def _draw_input_label_pane(self, pane, label): defaults = { 'face': getattr(cv2, self.settings.kerasvis_class_face), 'fsize': self.settings.kerasvis_class_fsize, 'clr': to_255(self.settings.kerasvis_class_clr_0), 'thick': self.settings.kerasvis_class_thick } loc = self.settings.kerasvis_class_loc[:: -1] # Reverse to OpenCV c,r order clr_0 = to_255(self.settings.kerasvis_class_clr_0) clr_1 = to_255(self.settings.kerasvis_class_clr_1) strings = [] fs = FormattedString('Actual Label:', defaults) fs.clr = clr_0 strings.append([fs]) if hasattr(self, 'labels') and self.labels is not None: lbl = self.labels[np.argmax(label)] else: lbl = np.argmax(label) fs = FormattedString(' {}'.format(lbl), defaults) fs.clr = clr_1 strings.append([fs]) pane.data[:] = to_255(self.settings.window_background) cv2_typeset_text( pane.data, strings, loc, line_spacing=self.settings.kerasvis_class_line_spacing)
def _OLDDEP_draw_control_pane(self, pane): pane.data[:] = to_255(self.settings.window_background) with self.state.lock: layer_idx = self.state.layer_idx face = getattr(cv2, self.settings.caffevis_control_face) loc = self.settings.caffevis_control_loc[::-1] # Reverse to OpenCV c,r order clr = to_255(self.settings.caffevis_control_clr) clr_sel = to_255(self.settings.caffevis_control_clr_selected) clr_high = to_255(self.settings.caffevis_control_clr_cursor) fsize = self.settings.caffevis_control_fsize thick = self.settings.caffevis_control_thick thick_sel = self.settings.caffevis_control_thick_selected thick_high = self.settings.caffevis_control_thick_cursor st1 = ' '.join(self.layer_print_names[:layer_idx]) st3 = ' '.join(self.layer_print_names[layer_idx+1:]) st2 = ((' ' if len(st1) > 0 else '') + self.layer_print_names[layer_idx] + (' ' if len(st3) > 0 else '')) st1 = ' ' + st1 cv2.putText(pane.data, st1, loc, face, fsize, clr, thick) boxsize1, _ = cv2.getTextSize(st1, face, fsize, thick) loc = (loc[0] + boxsize1[0], loc[1]) if self.state.cursor_area == 'top': clr_this, thick_this = clr_high, thick_high else: clr_this, thick_this = clr_sel, thick_sel cv2.putText(pane.data, st2, loc, face, fsize, clr_this, thick_this) boxsize2, _ = cv2.getTextSize(st2, face, fsize, thick_this) loc = (loc[0] + boxsize2[0], loc[1]) cv2.putText(pane.data, st3, loc, face, fsize, clr, thick)
def _draw_prob_labels_pane(self, pane): '''Adds text label annotation atop the given pane.''' if not self.labels or not self.state.show_label_predictions or not self.settings.caffevis_prob_layer: return #pane.data[:] = to_255(self.settings.window_background) defaults = {'face': getattr(cv2, self.settings.caffevis_class_face), 'fsize': self.settings.caffevis_class_fsize, 'clr': to_255(self.settings.caffevis_class_clr_0), 'thick': self.settings.caffevis_class_thick} loc = self.settings.caffevis_class_loc[::-1] # Reverse to OpenCV c,r order clr_0 = to_255(self.settings.caffevis_class_clr_0) clr_1 = to_255(self.settings.caffevis_class_clr_1) probs_flat = self.net.blobs[self.settings.caffevis_prob_layer].data.flatten() top_5 = probs_flat.argsort()[-1:-6:-1] strings = [] pmax = probs_flat[top_5[0]] for idx in top_5: prob = probs_flat[idx] text = '%.2f %s' % (prob, self.labels[idx]) fs = FormattedString(text, defaults) #fs.clr = tuple([clr_1[ii]*prob/pmax + clr_0[ii]*(1-prob/pmax) for ii in range(3)]) fs.clr = tuple([max(0,min(255,clr_1[ii]*prob + clr_0[ii]*(1-prob))) for ii in range(3)]) strings.append([fs]) # Line contains just fs cv2_typeset_text(pane.data, strings, loc, line_spacing = self.settings.caffevis_class_line_spacing)
def _draw_status_pane(self, pane): pane.data[:] = to_255(self.settings.window_background) defaults = {'face': getattr(cv2, self.settings.caffevis_status_face), 'fsize': self.settings.caffevis_status_fsize, 'clr': to_255(self.settings.caffevis_status_clr), 'thick': self.settings.caffevis_status_thick} loc = self.settings.caffevis_status_loc[::-1] # Reverse to OpenCV c,r order status = StringIO.StringIO() fps = self.proc_thread.approx_fps() with self.state.lock: print >>status, 'pattern' if self.state.pattern_mode else ('back' if self.state.layers_show_back else 'fwd'), print >>status, '%s:%d |' % (self.state.layer, self.state.selected_unit), if not self.state.back_enabled: print >>status, 'Back: off', else: print >>status, 'Back: %s' % ('deconv' if self.state.back_mode == 'deconv' else 'bprop'), print >>status, '(from %s_%d, disp %s)' % (self.state.backprop_layer, self.state.backprop_unit, self.state.back_filt_mode), print >>status, '|', print >>status, 'Boost: %g/%g' % (self.state.layer_boost_indiv, self.state.layer_boost_gamma) if fps > 0: print >>status, '| FPS: %.01f' % fps if self.state.extra_msg: print >>status, '|', self.state.extra_msg self.state.extra_msg = '' strings = [FormattedString(line, defaults) for line in status.getvalue().split('\n')] cv2_typeset_text(pane.data, strings, loc, line_spacing = self.settings.caffevis_status_line_spacing)
def _draw_control_pane(self, pane): pane.data[:] = to_255(self.settings.window_background) with self.state.lock: layer_idx = self.state.layer_idx loc = self.settings.caffevis_control_loc[::-1] # Reverse to OpenCV c,r order strings = [] defaults = {'face': getattr(cv2, self.settings.caffevis_control_face), 'fsize': self.settings.caffevis_control_fsize, 'clr': to_255(self.settings.caffevis_control_clr), 'thick': self.settings.caffevis_control_thick} for ii in range(len(self.layer_print_names)): fs = FormattedString(self.layer_print_names[ii], defaults) this_layer = self.state._layers[ii] if self.state.backprop_selection_frozen and this_layer == self.state.backprop_layer: fs.clr = to_255(self.settings.caffevis_control_clr_bp) fs.thick = self.settings.caffevis_control_thick_bp if this_layer == self.state.layer: if self.state.cursor_area == 'top': fs.clr = to_255(self.settings.caffevis_control_clr_cursor) fs.thick = self.settings.caffevis_control_thick_cursor else: if not (self.state.backprop_selection_frozen and this_layer == self.state.backprop_layer): fs.clr = to_255(self.settings.caffevis_control_clr_selected) fs.thick = self.settings.caffevis_control_thick_selected strings.append(fs) cv2_typeset_text(pane.data, strings, loc, line_spacing = self.settings.caffevis_control_line_spacing, wrap = True)
def _draw_jpgvis_pane(self, pane): pane.data[:] = to_255(self.settings.window_background) with self.state.lock: state_layer, state_selected_unit, cursor_area, show_unit_jpgs = self.state.layer, self.state.selected_unit, self.state.cursor_area, self.state.show_unit_jpgs available = ['conv1', 'conv2', 'conv3', 'conv4', 'conv5', 'fc6', 'fc7', 'fc8', 'prob'] if state_layer in available and cursor_area == 'bottom' and show_unit_jpgs: img_key = (state_layer, state_selected_unit, pane.data.shape) img_resize = self.img_cache.get(img_key, None) if img_resize is None: # If img_resize is None, loading has not yet been attempted, so show stale image and request load by JPGVisLoadingThread with self.state.lock: self.state.jpgvis_to_load_key = img_key pane.data[:] = to_255(self.settings.stale_background) elif img_resize.nbytes == 0: # This is the sentinal value when the image is not # found, i.e. loading was already attempted but no jpg # assets were found. Just display disabled. pane.data[:] = to_255(self.settings.window_background) else: # Show image pane.data[:img_resize.shape[0], :img_resize.shape[1], :] = img_resize else: # Will never be available pane.data[:] = to_255(self.settings.window_background)
def _draw_back_pane(self, pane): mode = None with self.state.lock: back_enabled = self.state.back_enabled back_mode = self.state.back_mode back_filt_mode = self.state.back_filt_mode state_layer = self.state.layer selected_unit = self.state.selected_unit back_what_to_disp = self.get_back_what_to_disp() if back_what_to_disp == 'disabled': pane.data[:] = to_255(self.settings.window_background) elif back_what_to_disp == 'stale': pane.data[:] = to_255(self.settings.stale_background) else: # One of the backprop modes is enabled and the back computation (gradient or deconv) is up to date grad_blob = self.net.blobs['data'].diff # Manually deprocess (skip mean subtraction and rescaling) #grad_img = self.net.deprocess('data', diff_blob) grad_blob = grad_blob[0] # bc01 -> c01 grad_blob = grad_blob.transpose((1, 2, 0)) # c01 -> 01c grad_img = grad_blob[:, :, self._net_channel_swap_inv] # e.g. BGR -> RGB # Mode-specific processing assert back_mode in ('grad', 'deconv') assert back_filt_mode in ('raw', 'gray', 'norm', 'normblur') if back_filt_mode == 'raw': grad_img = norm01c(grad_img, 0) elif back_filt_mode == 'gray': grad_img = grad_img.mean(axis=2) grad_img = norm01c(grad_img, 0) elif back_filt_mode == 'norm': grad_img = np.linalg.norm(grad_img, axis=2) grad_img = norm01(grad_img) else: grad_img = np.linalg.norm(grad_img, axis=2) cv2.GaussianBlur(grad_img, (0, 0), self.settings.caffevis_grad_norm_blur_radius, grad_img) grad_img = norm01(grad_img) # If necessary, re-promote from grayscale to color if len(grad_img.shape) == 2: grad_img = np.tile(grad_img[:, :, np.newaxis], 3) grad_img_resize = ensure_uint255_and_resize_to_fit( grad_img, pane.data.shape) pane.data[0:grad_img_resize.shape[0], 0:grad_img_resize.shape[1], :] = grad_img_resize
def _draw_back_pane(self, pane): mode = None with self.state.lock: back_enabled = self.state.back_enabled back_mode = self.state.back_mode back_filt_mode = self.state.back_filt_mode state_layer = self.state.layer selected_unit = self.state.selected_unit back_what_to_disp = self.get_back_what_to_disp() if back_what_to_disp == 'disabled': pane.data[:] = to_255(self.settings.window_background) elif back_what_to_disp == 'stale': pane.data[:] = to_255(self.settings.stale_background) else: # One of the backprop modes is enabled and the back computation (gradient or deconv) is up to date grad_blob = self.net.blobs['data'].diff # Manually deprocess (skip mean subtraction and rescaling) #grad_img = self.net.deprocess('data', diff_blob) grad_blob = grad_blob[0] # bc01 -> c01 grad_blob = grad_blob.transpose((1,2,0)) # c01 -> 01c grad_img = grad_blob[:, :, self._net_channel_swap_inv] # e.g. BGR -> RGB # Mode-specific processing assert back_mode in ('grad', 'deconv') assert back_filt_mode in ('raw', 'gray', 'norm', 'normblur') if back_filt_mode == 'raw': grad_img = norm01c(grad_img, 0) elif back_filt_mode == 'gray': grad_img = grad_img.mean(axis=2) grad_img = norm01c(grad_img, 0) elif back_filt_mode == 'norm': grad_img = np.linalg.norm(grad_img, axis=2) grad_img = norm01(grad_img) else: grad_img = np.linalg.norm(grad_img, axis=2) cv2.GaussianBlur(grad_img, (0,0), self.settings.caffevis_grad_norm_blur_radius, grad_img) grad_img = norm01(grad_img) # If necessary, re-promote from grayscale to color if len(grad_img.shape) == 2: grad_img = np.tile(grad_img[:,:,np.newaxis], 3) grad_img_resize = ensure_uint255_and_resize_to_fit(grad_img, pane.data.shape) pane.data[0:grad_img_resize.shape[0], 0:grad_img_resize.shape[1], :] = grad_img_resize
def _draw_back_pane(self, pane): mode = None with self.state.lock: back_enabled = self.state.back_enabled back_mode = self.state.back_mode back_filt_mode = self.state.back_filt_mode state_layer = self.state.layer selected_unit = self.state.selected_unit back_what_to_disp = self.get_back_what_to_disp() if back_what_to_disp == 'disabled': pane.data[:] = to_255(self.settings.window_background) elif back_what_to_disp == 'stale': pane.data[:] = to_255(self.settings.stale_background) else: # One of the backprop modes is enabled and the back computation (gradient or deconv) is up to date grad_img = self.my_net.get_input_gradient_as_image() # Mode-specific processing assert back_mode in ('grad', 'deconv') assert back_filt_mode in ('raw', 'gray', 'norm', 'normblur') if back_filt_mode == 'raw': grad_img = norm01c(grad_img, 0) elif back_filt_mode == 'gray': grad_img = grad_img.mean(axis=2) grad_img = norm01c(grad_img, 0) elif back_filt_mode == 'norm': grad_img = np.linalg.norm(grad_img, axis=2) grad_img = norm01(grad_img) else: grad_img = np.linalg.norm(grad_img, axis=2) cv2.GaussianBlur(grad_img, (0, 0), self.settings.caffevis_grad_norm_blur_radius, grad_img) grad_img = norm01(grad_img) # If necessary, re-promote from grayscale to color if len(grad_img.shape) == 2: grad_img = np.tile(grad_img[:, :, np.newaxis], 3) grad_img_resize = ensure_uint255_and_resize_to_fit( grad_img, pane.data.shape) pane.data[0:grad_img_resize.shape[0], 0:grad_img_resize.shape[1], :] = grad_img_resize
def __init__(self, settings): self.settings = settings self.bindings = bindings self.app_classes = OrderedDict() self.apps = OrderedDict() for module_path, app_name in settings.installed_apps: module = importlib.import_module(module_path) print 'got module', module app_class = getattr(module, app_name) print 'got app', app_class self.app_classes[app_name] = app_class for app_name, app_class in self.app_classes.iteritems(): app = app_class(settings, self.bindings) self.apps[app_name] = app self.help_mode = False self.window_name = 'Deep Visualization Toolbox' self.quit = False self.debug_level = 0 self.debug_pane_defaults = { 'face': getattr(cv2, self.settings.help_face), 'fsize': self.settings.help_fsize, 'clr': pane_debug_clr, 'thick': self.settings.help_thick } self.help_pane_defaults = { 'face': getattr(cv2, self.settings.help_face), 'fsize': self.settings.help_fsize, 'clr': to_255(self.settings.help_clr), 'thick': self.settings.help_thick }
def __init__(self, settings): self.settings = settings self.bindings = bindings self.app_classes = OrderedDict() self.apps = OrderedDict() for module_path, app_name in settings.installed_apps: module = importlib.import_module(module_path) print('got module: {}'.format(module)) app_class = getattr(module, app_name) print('got app: {}'.format(app_class)) self.app_classes[app_name] = app_class for app_name, app_class in iter(self.app_classes.items()): app = app_class(settings, self.bindings) self.apps[app_name] = app self.help_mode = False self.window_name = 'Deep Visualization Toolbox | Model: %s' % (settings.model_to_load) self.quit = False self.debug_level = 0 self.debug_pane_defaults = { 'face': getattr(cv2, self.settings.help_face), 'fsize': self.settings.help_fsize, 'clr': pane_debug_clr, 'thick': self.settings.help_thick } self.help_pane_defaults = { 'face': getattr(cv2, self.settings.help_face), 'fsize': self.settings.help_fsize, 'clr': to_255(self.settings.help_clr), 'thick': self.settings.help_thick }
def _draw_aux_pane(self, pane, layer_data_normalized): pane.data[:] = to_255(self.settings.window_background) mode = None with self.state.lock: if self.state.cursor_area == 'bottom': mode = 'selected' else: mode = 'prob_labels' if mode == 'selected': unit_data = layer_data_normalized[self.state.selected_unit] # # Edited # # ----------------------- # print '*'*100 # print unit_data.mean(axis=(0,1)) unit_data_resize = ensure_uint255_and_resize_to_fit(unit_data, pane.data.shape) pane.data[0:unit_data_resize.shape[0], 0:unit_data_resize.shape[1], :] = unit_data_resize elif mode == 'prob_labels': self._draw_prob_labels_pane(pane)
def __init__(self, settings): self.settings = settings self.bindings = bindings self.app_classes = OrderedDict() self.apps = OrderedDict() for module_path, app_name in settings.installed_apps: module = importlib.import_module(module_path) print 'debug[app]: LiveVis.__init__: got module', module app_class = getattr(module, app_name) print 'debug[app]: LiveVis.__init__: got app', app_class self.app_classes[app_name] = app_class for app_name, app_class in self.app_classes.iteritems(): app = app_class(settings, self.bindings) print 'debug[app]: LiveVis.__init__: initialized app', app_name, 'as class', app_class self.apps[app_name] = app self.help_mode = False self.window_name = 'Deep Visualization Toolbox' self.quit = False self.debug_level = 0 self.debug_pane_defaults = { 'face': getattr(cv2, self.settings.help_face), 'fsize': self.settings.help_fsize, 'clr': pane_debug_clr, 'thick': self.settings.help_thick } self.help_pane_defaults = { 'face': getattr(cv2, self.settings.help_face), 'fsize': self.settings.help_fsize, 'clr': to_255(self.settings.help_clr), 'thick': self.settings.help_thick }
def _draw_aux_pane(self, pane, layer_data_normalized, selected_unit_highres=None): pane.data[:] = to_255(self.settings.window_background) with self.state.lock: if self.state.layers_pane_zoom_mode == 1: mode = 'prob_labels' elif self.state.cursor_area == 'bottom' and layer_data_normalized is not None: mode = 'selected' elif self.state.layers_pane_filter_mode in (0, 1, 2, 3): mode = 'prob_labels' else: mode = 'none' # if mode == 'selected' and layer_data_normalized is None and selected_unit_highres is None: # mode = 'prob_labels' if mode == 'selected': if selected_unit_highres is not None: unit_data = selected_unit_highres else: unit_data = layer_data_normalized[self.state.selected_unit] unit_data_resize = ensure_uint255_and_resize_to_fit( unit_data, pane.data.shape) pane.data[0:unit_data_resize.shape[0], 0:unit_data_resize.shape[1], :] = unit_data_resize elif mode == 'prob_labels': self._draw_prob_labels_pane(pane)
def draw_help(self, help_pane, locy): '''Tells the app to draw its help screen in the given pane. :param help_pane: a Pane to use for displaying the help for this application. :param locy: the vertical position within the help_pane. ''' defaults = { 'face': getattr(cv2, self.settings.help_face), 'fsize': self.settings.help_fsize, 'clr': to_255(self.settings.help_clr), 'thick': self.settings.help_thick } loc_base = self.settings.help_loc[::-1] # Reverse to OpenCV c,r order locx = loc_base[0] lines = [] lines.append([FormattedString('', defaults)]) lines.append([FormattedString('Caffevis keys', defaults)]) kl, _ = self.bindings.get_key_help('sel_left') kr, _ = self.bindings.get_key_help('sel_right') ku, _ = self.bindings.get_key_help('sel_up') kd, _ = self.bindings.get_key_help('sel_down') klf, _ = self.bindings.get_key_help('sel_left_fast') krf, _ = self.bindings.get_key_help('sel_right_fast') kuf, _ = self.bindings.get_key_help('sel_up_fast') kdf, _ = self.bindings.get_key_help('sel_down_fast') keys_nav_0 = ','.join([kk[0] for kk in (kl, kr, ku, kd)]) keys_nav_1 = '' if len(kl) > 1 and len(kr) > 1 and len(ku) > 1 and len(kd) > 1: keys_nav_1 += ' or ' keys_nav_1 += ','.join([kk[1] for kk in (kl, kr, ku, kd)]) keys_nav_f = ','.join([kk[0] for kk in (klf, krf, kuf, kdf)]) nav_string = 'Navigate with %s%s. Use %s to move faster.' % ( keys_nav_0, keys_nav_1, keys_nav_f) lines.append([ FormattedString('', defaults, width=120, align='right'), FormattedString(nav_string, defaults) ]) for tag in ('sel_layer_left', 'sel_layer_right', 'zoom_mode', 'pattern_mode', 'ez_back_mode_loop', 'freeze_back_unit', 'show_back', 'back_mode', 'back_filt_mode', 'boost_gamma', 'boost_individual', 'reset_state'): key_strings, help_string = self.bindings.get_key_help(tag) label = '%10s:' % (','.join(key_strings)) lines.append([ FormattedString(label, defaults, width=120, align='right'), FormattedString(help_string, defaults) ]) locy = cv2_typeset_text(help_pane.data, lines, (locx, locy), line_spacing=self.settings.help_line_spacing) return locy
def draw_help(self, help_pane, locy): defaults = {'face': getattr(cv2, self.settings.caffevis_help_face), 'fsize': self.settings.caffevis_help_fsize, 'clr': to_255(self.settings.caffevis_help_clr), 'thick': self.settings.caffevis_help_thick} loc_base = self.settings.caffevis_help_loc[::-1] # Reverse to OpenCV c,r order locx = loc_base[0] lines = [] lines.append([FormattedString('', defaults)]) lines.append([FormattedString('Caffevis keys', defaults)]) kl,_ = self.bindings.get_key_help('sel_left') kr,_ = self.bindings.get_key_help('sel_right') ku,_ = self.bindings.get_key_help('sel_up') kd,_ = self.bindings.get_key_help('sel_down') klf,_ = self.bindings.get_key_help('sel_left_fast') krf,_ = self.bindings.get_key_help('sel_right_fast') kuf,_ = self.bindings.get_key_help('sel_up_fast') kdf,_ = self.bindings.get_key_help('sel_down_fast') keys_nav_0 = ','.join([kk[0] for kk in (kl, kr, ku, kd)]) keys_nav_1 = '' if len(kl)>1 and len(kr)>1 and len(ku)>1 and len(kd)>1: keys_nav_1 += ' or ' keys_nav_1 += ','.join([kk[1] for kk in (kl, kr, ku, kd)]) keys_nav_f = ','.join([kk[0] for kk in (klf, krf, kuf, kdf)]) nav_string = 'Navigate with %s%s. Use %s to move faster.' % (keys_nav_0, keys_nav_1, keys_nav_f) lines.append([FormattedString('', defaults, width=120, align='right'), FormattedString(nav_string, defaults)]) #label = '%10s:' % ( #help_string = 'Move cursor left, right, up, or down' #lines.append([FormattedString(label, defaults, width=120, align='right'), # FormattedString(help_string, defaults)]) #if len(kl)>1 and len(kr)>1 and len(ku)>1 and len(kd)>1: # label = '%10s:' % (','.join([kk[1] for kk in (kl, kr, ku, kd)])) # help_string = 'Move cursor left, right, up, or down' # lines.append([FormattedString(label, defaults, width=120, align='right'), # FormattedString(help_string, defaults)]) #label = '%10s:' % (','.join([kk[0] for kk in (klf, krf, kuf, kdf)])) #help_string = 'Move cursor left, right, up, or down (faster)' #lines.append([FormattedString(label, defaults, width=120, align='right'), # FormattedString(help_string, defaults)]) for tag in ('sel_layer_left', 'sel_layer_right', 'zoom_mode', 'pattern_mode', 'ez_back_mode_loop', 'freeze_back_unit', 'show_back', 'back_mode', 'back_filt_mode', 'boost_gamma', 'boost_individual', 'reset_state'): key_strings, help_string = self.bindings.get_key_help(tag) label = '%10s:' % (','.join(key_strings)) lines.append([FormattedString(label, defaults, width=120, align='right'), FormattedString(help_string, defaults)]) locy = cv2_typeset_text(help_pane.data, lines, (locx, locy), line_spacing = self.settings.caffevis_help_line_spacing) return locy
def draw_help(self): self.help_buffer[:] *= 0.7 self.help_pane.data *= 0.7 # pane.data[:] = to_255(self.settings.window_background) defaults = { "face": getattr(cv2, self.settings.caffevis_help_face), "fsize": self.settings.caffevis_help_fsize, "clr": to_255(self.settings.caffevis_help_clr), "thick": self.settings.caffevis_help_thick, } loc = self.settings.caffevis_help_loc[::-1] # Reverse to OpenCV c,r order lines = [] lines.append( [ FormattedString( "~ ~ ~ Deep Visualization Toolbox ~ ~ ~", defaults, align="center", width=self.help_pane.j_size ) ] ) lines.append([FormattedString("", defaults)]) lines.append([FormattedString("Base keys", defaults)]) # lines.append([FormattedString('lllll', defaults), FormattedString('WWWW', defaults)]) # lines.append([FormattedString('WWWWW', defaults), FormattedString('llll', defaults)]) # lines.append([FormattedString('lllll', defaults, width=150), FormattedString('WWWW', defaults, width=150)]) # lines.append([FormattedString('WWWWW', defaults, width=150), FormattedString('llll', defaults, width=150)]) # lines.append([FormattedString('AAA', defaults), # FormattedString('left', defaults, width = 300), # FormattedString('BBB', defaults)]) # lines.append([FormattedString('AAA', defaults), # FormattedString('center', defaults, width = 300, align='center'), # FormattedString('BBB', defaults)]) # lines.append([FormattedString('AAA', defaults), # FormattedString('right', defaults, width = 300, align='right'), # FormattedString('BBB', defaults)]) for tag in ( "help_mode", "freeze_cam", "toggle_input_mode", "static_file_increment", "static_file_decrement", "stretch_mode", "quit", ): key_strings, help_string = self.bindings.get_key_help(tag) label = "%10s:" % (",".join(key_strings)) lines.append( [FormattedString(label, defaults, width=120, align="right"), FormattedString(help_string, defaults)] ) locy = cv2_typeset_text(self.help_pane.data, lines, loc, line_spacing=self.settings.caffevis_help_line_spacing) for app_name, app in self.apps.iteritems(): locy = app.draw_help(self.help_pane, locy)
def draw_help(self): self.help_buffer[:] *= .7 self.help_pane.data *= .7 #pane.data[:] = to_255(self.settings.window_background) defaults = { 'face': getattr(cv2, self.settings.caffevis_help_face), 'fsize': self.settings.caffevis_help_fsize, 'clr': to_255(self.settings.caffevis_help_clr), 'thick': self.settings.caffevis_help_thick } loc = self.settings.caffevis_help_loc[:: -1] # Reverse to OpenCV c,r order lines = [] lines.append([ FormattedString( '~ ~ ~ Deep Visualization Toolbox ~ ~ ~', defaults, align='center', width=self.help_pane.j_size) ]) lines.append([FormattedString('', defaults)]) lines.append([FormattedString('Base keys', defaults)]) #lines.append([FormattedString('lllll', defaults), FormattedString('WWWW', defaults)]) #lines.append([FormattedString('WWWWW', defaults), FormattedString('llll', defaults)]) #lines.append([FormattedString('lllll', defaults, width=150), FormattedString('WWWW', defaults, width=150)]) #lines.append([FormattedString('WWWWW', defaults, width=150), FormattedString('llll', defaults, width=150)]) #lines.append([FormattedString('AAA', defaults), # FormattedString('left', defaults, width = 300), # FormattedString('BBB', defaults)]) #lines.append([FormattedString('AAA', defaults), # FormattedString('center', defaults, width = 300, align='center'), # FormattedString('BBB', defaults)]) #lines.append([FormattedString('AAA', defaults), # FormattedString('right', defaults, width = 300, align='right'), # FormattedString('BBB', defaults)]) for tag in ('help_mode', 'freeze_cam', 'toggle_input_mode', 'static_file_increment', 'static_file_decrement', 'stretch_mode', 'quit'): key_strings, help_string = self.bindings.get_key_help(tag) label = '%10s:' % (','.join(key_strings)) lines.append([ FormattedString(label, defaults, width=120, align='right'), FormattedString(help_string, defaults) ]) locy = cv2_typeset_text( self.help_pane.data, lines, loc, line_spacing=self.settings.caffevis_help_line_spacing) for app_name, app in self.apps.iteritems(): locy = app.draw_help(self.help_pane, locy)
def draw_help(self): self.help_buffer[:] *= .7 self.help_pane.data *= .7 #pane.data[:] = to_255(self.settings.window_background) defaults = { 'face': getattr(cv2, self.settings.caffevis_help_face), 'fsize': self.settings.caffevis_help_fsize, 'clr': to_255(self.settings.caffevis_help_clr), 'thick': self.settings.caffevis_help_thick } loc = self.settings.caffevis_help_loc[:: -1] # Reverse to OpenCV c,r order lines = [] lines.append([ FormattedString('~ ~ ~ Deep Visualization Toolbox ~ ~ ~', defaults, align='center', width=self.help_pane.j_size) ]) lines.append([FormattedString('', defaults)]) lines.append([FormattedString('Base keys', defaults)]) #lines.append([FormattedString('lllll', defaults), FormattedString('WWWW', defaults)]) #lines.append([FormattedString('WWWWW', defaults), FormattedString('llll', defaults)]) #lines.append([FormattedString('lllll', defaults, width=150), FormattedString('WWWW', defaults, width=150)]) #lines.append([FormattedString('WWWWW', defaults, width=150), FormattedString('llll', defaults, width=150)]) #lines.append([FormattedString('AAA', defaults), # FormattedString('left', defaults, width = 300), # FormattedString('BBB', defaults)]) #lines.append([FormattedString('AAA', defaults), # FormattedString('center', defaults, width = 300, align='center'), # FormattedString('BBB', defaults)]) #lines.append([FormattedString('AAA', defaults), # FormattedString('right', defaults, width = 300, align='right'), # FormattedString('BBB', defaults)]) for tag in ('help_mode', 'freeze_cam', 'toggle_input_mode', 'static_file_increment', 'static_file_decrement', 'stretch_mode', 'quit'): key_strings, help_string = self.bindings.get_key_help(tag) label = '%10s:' % (','.join(key_strings)) lines.append([ FormattedString(label, defaults, width=120, align='right'), FormattedString(help_string, defaults) ]) locy = cv2_typeset_text( self.help_pane.data, lines, loc, line_spacing=self.settings.caffevis_help_line_spacing) for app_name, app in self.apps.iteritems(): locy = app.draw_help(self.help_pane, locy)
def _draw_jpgvis_pane(self, pane): pane.data[:] = to_255(self.settings.window_background) with self.state.lock: state_layer, state_selected_unit, cursor_area, show_unit_jpgs = self.state.layer, self.state.selected_unit, self.state.cursor_area, self.state.show_unit_jpgs try: # Some may be missing this setting self.settings.caffevis_jpgvis_layers except: print( '\n\nNOTE: you need to upgrade your settings.py and settings_local.py files. See README.md.\n\n' ) raise if self.settings.caffevis_jpgvis_remap and state_layer in self.settings.caffevis_jpgvis_remap: img_key_layer = self.settings.caffevis_jpgvis_remap[state_layer] else: img_key_layer = state_layer if self.settings.caffevis_jpgvis_layers and img_key_layer in self.settings.caffevis_jpgvis_layers and cursor_area == 'bottom' and show_unit_jpgs: img_key = (img_key_layer, state_selected_unit, pane.data.shape) img_resize = self.img_cache.get(img_key, None) if img_resize is None: # If img_resize is None, loading has not yet been attempted, so show stale image and request load by JPGVisLoadingThread with self.state.lock: self.state.jpgvis_to_load_key = img_key pane.data[:] = to_255(self.settings.stale_background) elif img_resize.nbytes == 0: # This is the sentinal value when the image is not # found, i.e. loading was already attempted but no jpg # assets were found. Just display disabled. pane.data[:] = to_255(self.settings.window_background) else: # Show image pane.data[:img_resize.shape[0], :img_resize. shape[1], :] = img_resize else: # Will never be available pane.data[:] = to_255(self.settings.window_background)
def _draw_jpgvis_pane(self, pane): pane.data[:] = to_255(self.settings.window_background) with self.state.lock: state_layer, state_selected_unit, cursor_area, show_unit_jpgs = self.state.layer, self.state.selected_unit, self.state.cursor_area, self.state.show_unit_jpgs try: # Some may be missing this setting self.settings.caffevis_jpgvis_layers except: print '\n\nNOTE: you need to upgrade your settings.py and settings_local.py files. See README.md.\n\n' raise if self.settings.caffevis_jpgvis_remap and state_layer in self.settings.caffevis_jpgvis_remap: img_key_layer = self.settings.caffevis_jpgvis_remap[state_layer] else: img_key_layer = state_layer if self.settings.caffevis_jpgvis_layers and img_key_layer in self.settings.caffevis_jpgvis_layers and cursor_area == 'bottom' and show_unit_jpgs: img_key = (img_key_layer, state_selected_unit, pane.data.shape) img_resize = self.img_cache.get(img_key, None) if img_resize is None: # If img_resize is None, loading has not yet been attempted, so show stale image and request load by JPGVisLoadingThread with self.state.lock: self.state.jpgvis_to_load_key = img_key pane.data[:] = to_255(self.settings.stale_background) elif img_resize.nbytes == 0: # This is the sentinal value when the image is not # found, i.e. loading was already attempted but no jpg # assets were found. Just display disabled. pane.data[:] = to_255(self.settings.window_background) else: # Show image pane.data[:img_resize.shape[0], :img_resize.shape[1], :] = img_resize else: # Will never be available pane.data[:] = to_255(self.settings.window_background)
def _draw_aux_pane(self, pane, layer_data_normalized): pane.data[:] = to_255(self.settings.window_background) mode = None with self.state.lock: if self.state.cursor_area == 'bottom': mode = 'selected' else: mode = 'prob_labels' if mode == 'selected': unit_data = layer_data_normalized[self.state.selected_unit] unit_data_resize = ensure_uint255_and_resize_to_fit(unit_data, pane.data.shape) pane.data[0:unit_data_resize.shape[0], 0:unit_data_resize.shape[1], :] = unit_data_resize elif mode == 'prob_labels': self._draw_prob_labels_pane(pane)
def draw_help(self, help_pane, locy): defaults = {'face': getattr(cv2, self.settings.help_face), 'fsize': self.settings.help_fsize, 'clr': to_255(self.settings.help_clr), 'thick': self.settings.help_thick} loc_base = self.settings.help_loc[::-1] # Reverse to OpenCV c,r order locx = loc_base[0] lines = [] lines.append([FormattedString('', defaults)]) lines.append([FormattedString('Caffevis keys', defaults)]) kl,_ = self.bindings.get_key_help('sel_left') kr,_ = self.bindings.get_key_help('sel_right') ku,_ = self.bindings.get_key_help('sel_up') kd,_ = self.bindings.get_key_help('sel_down') klf,_ = self.bindings.get_key_help('sel_left_fast') krf,_ = self.bindings.get_key_help('sel_right_fast') kuf,_ = self.bindings.get_key_help('sel_up_fast') kdf,_ = self.bindings.get_key_help('sel_down_fast') keys_nav_0 = ','.join([kk[0] for kk in (kl, kr, ku, kd)]) keys_nav_1 = '' if len(kl)>1 and len(kr)>1 and len(ku)>1 and len(kd)>1: keys_nav_1 += ' or ' keys_nav_1 += ','.join([kk[1] for kk in (kl, kr, ku, kd)]) keys_nav_f = ','.join([kk[0] for kk in (klf, krf, kuf, kdf)]) nav_string = 'Navigate with %s%s. Use %s to move faster.' % (keys_nav_0, keys_nav_1, keys_nav_f) lines.append([FormattedString('', defaults, width=120, align='right'), FormattedString(nav_string, defaults)]) for tag in ('sel_layer_left', 'sel_layer_right', 'zoom_mode', 'pattern_mode', 'ez_back_mode_loop', 'freeze_back_unit', 'show_back', 'back_mode', 'back_filt_mode', 'boost_gamma', 'boost_individual', 'reset_state'): key_strings, help_string = self.bindings.get_key_help(tag) label = '%10s:' % (','.join(key_strings)) lines.append([FormattedString(label, defaults, width=120, align='right'), FormattedString(help_string, defaults)]) locy = cv2_typeset_text(help_pane.data, lines, (locx, locy), line_spacing = self.settings.help_line_spacing) return locy
def _draw_selected_pane(self, pane, layer_data_normalized, selected_unit_highres=None): pane.data[:] = to_255(self.settings.window_background) with self.state.lock: mode = 'selected' if self.state.cursor_area == 'bottom' else 'none' if mode == 'selected': unit_data = None if selected_unit_highres is not None: unit_data = selected_unit_highres else: if self.state.selected_unit < len(layer_data_normalized): unit_data = layer_data_normalized[self.state.selected_unit] elif len(layer_data_normalized) == 1: unit_data = layer_data_normalized[0] if unit_data is not None: unit_data_resize = ensure_uint255_and_resize_to_fit( unit_data, pane.data.shape) pane.data[0:unit_data_resize.shape[0], 0:unit_data_resize.shape[1], :] = unit_data_resize
def _draw_layer_pane(self, pane): '''Returns the data shown in highres format, b01c order.''' if not hasattr(self.net, 'intermediate_predictions') or \ self.net.intermediate_predictions is None: return None, None display_3D_highres, selected_unit_highres = None, None out = self.net.intermediate_predictions[self.state.layer_idx] if self.state.layers_pane_filter_mode in ( 4, 5) and self.state.extra_info is None: self.state.layers_pane_filter_mode = 0 state_layers_pane_filter_mode = self.state.layers_pane_filter_mode assert state_layers_pane_filter_mode in (0, 1, 2, 3, 4) # Display pane based on layers_pane_zoom_mode state_layers_pane_zoom_mode = self.state.layers_pane_zoom_mode assert state_layers_pane_zoom_mode in (0, 1, 2) layer_dat_3D = out[0].T n_tiles = layer_dat_3D.shape[0] tile_rows, tile_cols = self.net_layer_info[ self.state.layer]['tiles_rc'] if state_layers_pane_filter_mode == 0: if len(layer_dat_3D.shape) > 1: img_width, img_height = get_tiles_height_width_ratio( layer_dat_3D.shape[1], self.settings.kerasvis_layers_aspect_ratio) pad = np.zeros( (layer_dat_3D.shape[0], ((img_width * img_height) - layer_dat_3D.shape[1]))) layer_dat_3D = np.concatenate((layer_dat_3D, pad), axis=1) layer_dat_3D = np.reshape( layer_dat_3D, (layer_dat_3D.shape[0], img_width, img_height)) elif state_layers_pane_filter_mode == 1: if len(layer_dat_3D.shape) > 1: layer_dat_3D = np.average(layer_dat_3D, axis=1) elif state_layers_pane_filter_mode == 2: if len(layer_dat_3D.shape) > 1: layer_dat_3D = np.max(layer_dat_3D, axis=1) elif state_layers_pane_filter_mode == 3: if len(layer_dat_3D.shape) > 1: title, r, c, hide_axis = None, tile_rows, tile_cols, True x_axis_label, y_axis_label = None, None if self.state.cursor_area == 'bottom' and state_layers_pane_zoom_mode == 1: r, c, hide_axis = 1, 1, False layer_dat_3D = layer_dat_3D[self.state.selected_unit:self. state.selected_unit + 1] title = 'Layer {}, Filter {}'.format( self.state._layers[self.state.layer_idx], self.state.selected_unit) x_axis_label, y_axis_label = 'Time', 'Activation' display_3D = plt_plot_filters_blit( y=layer_dat_3D, x=None, shape=(pane.data.shape[0], pane.data.shape[1]), rows=r, cols=c, title=title, log_scale=self.state.log_scale, hide_axis=hide_axis, x_axis_label=x_axis_label, y_axis_label=y_axis_label) if self.state.cursor_area == 'bottom' and state_layers_pane_zoom_mode == 0: selected_unit_highres = plt_plot_filter( x=None, y=layer_dat_3D[self.state.selected_unit], title='Layer {}, Filter {}'.format( self.state._layers[self.state.layer_idx], self.state.selected_unit), log_scale=self.state.log_scale, x_axis_label='Time', y_axis_label='Activation') else: state_layers_pane_filter_mode = 0 elif state_layers_pane_filter_mode == 4: if self.state.extra_info is not None: extra = self.state.extra_info.item() is_heatmap = True if 'type' in extra and extra[ 'type'] == 'heatmap' else False if is_heatmap: layer_dat_3D = extra['data'][self.state.layer_idx] if self.state.cursor_area == 'bottom' and state_layers_pane_zoom_mode == 1: display_3D = plt_plot_heatmap( data=layer_dat_3D[self.state.selected_unit:self. state.selected_unit + 1], shape=(pane.data.shape[0], pane.data.shape[1]), rows=1, cols=1, x_axis_label=extra['x_axis'], y_axis_label=extra['y_axis'], title='Layer {}, Filter {} \n {}'.format( self.state._layers[self.state.layer_idx], self.state.selected_unit, extra['title']), hide_axis=False, x_axis_values=extra['x_axis_values'], y_axis_values=extra['y_axis_values'], vmin=layer_dat_3D.min(), vmax=layer_dat_3D.max()) else: display_3D = plt_plot_heatmap( data=layer_dat_3D, shape=(pane.data.shape[0], pane.data.shape[1]), rows=tile_rows, cols=tile_cols, x_axis_label=extra['x_axis'], y_axis_label=extra['y_axis'], title=extra['title'], x_axis_values=extra['x_axis_values'], y_axis_values=extra['y_axis_values']) if self.state.cursor_area == 'bottom': selected_unit_highres = plt_plot_heatmap( data=layer_dat_3D[self.state.selected_unit:self. state.selected_unit + 1], shape=(300, 300), rows=1, cols=1, x_axis_label=extra['x_axis'], y_axis_label=extra['y_axis'], title='Layer {}, Filter {} \n {}'.format( self.state._layers[self.state.layer_idx], self.state.selected_unit, extra['title']), x_axis_values=extra['x_axis_values'], y_axis_values=extra['y_axis_values'], hide_axis=False, vmin=layer_dat_3D.min(), vmax=layer_dat_3D.max())[0] else: layer_dat_3D = extra['x'][self.state.layer_idx] title, x_axis_label, y_axis_label, r, c, hide_axis = None, None, None, tile_rows, tile_cols, True if self.state.cursor_area == 'bottom': if state_layers_pane_zoom_mode == 1: r, c, hide_axis = 1, 1, False layer_dat_3D = layer_dat_3D[self.state. selected_unit:self. state.selected_unit + 1] title = 'Layer {}, Filter {} \n {}'.format( self.state._layers[self.state.layer_idx], self.state.selected_unit, extra['title']) x_axis_label, y_axis_label = extra[ 'x_axis'], extra['y_axis'] if self.state.log_scale == 1: y_axis_label = y_axis_label + ' (log-scale)' # start_time = timeit.default_timer() display_3D = plt_plot_filters_blit( y=layer_dat_3D, x=extra['y'], shape=(pane.data.shape[0], pane.data.shape[1]), rows=r, cols=c, title=title, log_scale=self.state.log_scale, x_axis_label=x_axis_label, y_axis_label=y_axis_label, hide_axis=hide_axis) if self.state.cursor_area == 'bottom' and state_layers_pane_zoom_mode == 0: selected_unit_highres = plt_plot_filter( x=extra['y'], y=layer_dat_3D[self.state.selected_unit], title='Layer {}, Filter {} \n {}'.format( self.state._layers[self.state.layer_idx], self.state.selected_unit, extra['title']), log_scale=self.state.log_scale, x_axis_label=extra['x_axis'], y_axis_label=extra['y_axis']) # TODO # if hasattr(self.settings, 'static_files_extra_fn'): # self.data = self.settings.static_files_extra_fn(self.latest_static_file) # self.state.layer_idx if len(layer_dat_3D.shape) == 1: layer_dat_3D = layer_dat_3D[:, np.newaxis, np.newaxis] if self.state.layers_show_back and not self.state.pattern_mode: padval = self.settings.kerasvis_layer_clr_back_background else: padval = self.settings.window_background if self.state.pattern_mode: # Show desired patterns loaded from disk load_layer = self.state.layer if self.settings.kerasvis_jpgvis_remap and self.state.layer in self.settings.kerasvis_jpgvis_remap: load_layer = self.settings.kerasvis_jpgvis_remap[ self.state.layer] if self.settings.kerasvis_jpgvis_layers and load_layer in self.settings.kerasvis_jpgvis_layers: jpg_path = os.path.join(self.settings.kerasvis_unit_jpg_dir, 'regularized_opt', load_layer, 'whole_layer.jpg') # Get highres version # cache_before = str(self.img_cache) display_3D_highres = self.img_cache.get((jpg_path, 'whole'), None) # else: # display_3D_highres = None if display_3D_highres is None: try: with WithTimer('KerasVisApp:load_sprite_image', quiet=self.debug_level < 1): display_3D_highres = load_square_sprite_image( jpg_path, n_sprites=n_tiles) except IOError: # File does not exist, so just display disabled. pass else: self.img_cache.set((jpg_path, 'whole'), display_3D_highres) # cache_after = str(self.img_cache) # print 'Cache was / is:\n %s\n %s' % (cache_before, cache_after) if display_3D_highres is not None: # Get lowres version, maybe. Assume we want at least one pixel for selection border. row_downsamp_factor = int( np.ceil( float(display_3D_highres.shape[1]) / (pane.data.shape[0] / tile_rows - 2))) col_downsamp_factor = int( np.ceil( float(display_3D_highres.shape[2]) / (pane.data.shape[1] / tile_cols - 2))) ds = max(row_downsamp_factor, col_downsamp_factor) if ds > 1: # print 'Downsampling by', ds display_3D = display_3D_highres[:, ::ds, ::ds, :] else: display_3D = display_3D_highres else: display_3D = layer_dat_3D * 0 # nothing to show else: # Show data from network (activations or diffs) if self.state.layers_show_back: back_what_to_disp = self.get_back_what_to_disp() if back_what_to_disp == 'disabled': layer_dat_3D_normalized = np.tile( self.settings.window_background, layer_dat_3D.shape + (1, )) elif back_what_to_disp == 'stale': layer_dat_3D_normalized = np.tile( self.settings.stale_background, layer_dat_3D.shape + (1, )) else: layer_dat_3D_normalized = tile_images_normalize( layer_dat_3D, boost_indiv=self.state.layer_boost_indiv, boost_gamma=self.state.layer_boost_gamma, neg_pos_colors=((1, 0, 0), (0, 1, 0))) else: layer_dat_3D_normalized = tile_images_normalize( layer_dat_3D, boost_indiv=self.state.layer_boost_indiv, boost_gamma=self.state.layer_boost_gamma) # print ' ===layer_dat_3D_normalized.shape', layer_dat_3D_normalized.shape, 'layer_dat_3D_normalized dtype', layer_dat_3D_normalized.dtype, 'range', layer_dat_3D_normalized.min(), layer_dat_3D_normalized.max() if state_layers_pane_filter_mode in (0, 1, 2): display_3D = layer_dat_3D_normalized # Convert to float if necessary: display_3D = ensure_float01(display_3D) # Upsample gray -> color if necessary # e.g. (1000,32,32) -> (1000,32,32,3) if len(display_3D.shape) == 3: display_3D = display_3D[:, :, :, np.newaxis] if display_3D.shape[3] == 1: display_3D = np.tile(display_3D, (1, 1, 1, 3)) # Upsample unit length tiles to give a more sane tile / highlight ratio # e.g. (1000,1,1,3) -> (1000,3,3,3) if display_3D.shape[1] == 1: display_3D = np.tile(display_3D, (1, 3, 3, 1)) if state_layers_pane_zoom_mode in (0, 2): highlights = [None] * n_tiles with self.state.lock: if self.state.cursor_area == 'bottom': highlights[ self.state. selected_unit] = self.settings.kerasvis_layer_clr_cursor # in [0,1] range if self.state.backprop_selection_frozen and self.state.layer == self.state.backprop_layer: highlights[ self.state. backprop_unit] = self.settings.kerasvis_layer_clr_back_sel # in [0,1] range if self.state.cursor_area == 'bottom' and state_layers_pane_filter_mode in ( 3, 4): # pane.data[0:display_2D_resize.shape[0], 0:2, :] = to_255(self.settings.window_background) # pane.data[0:2, 0:display_2D_resize.shape[1], :] = to_255(self.settings.window_background) display_3D[self.state.selected_unit, 0:display_3D.shape[1], 0:2, :] = self.settings.kerasvis_layer_clr_cursor display_3D[ self.state.selected_unit, 0:2, 0:display_3D. shape[2], :] = self.settings.kerasvis_layer_clr_cursor display_3D[self.state.selected_unit, 0:display_3D.shape[1], -2:, :] = self.settings.kerasvis_layer_clr_cursor display_3D[ self.state.selected_unit, -2:, 0:display_3D. shape[2], :] = self.settings.kerasvis_layer_clr_cursor _, display_2D = tile_images_make_tiles(display_3D, hw=(tile_rows, tile_cols), padval=padval, highlights=highlights) # Mode 0: normal display (activations or patterns) display_2D_resize = ensure_uint255_and_resize_to_fit( display_2D, pane.data.shape) if state_layers_pane_zoom_mode == 2: display_2D_resize = display_2D_resize * 0 if display_3D_highres is None: display_3D_highres = display_3D elif state_layers_pane_zoom_mode == 1: if display_3D_highres is None: display_3D_highres = display_3D # Mode 1: zoomed selection if state_layers_pane_filter_mode in (0, 1, 2): unit_data = display_3D_highres[self.state.selected_unit] else: unit_data = display_3D_highres[0] display_2D_resize = ensure_uint255_and_resize_to_fit( unit_data, pane.data.shape) pane.data[:] = to_255(self.settings.window_background) pane.data[0:display_2D_resize.shape[0], 0:display_2D_resize.shape[1], :] = display_2D_resize # # Add background strip around the top and left edges # pane.data[0:display_2D_resize.shape[0], 0:2, :] = to_255(self.settings.window_background) # pane.data[0:2, 0:display_2D_resize.shape[1], :] = to_255(self.settings.window_background) if self.settings.kerasvis_label_layers and \ self.state.layer in self.settings.kerasvis_label_layers and \ self.labels and self.state.cursor_area == 'bottom': # Display label annotation atop layers pane (e.g. for fc8/prob) defaults = { 'face': getattr(cv2, self.settings.kerasvis_label_face), 'fsize': self.settings.kerasvis_label_fsize, 'clr': to_255(self.settings.kerasvis_label_clr), 'thick': self.settings.kerasvis_label_thick } loc_base = self.settings.kerasvis_label_loc[:: -1] # Reverse to OpenCV c,r order lines = [ FormattedString(self.labels[self.state.selected_unit], defaults) ] cv2_typeset_text(pane.data, lines, loc_base) return display_3D_highres, selected_unit_highres
def _draw_layer_pane(self, pane): '''Returns the data shown in highres format, b01c order.''' if self.state.layers_show_back: layer_dat_3D = self.net.blobs[self.state.layer].diff[0] else: layer_dat_3D = self.net.blobs[self.state.layer].data[0] # Promote FC layers with shape (n) to have shape (n,1,1) if len(layer_dat_3D.shape) == 1: layer_dat_3D = layer_dat_3D[:,np.newaxis,np.newaxis] n_tiles = layer_dat_3D.shape[0] tile_rows,tile_cols = self.net_layer_info[self.state.layer]['tiles_rc'] display_3D_highres = None if self.state.pattern_mode: # Show desired patterns loaded from disk load_layer = self.state.layer if self.settings.caffevis_jpgvis_remap and self.state.layer in self.settings.caffevis_jpgvis_remap: load_layer = self.settings.caffevis_jpgvis_remap[self.state.layer] if self.settings.caffevis_jpgvis_layers and load_layer in self.settings.caffevis_jpgvis_layers: jpg_path = os.path.join(self.settings.caffevis_unit_jpg_dir, 'regularized_opt', load_layer, 'whole_layer.jpg') # Get highres version #cache_before = str(self.img_cache) display_3D_highres = self.img_cache.get((jpg_path, 'whole'), None) #else: # display_3D_highres = None if display_3D_highres is None: try: with WithTimer('CaffeVisApp:load_sprite_image', quiet = self.debug_level < 1): display_3D_highres = load_square_sprite_image(jpg_path, n_sprites = n_tiles) except IOError: # File does not exist, so just display disabled. pass else: self.img_cache.set((jpg_path, 'whole'), display_3D_highres) #cache_after = str(self.img_cache) #print 'Cache was / is:\n %s\n %s' % (cache_before, cache_after) if display_3D_highres is not None: # Get lowres version, maybe. Assume we want at least one pixel for selection border. row_downsamp_factor = int(np.ceil(float(display_3D_highres.shape[1]) / (pane.data.shape[0] / tile_rows - 2))) col_downsamp_factor = int(np.ceil(float(display_3D_highres.shape[2]) / (pane.data.shape[1] / tile_cols - 2))) ds = max(row_downsamp_factor, col_downsamp_factor) if ds > 1: #print 'Downsampling by', ds display_3D = display_3D_highres[:,::ds,::ds,:] else: display_3D = display_3D_highres else: display_3D = layer_dat_3D * 0 # nothing to show else: # Show data from network (activations or diffs) if self.state.layers_show_back: back_what_to_disp = self.get_back_what_to_disp() if back_what_to_disp == 'disabled': layer_dat_3D_normalized = np.tile(self.settings.window_background, layer_dat_3D.shape + (1,)) elif back_what_to_disp == 'stale': layer_dat_3D_normalized = np.tile(self.settings.stale_background, layer_dat_3D.shape + (1,)) else: layer_dat_3D_normalized = tile_images_normalize(layer_dat_3D, boost_indiv = self.state.layer_boost_indiv, boost_gamma = self.state.layer_boost_gamma, neg_pos_colors = ((1,0,0), (0,1,0))) else: layer_dat_3D_normalized = tile_images_normalize(layer_dat_3D, boost_indiv = self.state.layer_boost_indiv, boost_gamma = self.state.layer_boost_gamma) #print ' ===layer_dat_3D_normalized.shape', layer_dat_3D_normalized.shape, 'layer_dat_3D_normalized dtype', layer_dat_3D_normalized.dtype, 'range', layer_dat_3D_normalized.min(), layer_dat_3D_normalized.max() display_3D = layer_dat_3D_normalized # Convert to float if necessary: display_3D = ensure_float01(display_3D) # Upsample gray -> color if necessary # e.g. (1000,32,32) -> (1000,32,32,3) if len(display_3D.shape) == 3: display_3D = display_3D[:,:,:,np.newaxis] if display_3D.shape[3] == 1: display_3D = np.tile(display_3D, (1, 1, 1, 3)) # Upsample unit length tiles to give a more sane tile / highlight ratio # e.g. (1000,1,1,3) -> (1000,3,3,3) if display_3D.shape[1] == 1: display_3D = np.tile(display_3D, (1, 3, 3, 1)) if self.state.layers_show_back and not self.state.pattern_mode: padval = self.settings.caffevis_layer_clr_back_background else: padval = self.settings.window_background highlights = [None] * n_tiles with self.state.lock: if self.state.cursor_area == 'bottom': highlights[self.state.selected_unit] = self.settings.caffevis_layer_clr_cursor # in [0,1] range if self.state.backprop_selection_frozen and self.state.layer == self.state.backprop_layer: highlights[self.state.backprop_unit] = self.settings.caffevis_layer_clr_back_sel # in [0,1] range _, display_2D = tile_images_make_tiles(display_3D, hw = (tile_rows,tile_cols), padval = padval, highlights = highlights) if display_3D_highres is None: display_3D_highres = display_3D # Display pane based on layers_pane_zoom_mode state_layers_pane_zoom_mode = self.state.layers_pane_zoom_mode assert state_layers_pane_zoom_mode in (0,1,2) if state_layers_pane_zoom_mode == 0: # Mode 0: normal display (activations or patterns) display_2D_resize = ensure_uint255_and_resize_to_fit(display_2D, pane.data.shape) elif state_layers_pane_zoom_mode == 1: # Mode 1: zoomed selection unit_data = display_3D_highres[self.state.selected_unit] display_2D_resize = ensure_uint255_and_resize_to_fit(unit_data, pane.data.shape) else: # Mode 2: zoomed backprop pane display_2D_resize = ensure_uint255_and_resize_to_fit(display_2D, pane.data.shape) * 0 pane.data[:] = to_255(self.settings.window_background) pane.data[0:display_2D_resize.shape[0], 0:display_2D_resize.shape[1], :] = display_2D_resize if self.settings.caffevis_label_layers and self.state.layer in self.settings.caffevis_label_layers and self.labels and self.state.cursor_area == 'bottom': # Display label annotation atop layers pane (e.g. for fc8/prob) defaults = {'face': getattr(cv2, self.settings.caffevis_label_face), 'fsize': self.settings.caffevis_label_fsize, 'clr': to_255(self.settings.caffevis_label_clr), 'thick': self.settings.caffevis_label_thick} loc_base = self.settings.caffevis_label_loc[::-1] # Reverse to OpenCV c,r order lines = [FormattedString(self.labels[self.state.selected_unit], defaults)] cv2_typeset_text(pane.data, lines, loc_base) return display_3D_highres
def _draw_layer_pane(self, pane): '''Returns the data shown in highres format, b01c order.''' if self.state.layers_show_back: layer_dat_3D = self.net.blobs[self.state.layer].diff[0] else: layer_dat_3D = self.net.blobs[self.state.layer].data[0] # Promote FC layers with shape (n) to have shape (n,1,1) if len(layer_dat_3D.shape) == 1: layer_dat_3D = layer_dat_3D[:, np.newaxis, np.newaxis] n_tiles = layer_dat_3D.shape[0] tile_rows, tile_cols = self.net_layer_info[ self.state.layer]['tiles_rc'] display_3D_highres = None if self.state.pattern_mode: # Show desired patterns loaded from disk load_layer = self.state.layer if self.settings.caffevis_jpgvis_remap and self.state.layer in self.settings.caffevis_jpgvis_remap: load_layer = self.settings.caffevis_jpgvis_remap[ self.state.layer] if self.settings.caffevis_jpgvis_layers and load_layer in self.settings.caffevis_jpgvis_layers: jpg_path = os.path.join(self.settings.caffevis_unit_jpg_dir, 'regularized_opt', load_layer, 'whole_layer.jpg') # Get highres version #cache_before = str(self.img_cache) display_3D_highres = self.img_cache.get((jpg_path, 'whole'), None) #else: # display_3D_highres = None if display_3D_highres is None: try: with WithTimer('CaffeVisApp:load_sprite_image', quiet=self.debug_level < 1): display_3D_highres = load_square_sprite_image( jpg_path, n_sprites=n_tiles) except IOError: # File does not exist, so just display disabled. pass else: self.img_cache.set((jpg_path, 'whole'), display_3D_highres) #cache_after = str(self.img_cache) #print 'Cache was / is:\n %s\n %s' % (cache_before, cache_after) if display_3D_highres is not None: # Get lowres version, maybe. Assume we want at least one pixel for selection border. row_downsamp_factor = int( np.ceil( float(display_3D_highres.shape[1]) / (pane.data.shape[0] / tile_rows - 2))) col_downsamp_factor = int( np.ceil( float(display_3D_highres.shape[2]) / (pane.data.shape[1] / tile_cols - 2))) ds = max(row_downsamp_factor, col_downsamp_factor) if ds > 1: #print 'Downsampling by', ds display_3D = display_3D_highres[:, ::ds, ::ds, :] else: display_3D = display_3D_highres else: display_3D = layer_dat_3D * 0 # nothing to show else: # Show data from network (activations or diffs) if self.state.layers_show_back: back_what_to_disp = self.get_back_what_to_disp() if back_what_to_disp == 'disabled': layer_dat_3D_normalized = np.tile( self.settings.window_background, layer_dat_3D.shape + (1, )) elif back_what_to_disp == 'stale': layer_dat_3D_normalized = np.tile( self.settings.stale_background, layer_dat_3D.shape + (1, )) else: layer_dat_3D_normalized = tile_images_normalize( layer_dat_3D, boost_indiv=self.state.layer_boost_indiv, boost_gamma=self.state.layer_boost_gamma, neg_pos_colors=((1, 0, 0), (0, 1, 0))) else: layer_dat_3D_normalized = tile_images_normalize( layer_dat_3D, boost_indiv=self.state.layer_boost_indiv, boost_gamma=self.state.layer_boost_gamma) #print ' ===layer_dat_3D_normalized.shape', layer_dat_3D_normalized.shape, 'layer_dat_3D_normalized dtype', layer_dat_3D_normalized.dtype, 'range', layer_dat_3D_normalized.min(), layer_dat_3D_normalized.max() display_3D = layer_dat_3D_normalized # Convert to float if necessary: display_3D = ensure_float01(display_3D) # Upsample gray -> color if necessary # e.g. (1000,32,32) -> (1000,32,32,3) if len(display_3D.shape) == 3: display_3D = display_3D[:, :, :, np.newaxis] if display_3D.shape[3] == 1: display_3D = np.tile(display_3D, (1, 1, 1, 3)) # Upsample unit length tiles to give a more sane tile / highlight ratio # e.g. (1000,1,1,3) -> (1000,3,3,3) if display_3D.shape[1] == 1: display_3D = np.tile(display_3D, (1, 3, 3, 1)) if self.state.layers_show_back and not self.state.pattern_mode: padval = self.settings.caffevis_layer_clr_back_background else: padval = self.settings.window_background highlights = [None] * n_tiles with self.state.lock: if self.state.cursor_area == 'bottom': highlights[ self.state. selected_unit] = self.settings.caffevis_layer_clr_cursor # in [0,1] range if self.state.backprop_selection_frozen and self.state.layer == self.state.backprop_layer: highlights[ self.state. backprop_unit] = self.settings.caffevis_layer_clr_back_sel # in [0,1] range _, display_2D = tile_images_make_tiles(display_3D, hw=(tile_rows, tile_cols), padval=padval, highlights=highlights) if display_3D_highres is None: display_3D_highres = display_3D # Display pane based on layers_pane_zoom_mode state_layers_pane_zoom_mode = self.state.layers_pane_zoom_mode assert state_layers_pane_zoom_mode in (0, 1, 2) if state_layers_pane_zoom_mode == 0: # Mode 0: normal display (activations or patterns) display_2D_resize = ensure_uint255_and_resize_to_fit( display_2D, pane.data.shape) elif state_layers_pane_zoom_mode == 1: # Mode 1: zoomed selection unit_data = display_3D_highres[self.state.selected_unit] display_2D_resize = ensure_uint255_and_resize_to_fit( unit_data, pane.data.shape) else: # Mode 2: zoomed backprop pane display_2D_resize = ensure_uint255_and_resize_to_fit( display_2D, pane.data.shape) * 0 pane.data[:] = to_255(self.settings.window_background) pane.data[0:display_2D_resize.shape[0], 0:display_2D_resize.shape[1], :] = display_2D_resize if self.settings.caffevis_label_layers and self.state.layer in self.settings.caffevis_label_layers and self.labels and self.state.cursor_area == 'bottom': # Display label annotation atop layers pane (e.g. for fc8/prob) defaults = { 'face': getattr(cv2, self.settings.caffevis_label_face), 'fsize': self.settings.caffevis_label_fsize, 'clr': to_255(self.settings.caffevis_label_clr), 'thick': self.settings.caffevis_label_thick } loc_base = self.settings.caffevis_label_loc[:: -1] # Reverse to OpenCV c,r order lines = [ FormattedString(self.labels[self.state.selected_unit], defaults) ] cv2_typeset_text(pane.data, lines, loc_base) return display_3D_highres
def get_image_from_files(settings, unit_folder_path, should_crop_to_corner, resize_shape, first_only, captions = [], values = []): try: # list unit images unit_images_path = sorted(glob.glob(unit_folder_path)) mega_image = np.zeros((resize_shape[0], resize_shape[1], 3), dtype=np.uint8) # if no images if not unit_images_path: return mega_image if first_only: unit_images_path = [unit_images_path[0]] # load all images unit_images = [caffe_load_image(unit_image_path, color=True, as_uint=True) for unit_image_path in unit_images_path] if settings.caffevis_clear_negative_activations: # clear images with 0 value if values: for i in range(len(values)): if values[i] < float_info.epsilon: unit_images[i] *= 0 if should_crop_to_corner: unit_images = [crop_to_corner(img, 2) for img in unit_images] num_images = len(unit_images) images_per_axis = int(np.math.ceil(np.math.sqrt(num_images))) padding_pixel = 1 if first_only: single_resized_image_shape = (resize_shape[0] - 2*padding_pixel, resize_shape[1] - 2*padding_pixel) else: single_resized_image_shape = ((resize_shape[0] / images_per_axis) - 2*padding_pixel, (resize_shape[1] / images_per_axis) - 2*padding_pixel) unit_images = [ensure_uint255_and_resize_without_fit(unit_image, single_resized_image_shape) for unit_image in unit_images] # build mega image should_add_caption = (len(captions) == num_images) defaults = {'face': settings.caffevis_score_face, 'fsize': settings.caffevis_score_fsize, 'clr': to_255(settings.caffevis_score_clr), 'thick': settings.caffevis_score_thick} for i in range(num_images): # add caption if we have exactly one for each image if should_add_caption: loc = settings.caffevis_score_loc[::-1] # Reverse to OpenCV c,r order fs = FormattedString(captions[i], defaults) cv2_typeset_text(unit_images[i], [[fs]], loc) cell_row = i / images_per_axis cell_col = i % images_per_axis mega_image_height_start = 1 + cell_row * (single_resized_image_shape[0] + 2 * padding_pixel) mega_image_height_end = mega_image_height_start + single_resized_image_shape[0] mega_image_width_start = 1 + cell_col * (single_resized_image_shape[1] + 2 * padding_pixel) mega_image_width_end = mega_image_width_start + single_resized_image_shape[1] mega_image[mega_image_height_start:mega_image_height_end, mega_image_width_start:mega_image_width_end,:] = unit_images[i] return mega_image except: print '\nAttempted to load files from %s but failed. ' % unit_folder_path # set black image as place holder return np.zeros((resize_shape[0], resize_shape[1], 3), dtype=np.uint8) pass return