def resize_if_needed(self, image_name):
        image = load_image(image_name)
        width, height = image.size

        if width == self.image_width and height == self.image_height:
            return load_image(image_name)

        resized_image = resize_image(image, self.image_width,
                                     self.image_height, self.image_channels,
                                     'half_crop')

        return scipy.misc.toimage(resized_image, cmin=0.0, cmax=...)
def get_and_seperate_data_X_y(directory, dimension, modes_convolution=None):
    dir_list = glob.glob(directory + '*.jpg')
    iterator = 1

    dataset_X = []
    dataset_y = []

    for dir_file in dir_list:
        origin_image = image_processor.load_image(dir_file)

        noise_image = noise_generator("s&p", origin_image)
        noise_image = noise_generator("gauss", noise_image)

        #convolution
        if modes_convolution == None:
            noise_image = image_processor.convolutions_image(
                noise_image, modes=["gaussian_blur_5_5", "sharpen"])
        else:
            noise_image = image_processor.convolutions_image(
                noise_image, modes=modes_convolution)

        gray_origin_image = cv.cvtColor(origin_image, cv.COLOR_BGR2GRAY)
        gray_noise_image = cv.cvtColor(noise_image, cv.COLOR_BGR2GRAY)

        num_idx_col = int(len(gray_origin_image) / dimension)
        num_idx_row = int(len(gray_origin_image[0]) / dimension)

        for idx_col in range(num_idx_col):
            for idx_row in range(num_idx_row):
                X = gray_noise_image[idx_col * dimension:(idx_col + 1) *
                                     dimension, idx_row *
                                     dimension:(idx_row + 1) * dimension]
                y = gray_origin_image[idx_col * dimension:(idx_col + 1) *
                                      dimension, idx_row *
                                      dimension:(idx_row + 1) * dimension]
                dataset_X.append(X)
                dataset_y.append(y)

        print("...image number " + str(iterator) + " has been processing")
        iterator += 1

    print("***DATASET IMAGE HAS BEEN DONE PROCESSED***")
    return [dataset_X, dataset_y]
Beispiel #3
0
    # load pretrained model here!
    model = load_model()
    for class_index, img_dir in enumerate(img_dirs):
        
        path_images = os.path.join(root_path, img_dir)
        image_files = list(filter(lambda x: ".DS" not in x, os.listdir(path_images)))
        num_images = len(image_files)
        # index splitting in train, test and val
        first_index = int(num_images * 0.8)
        second_index = first_index + ((num_images - first_index) // 2)
        
        for data_split_index, img_file in enumerate(image_files):
            img_file = os.path.join(path_images, img_file)
            
            # rezise image to 299 and pad with black
            img = load_image(img_file)
            img = prepare_image(img, 299)
            
            # create onehot vector
            one_hot = np.zeros(num_classes)
            one_hot[class_index] = 1

            feature = feature_extract_image(img, model)
            if data_split_index < first_index:
                num_train_sample += 1
                train_set["sample_" + str(num_train_sample)] = np.asarray([feature, one_hot])
                
            elif data_split_index < second_index:
                num_val_sample += 1
                val_set["sample_" + str(num_val_sample)] = np.asarray([feature, one_hot])
            else:
# -*- coding: utf-8 -*-
"""
Created on Tue Jul  3 20:45:33 2018

@author: Davit
"""

from image_processor import load_image
import pandas as pd
import numpy
import cv2

#%%
img_3d = load_image("dataset/Image/All Gambar Rontgen/03 (3).jpg")

df_3d_b = pd.DataFrame(img_3d[:, :, 0])

df_3d_g = pd.DataFrame(img_3d[:, :, 1])

df_3d_r = pd.DataFrame(img_3d[:, :, 2])

#%%
df_3d_b.to_csv("result_report/Grayscaling/df_3d_b.csv")

df_3d_g.to_csv("result_report/Grayscaling/df_3d_g.csv")

df_3d_r.to_csv("result_report/Grayscaling/df_3d_r.csv")

#%%

#grayscale counting