from imageai.Detection.Custom import CustomVideoObjectDetection
import os

execution_path = os.getcwd()

detector = CustomVideoObjectDetection()
detector.setModelTypeAsYOLOv3()
detector.setModelPath("detection_model-ex-015--loss-0011.676.h5")
detector.setJsonPath("detection_config.json")
detector.loadModel()

detector.detectObjectsFromVideo(input_file_path="video.mp4",
                                output_file_path=os.path.join(
                                    execution_path, "traffic_face"),
                                frames_per_second=30,
                                minimum_percentage_probability=40,
                                log_progress=True)
from imageai.Detection.Custom import CustomVideoObjectDetection
import os

execution_path = os.getcwd()

video_detector = CustomVideoObjectDetection()
video_detector.setModelTypeAsYOLOv3()
video_detector.setModelPath(
    "Pothole.h5"
)  # download via https://github.com/OlafenwaMoses/ImageAI/releases/download/essential-v4/hololens-ex-60--loss-2.76.h5
video_detector.setJsonPath(
    "detection_config.json"
)  # download via https://github.com/OlafenwaMoses/ImageAI/releases/download/essential-v4/detection_config.json
video_detector.loadModel()

video_detector.detectObjectsFromVideo(input_file_path="Video_Input",
                                      output_file_path=os.path.join(
                                          execution_path, "Pothole"),
                                      frames_per_second=20,
                                      minimum_percentage_probability=40,
                                      log_progress=True)
Beispiel #3
0
from imageai.Detection.Custom import CustomVideoObjectDetection
import os
import cv2

execution_path = os.getcwd()

camera = cv2.VideoCapture(0)

detector = CustomVideoObjectDetection()
detector.setModelTypeAsYOLOv3()
detector.setModelPath(
    os.path.join(execution_path, "detection_model-ex-015--loss-0011.676.h5"))
detector.setJsonPath("detection_config.json")
detector.loadModel()

detector.detectObjectsFromVideo(camera_input=camera,
                                output_file_path=os.path.join(
                                    execution_path, "web_face"),
                                frames_per_second=20,
                                minimum_percentage_probability=40,
                                log_progress=True,
                                frame_detection_interval=1)
Beispiel #4
0
def videoLoop():
    execution_path = os.getcwd()
    camera = cv2.VideoCapture(0)

    video_detector = CustomVideoObjectDetection()
    video_detector.setModelTypeAsYOLOv3()
    video_detector.setModelPath("detection_model-ex-012--loss-0003.960.h5") #Download the model from "https://github.com/NAERSTEAM/EELAB/releases/download/20202603_0/detection_model-ex-012--loss-0003.960.h5"
    video_detector.setJsonPath("detection_config HandSign.json")
    video_detector.loadModel(detection_speed='fastest')

    video_detector.detectObjectsFromVideo(camera_input=camera,
                                          output_file_path=os.path.join(execution_path, "HandSignRecognition"),
                                          frames_per_second=20,
                                          minimum_percentage_probability=80,
                                          log_progress=False,
                                          save_detected_video=False,
                                          per_frame_function=per_frame_function_DataGet,
                                          return_detected_frame=True)
Beispiel #5
0
#based on custom object detection example of imageAI  --https://imageai.readthedocs.io/en/latest/customdetection/
#For model tranning: https://colab.research.google.com/drive/1nv6TluehJkFGKLdbnHayWXa0gVzI2voB

#Apr 28 2020. T.I. Created this file

from imageai.Detection.Custom import CustomVideoObjectDetection
import os
import cv2

execution_path = os.getcwd()
camera = cv2.VideoCapture(0)

video_detector = CustomVideoObjectDetection()
video_detector.setModelTypeAsYOLOv3()

video_detector.setModelPath("detection_model-ex-012--loss-0003.944.h5")
#Please download the h5 modle from "https://drive.google.com/file/d/1sNdDf_gCu8QZ16xxMkq_U3THAyewsVxT/view?usp=sharing"

video_detector.setJsonPath("detection_config.json")
video_detector.loadModel()

video_detector.detectObjectsFromVideo(
    camera_input=camera,
    output_file_path=os.path.join(execution_path, "maskesDetection"),
    frames_per_second=2,
    minimum_percentage_probability=60,
    log_progress=True,
)
Beispiel #6
0
from imageai.Detection.Custom import CustomVideoObjectDetection
import os

execution_path = os.getcwd()

video_detector = CustomVideoObjectDetection()
video_detector.setModelTypeAsYOLOv3()
video_detector.setModelPath("hololens-ex-60--loss-2.76.h5")
video_detector.setJsonPath("detection_config.json")
video_detector.loadModel()

video_detector.detectObjectsFromVideo(input_file_path="1.mp4",
                                      output_file_path=os.path.join(
                                          execution_path, "holo1-detected3"),
                                      frames_per_second=20,
                                      minimum_percentage_probability=40,
                                      log_progress=True)
Beispiel #7
0
def detect_from_video():
    detector = CustomVideoObjectDetection()
    detector.setModelTypeAsYOLOv3()
    detector.setModelPath(detection_model_path=os.path.join(
        execution_path, "detection_model-ex-33--loss-4.97.h5"))
    detector.setJsonPath(configuration_json=os.path.join(
        execution_path, "detection_config.json"))
    detector.loadModel()

    detected_video_path = detector.detectObjectsFromVideo(
        input_file_path=os.path.join(execution_path, "video1.mp4"),
        frames_per_second=30,
        output_file_path=os.path.join(execution_path, "video1-detected"),
        minimum_percentage_probability=40,
        log_progress=True)
    def recognize_custom(image_path, vehicle_type, isVideo):
        if vehicle_type == 'TANK':
            model_name = 'tank_model_3_loss-0008.h5'
            json_name = 'tank_detection_config.json'
        elif vehicle_type == 'APC':
            model_name = 'apc_model_6_loss-0012.h5'
            json_name = 'apc_detection_config.json'
        elif vehicle_type == 'SHIP':
            print('3')
        elif vehicle_type == 'AERO':
            print('4')
        folder_path = str(
            os.getcwd()) + "\\recognize_app\\rec_api\\imageairecognizer\\"

        if isVideo == False:
            detector = CustomObjectDetection()
            detector.setModelTypeAsYOLOv3()
            detector.setModelPath(folder_path + model_name)
            detector.setJsonPath(folder_path + json_name)
            detector.loadModel()
            detector = detector.detectObjectsFromImage(
                input_image=image_path,
                output_image_path=image_path,
                minimum_percentage_probability=30)

        else:
            video_detector = CustomVideoObjectDetection()
            video_detector.setModelTypeAsYOLOv3()
            video_detector.setModelPath(folder_path + model_name)
            video_detector.setJsonPath(folder_path + json_name)
            video_detector.loadModel()
            print(Path(image_path).stem)
            video_detector = video_detector.detectObjectsFromVideo(
                input_file_path=image_path,
                output_file_path=image_path,
                minimum_percentage_probability=30,
                frames_per_second=30,
                log_progress=True)

            os.remove(image_path)
            p = Path(video_detector)
            FILE_NAME = p.with_suffix('').with_suffix('').name
            os.popen(
                "ffmpeg -i {input} -ac 2 -b:v 2000k -c:a aac -c:v libx264 -b:a 160k -vprofile high -bf 0 -strict experimental -f mp4 {output}.mp4"
                .format(input=p,
                        output='.\media\{0}'.format(FILE_NAME))).close()
Beispiel #9
0
def test_custom_video_detection_yolov3_analysis():

    detector = CustomVideoObjectDetection()
    detector.setModelTypeAsYOLOv3()
    detector.setModelPath(model_path)
    detector.setJsonPath(model_json)
    detector.loadModel()
    video_path = detector.detectObjectsFromVideo(
        input_file_path=video_file,
        output_file_path=video_file_output,
        save_detected_video=True,
        frames_per_second=30,
        log_progress=True,
        per_frame_function=forFrame,
        per_second_function=forSecond,
        return_detected_frame=True)

    assert os.path.exists(video_file_output + ".avi")
    assert isinstance(video_path, str)
    os.remove(video_file_output + ".avi")
Beispiel #10
0
        manager = plt.get_current_fig_manager()
        manager.resize(width=1000, height=500)
        resized = True

    plt.subplot(1, 2, 1)
    plt.title("Frame : " + str(frame_number))
    plt.axis("off")
    plt.imshow(returned_frame, interpolation="none")

    plt.subplot(1, 2, 2)
    plt.title("Analysis: " + str(frame_number))
    plt.pie(sizes, labels=labels, colors=this_colors, shadow=True, startangle=140, autopct="%1.1f%%")

    plt.pause(0.01)


video_detector = CustomVideoObjectDetection()
video_detector.setModelTypeAsYOLOv3()
video_detector.setModelPath("./models/detection_model-ex-010--loss-0005.362.h5")
video_detector.setJsonPath("detection_config.json")
video_detector.loadModel()

plt.show()

ret = video_detector.detectObjectsFromVideo(input_file_path="benchmark.mp4",
                                          output_file_path=os.path.join(execution_path, "weirdtest"),
                                          frames_per_second=20,
                                          minimum_percentage_probability=10,
                                          log_progress=True, per_frame_function=forFrame,
                                            return_detected_frame=True)
print(ret)
def videoLoop():
    execution_path = os.getcwd()
    camera = cv2.VideoCapture(0)

    video_detector = CustomVideoObjectDetection()
    video_detector.setModelTypeAsYOLOv3()
    video_detector.setModelPath(
        "detection_model-ex-012--loss-0003.944.h5"
    )  #Download the model from "https://github.com/firmamentone/masksDetection/releases/download/20200501_0/detection_model-ex-012--loss-0003.944.h5"
    video_detector.setJsonPath("detection_config_Mask.json")
    video_detector.loadModel(detection_speed='fastest')

    video_detector.detectObjectsFromVideo(
        camera_input=camera,
        output_file_path=os.path.join(execution_path, "holo1-detected3"),
        frames_per_second=20,
        minimum_percentage_probability=40,
        log_progress=True,
        save_detected_video=False,
        live_window=True)  #AIT parameter:live_window
#Cution:This example is not supported by the officail ImageAI!!!
#This is the examplpe for AIT test "Live window"

from imageai.Detection.Custom import CustomVideoObjectDetection
import os
import cv2

execution_path = os.getcwd()
camera = cv2.VideoCapture(0)

video_detector = CustomVideoObjectDetection()
video_detector.setModelTypeAsYOLOv3()
video_detector.setModelPath("detection_model-ex-012--loss-0003.944.h5")
video_detector.setJsonPath("detection_config_Mask.json")
video_detector.loadModel()

video_detector.detectObjectsFromVideo(
    camera_input=camera,
    output_file_path=os.path.join(execution_path, "maskDetection"),
    frames_per_second=20,
    minimum_percentage_probability=40,
    log_progress=True,
    save_detected_video=False,
    live_window=True)  #AIT parameter:live_window
Beispiel #13
0
def detect_from_camera():
    camera = cv2.VideoCapture(0)
    # scale down video for better performance
    camera.set(3, 320)  # camera width
    camera.set(4, 240)  # camera height
    camera.set(30, 0.1)  #camera fps
    detector = CustomVideoObjectDetection()
    detector.setModelTypeAsYOLOv3()
    detector.setModelPath(
        detection_model_path=os.path.join(execution_path, model_path))
    detector.setJsonPath(
        configuration_json=os.path.join(execution_path, model_config))
    detector.loadModel()
    detected_video_path = detector.detectObjectsFromVideo(
        camera_input=camera,
        per_frame_function=forFrame,
        save_detected_video=False,
        minimum_percentage_probability=40,
        log_progress=True,
        return_detected_frame=True)
Beispiel #14
0
def detect_from_video(video_input):
    detector = CustomVideoObjectDetection()
    detector.setModelTypeAsYOLOv3()
    detector.setModelPath(
        detection_model_path=os.path.join(execution_path, model_path))
    detector.setJsonPath(
        configuration_json=os.path.join(execution_path, model_config))
    detector.loadModel()
    detected_video_path = detector.detectObjectsFromVideo(
        input_file_path=os.path.join(execution_path, video_input),
        per_frame_function=forFrame,
        save_detected_video=False,
        minimum_percentage_probability=40,
        log_progress=True,
        return_detected_frame=True)
from imageai.Detection.Custom import CustomVideoObjectDetection
import os
import cv2
from matplotlib import pyplot as plt

execution_path = os.getcwd()

camera = cv2.VideoCapture(0)

detector = CustomVideoObjectDetection()
detector.setModelTypeAsYOLOv3()
detector.setModelPath(
    os.path.join(
        execution_path,
        r"C:\Users\This\Downloads\Copy of detection_model-ex-010--loss-0007.627.h5"
    ))
detector.setJsonPath(r"C:\Users\This\Downloads\Copy of detection_config.json")
detector.loadModel()

video_path = detector.detectObjectsFromVideo(camera_input=camera,
                                             output_file_path=os.path.join(
                                                 execution_path,
                                                 "camera_detected_video"),
                                             frames_per_second=30,
                                             log_progress=True,
                                             minimum_percentage_probability=40,
                                             return_detected_frame=True,
                                             detection_timeout=120)
Beispiel #16
0
camera = cv2.VideoCapture(0)


def show_frame(camera):
    if (not camera.isOpened()):
        print("camera not opened")
    else:
        print("camera opened")
        _, frame = camera.read()
        cv2.waitKey(20)
        cv2.imwrite('camera_view.png', frame)
        #cv2.destroyAllWindows()


model_path = "models/detection_model-ex-030--loss-0002.725.h5"
video_detector = CustomVideoObjectDetection()
video_detector.setModelTypeAsYOLOv3()
video_detector.setModelPath(model_path)
video_detector.setJsonPath("./models/detection_config.json")
video_detector.loadModel()
'''
custom = video_detector.CustomObjects(person=True, handbag=True, tie=True, suitcase=True, bottle=True, wine_glass=True, 
cup=True, fork=True, knife=True, spoon=True, bowl=True, banana=True, apple=True, sandwich=True, orange=True, pizza=True, 
donut=True, cake=True, chair=True, potted_plant=True, laptop=True, mouse=True, remote=True, keyboard=True, cell_phone=True, book=True,  
clock=True, scissors=True)
'''


def objectsInFrame(frame_number, output_array, output_count, returned_frame):
    print("output_array length %i" % len(output_array))
    items = len(output_count)
Beispiel #17
0
# Importing the image AI library
# this library is an API used object detection system
from imageai.Detection.Custom import CustomVideoObjectDetection
import os
import cv2

execution_path = os.getcwd()
# using openCV to start the camera for taking the video feed
camera = cv2.VideoCapture(0)

detector = CustomVideoObjectDetection()
# our model is trained using transfer learning on YOLOV3.
detector.setModelTypeAsYOLOv3()
# put your trained keras model path in the space provided.
detector.setModelPath("Path to trained keras model")
# put the configuration file's path over here
detector.setJsonPath("path to json configuration file")
detector.loadModel()
#here the video is taken from the camera and in the outpat path, put your path where you can access the output video feed.
#minimum_percentage_probability : you can increase or decrease to fine tune your output.
detector.detectObjectsFromVideo(camera_input=camera,
                                output_file_path=os.path.join(
                                    execution_path, "name of output video"),
                                frames_per_second=16,
                                minimum_percentage_probability=40,
                                log_progress=True)
#Cution:This example is not supported by the officail ImageAI!!!
#This is the examplpe for AIT test "Live window"


from imageai.Detection.Custom import CustomVideoObjectDetection
import os
import cv2

os.environ['CUDA_VISIBLE_DEVICES'] = '-1'  #Tensorflow backend be forced to use CPU for the tensorflow 1.15.0 or higher

execution_path = os.getcwd()
camera = cv2.VideoCapture(0)

video_detector = CustomVideoObjectDetection()
video_detector.setModelTypeAsYOLOv3()
video_detector.setModelPath("detection_model-ex-012--loss-0003.960.h5")  #Download the model from "https://github.com/NAERSTEAM/EELAB/releases/download/20202603_0/detection_model-ex-012--loss-0003.960.h5"
video_detector.setJsonPath("detection_config HandSign.json")
video_detector.loadModel(detection_speed="fastest")

video_detector.detectObjectsFromVideo(camera_input=camera,
                                          output_file_path=os.path.join(execution_path, "HandSignRecognition"),
                                          frames_per_second=20,
                                          minimum_percentage_probability=80,
                                          log_progress=True,
                                          save_detected_video=False,
                                          live_window=True)