001",
            "flowcell_type": "MISEQ",
            "index_1": "NO_CHANGE",
            "index_2": "NO_CHANGE"
        }]
        pl = PlatformAdaptor(**{'session': base.session})
        pl.store_platform_data(data=platform_data)
        pl.store_flowcell_barcode_rule(data=flowcell_rule_data)
        project_data = [{
            'project_igf_id': 'IGFP0001_test_22-8-2017_rna_sc',
            'project_name': 'test_22-8-2017_rna',
            'description': 'Its project 1',
            'project_deadline': 'Before August 2017',
            'comments': 'Some samples are treated with drug X',
        }]
        pa = ProjectAdaptor(**{'session': base.session})
        pa.store_project_and_attribute_data(data=project_data)
        sample_data = [
            {
                'sample_igf_id': 'IGF00001',
                'project_igf_id': 'IGFP0001_test_22-8-2017_rna_sc',
            },
            {
                'sample_igf_id': 'IGF00002',
                'project_igf_id': 'IGFP0001_test_22-8-2017_rna_sc',
            },
        ]
        sa = SampleAdaptor(**{'session': base.session})
        sa.store_sample_and_attribute_data(data=sample_data)

        seqrun_data = [{
            'seqrun_igf_id': '171003_NB500000_0089_TESTABC',
            'flowcell_id': 'TESTABC',
            'platform_igf_id': 'NB500000',
            'flowcell': 'NEXTSEQ',
        }]
        sra = SeqrunAdaptor(**{'session': base.session})
        sra.store_seqrun_and_attribute_data(data=seqrun_data)
        base.close_session()
 def setUp(self):
     self.dbconfig = 'data/dbconfig.json'
     dbparam = read_dbconf_json(self.dbconfig)
     base = BaseAdaptor(**dbparam)
     self.engine = base.engine
     self.dbname = dbparam['dbname']
     Base.metadata.create_all(self.engine)
     base.start_session()
     self.session_class = base.get_session_class()
     project_data = [{
         'project_igf_id': 'IGFP0001_test_22-8-2017_rna_sc',
         'project_name': 'test_22-8-2017_rna',
         'description': 'Its project 1',
         'project_deadline': 'Before August 2017',
         'comments': 'Some samples are treated with drug X',
     }]
     pa = ProjectAdaptor(**{'session': base.session})
     pa.store_project_and_attribute_data(data=project_data)
     sample_data = [
         {
             'sample_igf_id': 'IGF00001',
             'project_igf_id': 'IGFP0001_test_22-8-2017_rna_sc',
             'library_source': 'TRANSCRIPTOMIC_SINGLE_CELL',
             'library_strategy': 'RNA-SEQ',
             'experiment_type': 'POLYA-RNA'
         },
         {
             'sample_igf_id': 'IGF00003',
             'project_igf_id': 'IGFP0001_test_22-8-2017_rna_sc',
             'library_source': 'TRANSCRIPTOMIC_SINGLE_CELL',
             'experiment_type': 'POLYA-RNA'
         },
         {
             'sample_igf_id': 'IGF00002',
             'project_igf_id': 'IGFP0001_test_22-8-2017_rna_sc',
         },
     ]
     sa = SampleAdaptor(**{'session': base.session})
     sa.store_sample_and_attribute_data(data=sample_data)
     experiment_data = [
         {
             'project_igf_id': 'IGFP0001_test_22-8-2017_rna_sc',
             'sample_igf_id': 'IGF00001',
             'experiment_igf_id': 'IGF00001_HISEQ4000',
             'library_name': 'IGF00001'
         },
         {
             'project_igf_id': 'IGFP0001_test_22-8-2017_rna_sc',
             'sample_igf_id': 'IGF00003',
             'experiment_igf_id': 'IGF00003_HISEQ4000',
             'library_name': 'IGF00001'
         },
         {
             'project_igf_id': 'IGFP0001_test_22-8-2017_rna_sc',
             'sample_igf_id': 'IGF00002',
             'experiment_igf_id': 'IGF00002_HISEQ4000',
             'library_name': 'IGF00002'
         },
     ]
     ea = ExperimentAdaptor(**{'session': base.session})
     ea.store_project_and_attribute_data(data=experiment_data)
     base.close_session()
    def setUp(self):
        self.dbconfig = 'data/dbconfig.json'
        dbparam = read_dbconf_json(self.dbconfig)
        base = BaseAdaptor(**dbparam)
        self.engine = base.engine
        self.dbname = dbparam['dbname']
        Base.metadata.drop_all(self.engine)
        if os.path.exists(self.dbname):
            os.remove(self.dbname)
        Base.metadata.create_all(self.engine)
        self.session_class = base.get_session_class()
        self.temp_work_dir = get_temp_dir()
        self.temp_base_dir = get_temp_dir()
        self.input_list = ['a.cram', 'a.vcf.gz', 'b.tar.gz']
        for file_name in self.input_list:
            file_path = os.path.join(self.temp_work_dir, file_name)
            with open(file_path, 'w') as fq:
                fq.write('AAAA')  # create input files

        base = BaseAdaptor(**{'session_class': self.session_class})
        base.start_session()
        platform_data = [{
            "platform_igf_id": "M001",
            "model_name": "MISEQ",
            "vendor_name": "ILLUMINA",
            "software_name": "RTA",
            "software_version": "RTA1.18.54"
        }]  # platform data
        flowcell_rule_data = [{
            "platform_igf_id": "M001",
            "flowcell_type": "MISEQ",
            "index_1": "NO_CHANGE",
            "index_2": "NO_CHANGE"
        }]  # flowcell rule data
        pl = PlatformAdaptor(**{'session': base.session})
        pl.store_platform_data(data=platform_data)  # loading platform data
        pl.store_flowcell_barcode_rule(
            data=flowcell_rule_data)  # loading flowcell rules data
        project_data = [{'project_igf_id': 'ProjectA'}]  # project data
        pa = ProjectAdaptor(**{'session': base.session})
        pa.store_project_and_attribute_data(
            data=project_data)  # load project data
        sample_data = [{
            'sample_igf_id': 'SampleA',
            'project_igf_id': 'ProjectA'
        }]  # sample data
        sa = SampleAdaptor(**{'session': base.session})
        sa.store_sample_and_attribute_data(
            data=sample_data)  # store sample data
        seqrun_data = [{
            'seqrun_igf_id': 'SeqrunA',
            'flowcell_id': '000000000-D0YLK',
            'platform_igf_id': 'M001',
            'flowcell': 'MISEQ'
        }]  # seqrun data
        sra = SeqrunAdaptor(**{'session': base.session})
        sra.store_seqrun_and_attribute_data(
            data=seqrun_data)  # load seqrun data
        experiment_data = [{
            'experiment_igf_id': 'ExperimentA',
            'sample_igf_id': 'SampleA',
            'library_name': 'SampleA',
            'platform_name': 'MISEQ',
            'project_igf_id': 'ProjectA'
        }]  # experiment data
        ea = ExperimentAdaptor(**{'session': base.session})
        ea.store_project_and_attribute_data(
            data=experiment_data)  # load experiment data
        run_data = [{
            'run_igf_id': 'RunA',
            'experiment_igf_id': 'ExperimentA',
            'seqrun_igf_id': 'SeqrunA',
            'lane_number': '1'
        }]  # run data
        ra = RunAdaptor(**{'session': base.session})
        ra.store_run_and_attribute_data(data=run_data)  # load run data
        base.commit_session()
        base.close_session()
Beispiel #12
0
    def setUp(self):
        self.dbconfig = 'data/dbconfig.json'
        dbparam = read_dbconf_json(self.dbconfig)
        base = BaseAdaptor(**dbparam)
        self.engine = base.engine
        self.dbname = dbparam['dbname']
        Base.metadata.create_all(self.engine)
        self.session_class = base.get_session_class()
        # load platform data
        platform_data=\
          [{"platform_igf_id" : "M03291" ,
            "model_name" : "MISEQ" ,
            "vendor_name" : "ILLUMINA" ,
            "software_name" : "RTA" ,
            "software_version" : "RTA1.18.54"
           },
           {"platform_igf_id" : "NB501820",
            "model_name" : "NEXTSEQ",
            "vendor_name" : "ILLUMINA",
            "software_name" : "RTA",
            "software_version" : "RTA2"
           },
           {"platform_igf_id" : "K00345",
            "model_name" : "HISEQ4000",
            "vendor_name" : "ILLUMINA",
            "software_name" : "RTA",
            "software_version" : "RTA2"
           }]

        flowcell_rule_data=\
          [{"platform_igf_id":"K00345",
            "flowcell_type":"HiSeq 3000/4000 SR",
            "index_1":"NO_CHANGE",
            "index_2":"NO_CHANGE"},
           {"platform_igf_id":"K00345",
            "flowcell_type":"HiSeq 3000/4000 PE",
            "index_1":"NO_CHANGE",
            "index_2":"REVCOMP"},
           {"platform_igf_id":"NB501820",
            "flowcell_type":"NEXTSEQ",
            "index_1":"NO_CHANGE",
            "index_2":"REVCOMP"},
           {"platform_igf_id":"M03291",
            "flowcell_type":"MISEQ",
            "index_1":"NO_CHANGE",
            "index_2":"NO_CHANGE"}]

        pl = PlatformAdaptor(**{'session_class': base.session_class})
        pl.start_session()
        pl.store_platform_data(data=platform_data)
        pl.store_flowcell_barcode_rule(data=flowcell_rule_data)
        pl.close_session()

        # load project data

        project_data = [{'project_igf_id': 'IGFQ000472_avik_28-3-2018_RNA'}]
        pa = ProjectAdaptor(**{'session_class': base.session_class})
        pa.start_session()
        pa.store_project_and_attribute_data(data=project_data)
        pa.close_session()

        # load samples

        sample_data = [
            {
                'project_igf_id': 'IGFQ000472_avik_28-3-2018_RNA',
                'sample_igf_id': 'IGF109792',
                'expected_read': 40000000
            },
            {
                'project_igf_id': 'IGFQ000472_avik_28-3-2018_RNA',
                'sample_igf_id': 'IGF109793',
                'expected_read': 40000000
            },
            {
                'project_igf_id': 'IGFQ000472_avik_28-3-2018_RNA',
                'sample_igf_id': 'IGF109794',
                'expected_read': 40000000
            },
            {
                'project_igf_id': 'IGFQ000472_avik_28-3-2018_RNA',
                'sample_igf_id': 'IGF109795',
                'expected_read': 40000000
            },
            {
                'project_igf_id': 'IGFQ000472_avik_28-3-2018_RNA',
                'sample_igf_id': 'IGF109796',
                'expected_read': 40000000
            },
            {
                'project_igf_id': 'IGFQ000472_avik_28-3-2018_RNA',
                'sample_igf_id': 'IGF109797',
                'expected_read': 40000000
            },
            {
                'project_igf_id': 'IGFQ000472_avik_28-3-2018_RNA',
                'sample_igf_id': 'IGF109797_1',
                'expected_read': 40000000
            },
        ]

        sa = SampleAdaptor(**{'session_class': base.session_class})
        sa.start_session()
        sa.store_sample_and_attribute_data(data=sample_data)
        sa.close_session()

        # load seqrun data

        seqrun_data = [{
            'flowcell_id': 'HV2GJBBXX',
            'platform_igf_id': 'K00345',
            'seqrun_igf_id': '180518_K00345_0047_BHV2GJBBXX'
        }]

        sra = SeqrunAdaptor(**{'session_class': base.session_class})
        sra.start_session()
        sra.store_seqrun_and_attribute_data(data=seqrun_data)
        sra.close_session()

        # load experiment data

        experiment_data=\
          [{'experiment_igf_id': 'IGF109792_HISEQ4000',
            'library_name': 'IGF109792',
            'platform_name': 'HISEQ4000',
            'project_igf_id': 'IGFQ000472_avik_28-3-2018_RNA',
            'sample_igf_id': 'IGF109792',
           },
           {'experiment_igf_id': 'IGF109793_HISEQ4000',
            'library_name': 'IGF109793',
            'platform_name': 'HISEQ4000',
            'project_igf_id': 'IGFQ000472_avik_28-3-2018_RNA',
            'sample_igf_id': 'IGF109793',
           },
           {'experiment_igf_id': 'IGF109794_HISEQ4000',
            'library_name': 'IGF109794',
            'platform_name': 'HISEQ4000',
            'project_igf_id': 'IGFQ000472_avik_28-3-2018_RNA',
            'sample_igf_id': 'IGF109794',
           },
           {'experiment_igf_id': 'IGF109795_HISEQ4000',
            'library_name': 'IGF109795',
            'platform_name': 'HISEQ4000',
            'project_igf_id': 'IGFQ000472_avik_28-3-2018_RNA',
            'sample_igf_id': 'IGF109795',
           },
           {'experiment_igf_id': 'IGF109796_HISEQ4000',
            'library_name': 'IGF109796',
            'platform_name': 'HISEQ4000',
            'project_igf_id': 'IGFQ000472_avik_28-3-2018_RNA',
            'sample_igf_id': 'IGF109796',
           },
           {'experiment_igf_id': 'IGF109797_HISEQ4000',
            'library_name': 'IGF109797',
            'platform_name': 'HISEQ4000',
            'project_igf_id': 'IGFQ000472_avik_28-3-2018_RNA',
            'sample_igf_id': 'IGF109797',
           },
          ]

        ea = ExperimentAdaptor(**{'session_class': base.session_class})
        ea.start_session()
        ea.store_project_and_attribute_data(data=experiment_data)
        ea.close_session()

        # load run data

        run_data=\
          [{'experiment_igf_id': 'IGF109792_HISEQ4000',
            'lane_number': '7',
            'run_igf_id': 'IGF109792_HISEQ4000_H2N3MBBXY_7',
            'seqrun_igf_id': '180518_K00345_0047_BHV2GJBBXX',
            'R1_READ_COUNT':288046541
           },
           {'experiment_igf_id': 'IGF109793_HISEQ4000',
            'lane_number': '7',
            'run_igf_id': 'IGF109793_HISEQ4000_H2N3MBBXY_7',
            'seqrun_igf_id': '180518_K00345_0047_BHV2GJBBXX',
            'R1_READ_COUNT':14666330
           },
           {'experiment_igf_id': 'IGF109794_HISEQ4000',
            'lane_number': '7',
            'run_igf_id': 'IGF109794_HISEQ4000_H2N3MBBXY_7',
            'seqrun_igf_id': '180518_K00345_0047_BHV2GJBBXX',
            'R1_READ_COUNT':5009143
           },
           {'experiment_igf_id': 'IGF109795_HISEQ4000',
            'lane_number': '7',
            'run_igf_id': 'IGF109795_HISEQ4000_H2N3MBBXY_7',
            'seqrun_igf_id': '180518_K00345_0047_BHV2GJBBXX',
            'R1_READ_COUNT':1391747
           },
           {'experiment_igf_id': 'IGF109796_HISEQ4000',
            'lane_number': '7',
            'run_igf_id': '	IGF109796_HISEQ4000_H2N3MBBXY_7',
            'seqrun_igf_id': '180518_K00345_0047_BHV2GJBBXX',
            'R1_READ_COUNT':1318008
           },
           {'experiment_igf_id': 'IGF109797_HISEQ4000',
            'lane_number': '7',
            'run_igf_id': 'IGF109797_HISEQ4000_H2N3MBBXY_7',
            'seqrun_igf_id': '180518_K00345_0047_BHV2GJBBXX',
            'R1_READ_COUNT':1216324
           },
          ]

        ra = RunAdaptor(**{'session_class': base.session_class})
        ra.start_session()
        ra.store_run_and_attribute_data(data=run_data)
        ra.close_session()
        'seqrun_igf_id': '180610_K00345_0063_AHWL7CBBXX',
        'lane_number': '1'
    }, {
        'run_igf_id': 'RunC',
        'experiment_igf_id': 'ExperimentA',
        'seqrun_igf_id': '180410_K00345_0063_AHWL7CBBXX',
        'lane_number': '1'
    }]  # run data
    base.start_session()
    pl = PlatformAdaptor(**{'session': base.session})
    pl.store_platform_data(data=platform_data)  # loading platform data
    pl.store_flowcell_barcode_rule(
        data=flowcell_rule_data)  # loading flowcell rules data
    pa = ProjectAdaptor(**{'session': base.session})
    pa.store_project_and_attribute_data(data=project_data)  # load project data
    sa = SampleAdaptor(**{'session': base.session})
    sa.store_sample_and_attribute_data(data=sample_data)  # store sample data
    sra = SeqrunAdaptor(**{'session': base.session})
    sra.store_seqrun_and_attribute_data(data=seqrun_data)  # load seqrun data
    ea = ExperimentAdaptor(**{'session': base.session})
    ea.store_project_and_attribute_data(
        data=experiment_data)  # load experiment data
    ra = RunAdaptor(**{'session': base.session})
    ra.store_run_and_attribute_data(data=run_data)  # load run data
    pipeline_data = [{
        "pipeline_name": "DemultiplexIlluminaFastq",
        "pipeline_db": "sqlite:////bcl2fastq.db",
    }]

    pipeline_seed_data = [
        {
 def setUp(self):
     self.dbconfig = 'data/dbconfig.json'
     dbparam = read_dbconf_json(self.dbconfig)
     base = BaseAdaptor(**dbparam)
     self.engine = base.engine
     self.dbname = dbparam['dbname']
     Base.metadata.drop_all(self.engine)
     if os.path.exists(self.dbname):
         os.remove(self.dbname)
     Base.metadata.create_all(self.engine)
     self.session_class = base.get_session_class()
     base.start_session()
     # PLATFORM
     platform_data = [{
         "platform_igf_id": "M03291",
         "model_name": "MISEQ",
         "vendor_name": "ILLUMINA",
         "software_name": "RTA",
         "software_version": "RTA1.18.54"
     }]
     flowcell_rule_data = [{
         "platform_igf_id": "M03291",
         "flowcell_type": "MISEQ",
         "index_1": "NO_CHANGE",
         "index_2": "NO_CHANGE"
     }]
     pl = PlatformAdaptor(**{'session': base.session})
     pl.store_platform_data(data=platform_data)
     pl.store_flowcell_barcode_rule(data=flowcell_rule_data)
     # SEQRUN
     seqrun_data = [{
         'seqrun_igf_id': '180416_M03291_0139_000000000-TEST',
         'flowcell_id': '000000000-TEST',
         'platform_igf_id': 'M03291',
         'flowcell': 'MISEQ',
     }, {
         'seqrun_igf_id': '180416_M03291_0140_000000000-TEST',
         'flowcell_id': '000000000-TEST',
         'platform_igf_id': 'M03291',
         'flowcell': 'MISEQ',
     }]
     sra = SeqrunAdaptor(**{'session': base.session})
     sra.store_seqrun_and_attribute_data(data=seqrun_data)
     # PROJECT
     project_data = [{'project_igf_id': 'IGFQ000123_test_10-4-2018_Miseq'}]
     pa = ProjectAdaptor(**{'session': base.session})
     pa.store_project_and_attribute_data(data=project_data)
     # SAMPLE
     sample_data = [{
         'sample_igf_id': 'IGF00123',
         'project_igf_id': 'IGFQ000123_test_10-4-2018_Miseq'
     }, {
         'sample_igf_id': 'IGF00124',
         'project_igf_id': 'IGFQ000123_test_10-4-2018_Miseq'
     }]
     sa = SampleAdaptor(**{'session': base.session})
     sa.store_sample_and_attribute_data(data=sample_data)
     # EXPERIMENT
     experiment_data = [{
         'project_igf_id': 'IGFQ000123_test_10-4-2018_Miseq',
         'sample_igf_id': 'IGF00123',
         'experiment_igf_id': 'IGF00123_MISEQ',
         'library_name': 'IGF00123',
         'library_source': 'TRANSCRIPTOMIC_SINGLE_CELL',
         'library_strategy': 'RNA-SEQ',
         'experiment_type': 'POLYA-RNA',
         'library_layout': 'PAIRED',
         'platform_name': 'MISEQ',
         'singlecell_chemistry': 'TENX'
     }, {
         'project_igf_id': 'IGFQ000123_test_10-4-2018_Miseq',
         'sample_igf_id': 'IGF00124',
         'experiment_igf_id': 'IGF00124_MISEQ',
         'library_name': 'IGF00124',
         'library_source': 'TRANSCRIPTOMIC_SINGLE_CELL',
         'library_strategy': 'RNA-SEQ',
         'experiment_type': 'POLYA-RNA',
         'library_layout': 'PAIRED',
         'platform_name': 'MISEQ',
         'singlecell_chemistry': 'TENX'
     }]
     ea = ExperimentAdaptor(**{'session': base.session})
     ea.store_project_and_attribute_data(data=experiment_data)
     # RUN
     run_data = [{
         'experiment_igf_id': 'IGF00123_MISEQ',
         'seqrun_igf_id': '180416_M03291_0139_000000000-TEST',
         'run_igf_id': 'IGF00123_MISEQ_000000000-TEST_1',
         'lane_number': '1'
     }]
     ra = RunAdaptor(**{'session': base.session})
     ra.store_run_and_attribute_data(data=run_data)
     # PIPELINE
     pipeline_data = [{
         "pipeline_name": "PrimaryAnalysis",
         "pipeline_db": "sqlite:////aln.db",
     }, {
         "pipeline_name": "DemultiplexingFastq",
         "pipeline_db": "sqlite:////fastq.db",
     }]
     pipeline_seed_data = [
         {
             'pipeline_name': 'PrimaryAnalysis',
             'seed_id': 1,
             'seed_table': 'experiment'
         },
         {
             'pipeline_name': 'PrimaryAnalysis',
             'seed_id': 2,
             'seed_table': 'experiment'
         },
         {
             'pipeline_name': 'DemultiplexingFastq',
             'seed_id': 1,
             'seed_table': 'seqrun'
         },
         {
             'pipeline_name': 'DemultiplexingFastq',
             'seed_id': 2,
             'seed_table': 'seqrun'
         },
     ]
     update_data = [{
         'pipeline_name': 'PrimaryAnalysis',
         'seed_id': 2,
         'seed_table': 'experiment',
         'status': 'FINISHED'
     }, {
         'pipeline_name': 'DemultiplexingFastq',
         'seed_id': 2,
         'seed_table': 'seqrun',
         'status': 'FINISHED'
     }]
     pla = PipelineAdaptor(**{'session': base.session})
     pla.store_pipeline_data(data=pipeline_data)
     pla.create_pipeline_seed(data=pipeline_seed_data)
     pla.update_pipeline_seed(update_data)
     base.close_session()