Beispiel #1
0
def someAug():
    bg = iap.Uniform(16, 18)
    #Creating a series of augmentations
    shearXY = iaa.Sequential([
        iaa.ShearY(iap.Uniform(-10, 10), cval=bg),
        iaa.ShearX(iap.Uniform(-10, 10), cval=bg)
    ])
    rotate = iaa.Rotate(rotate=iap.Choice([-30, -15, 15, 30],
                                          p=[0.25, 0.25, 0.25, 0.25]),
                        cval=bg)

    pwAff = iaa.PiecewiseAffine(scale=(0.01, 0.06), cval=bg)

    affine = iaa.Affine(scale={
        "x": iap.Uniform(1.1, 1.2),
        "y": iap.Uniform(1.1, 1.2)
    },
                        cval=bg)

    noise = iaa.AdditiveGaussianNoise(loc=0, scale=(0, 0.025 * 255))
    #Using SomeOf to randomly select some augmentations
    someAug = iaa.SomeOf(iap.Choice([2, 3, 4], p=[1 / 3, 1 / 3, 1 / 3]),
                         [affine, shearXY, pwAff, rotate, noise],
                         random_order=True)
    return someAug
Beispiel #2
0
def _lane_argue(*, image, lane_src):
    lines_tuple = [[(float(pt['x']), float(pt['y'])) for pt in line_spec] for line_spec in lane_src['Lines']]
    lss = [ia_LineString(line_tuple_spec) for line_tuple_spec in lines_tuple]

    lsoi = LineStringsOnImage(lss, shape=image.shape)
    color_shift = iaa.OneOf([
        iaa.GaussianBlur(sigma=(0.5, 1.5)),
        iaa.LinearContrast((1.5, 1.5), per_channel=False),
        iaa.Multiply((0.8, 1.2), per_channel=0.2),
        iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.1 * 255), per_channel=0.5),
        iaa.WithColorspace(to_colorspace=iaa.CSPACE_HSV, from_colorspace=iaa.CSPACE_RGB,
                           children=iaa.WithChannels(0, iaa.Multiply((0.7, 1.3)))),
        iaa.WithColorspace(to_colorspace=iaa.CSPACE_HSV, from_colorspace=iaa.CSPACE_RGB,
                           children=iaa.WithChannels(1, iaa.Multiply((0.1, 2)))),
        iaa.WithColorspace(to_colorspace=iaa.CSPACE_HSV, from_colorspace=iaa.CSPACE_RGB,
                           children=iaa.WithChannels(2, iaa.Multiply((0.5, 1.5)))),
    ])
    posion_shift = iaa.SomeOf(4, [
        iaa.Fliplr(),
        iaa.Crop(percent=([0, 0.2], [0, 0.15], [0, 0], [0, 0.15]), keep_size=True),
        iaa.TranslateX(px=(-16, 16)),
        iaa.ShearX(shear=(-15, 15)),
        iaa.Rotate(rotate=(-15, 15))
    ])
    aug = iaa.Sequential([
        iaa.Sometimes(p=0.6, then_list=color_shift),
        iaa.Sometimes(p=0.6, then_list=posion_shift)
    ], random_order=True)
    batch = ia.Batch(images=[image], line_strings=[lsoi])
    batch_aug = list(aug.augment_batches([batch]))[0]  # augment_batches returns a generator
    image_aug = batch_aug.images_aug[0]
    lsoi_aug = batch_aug.line_strings_aug[0]
    lane_aug = [[dict(x=kpt.x, y=kpt.y) for kpt in shapely_line.to_keypoints()] for shapely_line in lsoi_aug]
    return image_aug, dict(Lines=lane_aug)
Beispiel #3
0
def rotation(degree, input_path, output_path, image_count):
  images = []
  labels = []

  for img_path in range(image_count):
    img = imageio.imread(input_path + '/images/' + str(img_path) + '.png')
    images.append(img) 

    lbl = imageio.imread(input_path + '/labels/' + str(img_path) + '.png')
    labels.append(lbl)
  
  seq = iaa.Sequential(
      [

          iaa.Rotate((degree)),

      ]
  )

  images_aug = seq(images=images)
  labels_aug = seq(images=labels)

  path = os.path.join(output_path, 'images') 
  os.mkdir(path) 

  path = os.path.join(output_path, 'labels') 
  os.mkdir(path)

  for indx, i in enumerate(images_aug):
      imageio.imwrite(output_path + '/images/'  + 'rotat'+ '_' + str(indx) + '.png', i)

  for indx, i in enumerate(labels_aug):
      imageio.imwrite(output_path + '/labels/'  + 'rotat'+ '_' + str(indx) + '.png', i)

  print("Rotation results were saved given directory.")
def augmentation(X, y, masks, itterations):
    ys = np.concatenate(
        (y[:, :, np.newaxis], y[:, :, np.newaxis], y[:, :, np.newaxis]),
        axis=2)
    masks = np.concatenate(
        (masks[:, :, np.newaxis], masks[:, :, np.newaxis], masks[:, :,
                                                                 np.newaxis]),
        axis=2)
    B = np.concatenate((ys, X, masks), axis=2).astype(np.uint8)
    A = np.zeros((itterations, np.shape(B)[0], np.shape(B)[1], np.shape(B)[2]))

    for num in range(itterations):
        aug1 = iaa.Affine(scale={"x": (1, 1.5), "y": (1, 1.5)})
        aug2 = iaa.Fliplr(1)
        aug3 = iaa.Flipud(1)
        aug4 = iaa.ShearX((-20, 20), mode='reflect')
        aug5 = iaa.ShearY((-20, 20), mode='reflect')
        aug6 = iaa.Rotate((-45, 45), mode='reflect')
        aug7 = iaa.WithChannels((3, 4, 5), iaa.Multiply((0.5, 1.5)))
        aug_list = [aug1, aug2, aug3, aug4, aug5, aug6, aug7]
        ID = np.random.randint(0, len(aug_list))
        A[num, :, :, :] = aug_list[ID](image=B)
    aug_y = A[:, :, :, 0]
    aug_X = A[:, :, :, 3:6]
    aug_masks = A[:, :, :, 8]

    return aug_X, aug_y, aug_masks
Beispiel #5
0
    def __init__(self):
        """
            init Constructor

            @param self Object.
        """
        self.aug = iaa.Sequential([
            # Blur or Sharpness
            iaa.Sometimes(
                0.25,
                iaa.OneOf([
                    iaa.GaussianBlur(sigma=(0, 1.0)),
                    iaa.pillike.EnhanceSharpness(factor=(0.8, 1.5))
                ])),
            # Flip horizontally
            iaa.Fliplr(0.5),
            # Rotation
            iaa.Rotate((-20, 20)),
            # Pixel Dropout
            iaa.Sometimes(
                0.25,
                iaa.OneOf([
                    iaa.Dropout(p=(0, 0.1)),
                    iaa.CoarseDropout(0.1, size_percent=0.5)
                ])),
            # Color
            iaa.AddToHueAndSaturation(value=(-10, 10), per_channel=True),
        ])
 def augment_3(self, image, depth, lidar, crop_size, degree):
     # rsz = iaa.Resize({"height": resize_size[0], "width": resize_size[1]})
     seq = iaa.Sequential(
         [
             iaa.PadToFixedSize(height=crop_size[0],
                                width=crop_size[1]),  # 保证可crop
             iaa.CropToFixedSize(height=crop_size[0],
                                 width=crop_size[1]),  # random crop
             iaa.Fliplr(0.5),
             # iaa.Flipud(0.5),
             iaa.Rotate((-degree, degree)),
             iaa.GammaContrast((0.9, 1.1)),
             iaa.Multiply((0.9, 1.1)),
         ],
         random_order=True)
     depth, lidar = np.expand_dims(depth, 2), np.expand_dims(lidar, 2)
     tmp = np.concatenate((depth, lidar), axis=2)
     tmp = (tmp * 1000).astype(np.int32)  # 米单位*1000保留精度
     tmp = SegmentationMapsOnImage(tmp, shape=tmp.shape)
     # image, tmp = rsz(image=image, segmentation_maps=tmp)
     image, tmp = seq(image=image, segmentation_maps=tmp)
     tmp = tmp.arr
     tmp = tmp.astype(np.float32) / 1000  # 再转回米
     depth, lidar = tmp[:, :, 0], tmp[:, :, 1]
     return image, depth, lidar
Beispiel #7
0
def myDataAug(X_data, Y_data, its, seed=12):
    size = len(X_data)
    ia.seed(seed)

    seq = iaa.Sequential(
        [
            iaa.GaussianBlur(
                sigma=(0.0, 4.0)),  #Random GaussianBlur from sigma 0 to 4
            #iaa.AddToHueAndSaturation((-10, 10), per_channel=True),      #color jittering
            iaa.Affine(translate_percent={
                "x": (-0.1, 0.1),
                "y": (-0.1, 0.1)
            }),  #affine transalte (affects segmaps)
            iaa.Fliplr(0.5),  #50 % to flip horizontally (affects segmaps)
            iaa.Flipud(0.5),  #50 % to flip vertically  (affects segmaps)
            iaa.Rotate(
                (-45, 45))  # rotate by -45 to 45 degrees (affects segmaps)
        ],
        random_order=True)

    X_data_augs = np.zeros((its * size, 1000, 1000, 3), dtype=np.uint8)
    Y_data_augs = np.zeros((its * size, 1000, 1000, 3), dtype=np.uint8)

    for i in range(its):
        X_data_aug, Y_data_aug = seq(images=X_data, segmentation_maps=Y_data)
        X_data_augs[i * size:(i + 1) * size] = X_data_aug
        Y_data_augs[i * size:(i + 1) * size] = Y_data_aug

    return X_data_augs, Y_data_augs
    def preprocess(self, ims, augment):
        def normalize(batch):
            return batch.astype(np.float32) / float(255)

        if augment:
            augmentations = iaa.Sequential([
                iaa.Resize(int(1.1 * hp.img_size)),
                iaa.Fliplr(0.5),
                iaa.Sometimes(0.4, iaa.Rotate((-30, 30))),
                iaa.Sometimes(0.4, iaa.Affine(scale=(0.9, 1.2))),
                iaa.Sometimes(0.5,
                              iaa.PerspectiveTransform(scale=(0.01, 0.20))),
                # Crop/resize image to proper dimension
                iaa.CropToFixedSize(hp.img_size, hp.img_size),
                iaa.Resize(hp.img_size),
                iaa.Sometimes(0.3, iaa.SaltAndPepper(0.01)),
                iaa.CLAHE(to_colorspace='HSV')
            ])
        else:
            augmentations = ia.Sequential([iaa.CLAHE(to_colorspace='HSV')])

        augmented = augmentations.augment_images(ims)
        for i in augmented:
            if i.shape != (hp.img_size, hp.img_size, 3):
                print(i.shape)
        augmented = np.stack(augmented, axis=0)
        return normalize(augmented)
 def load_augmentation_aug_geometric():
     return iaa.Sequential([
         iaa.Sometimes(0.5, iaa.Fliplr()),
         iaa.Sometimes(0.5, iaa.Rotate((-45, 45))),
         iaa.Sometimes(
             0.5,
             iaa.Affine(
                 scale={
                     "x": (0.5, 1.5),
                     "y": (0.5, 1.5)
                 },
                 order=[0, 1],
                 mode='constant',
                 cval=(0, 255),
             )),
         iaa.Sometimes(
             0.5,
             iaa.Affine(
                 translate_percent={
                     "x": (-0.25, 0.25),
                     "y": (-0.25, 0.25)
                 },
                 order=[0, 1],
                 mode='constant',
                 cval=(0, 255),
             )),
     ])
Beispiel #10
0
def get_preview(images, augmentationList):
    """
    Accepts a list of images and augmentationList as input.
    Provides a list of augmented images in that order as ouptut.
    """
    augmented = []
    for image in images:
        for augmentation in augmentationList:
            aug_id = augmentation['id']
            params = augmentation['params']
            if (aug_id == 1):
                image = iaa.SaltAndPepper(p=params[0],
                                          per_channel=params[1])(image=image)
            elif (aug_id == 2):
                image = iaa.imgcorruptlike.GaussianNoise(
                    severity=(params[0], params[1]))(image=image)
            elif (aug_id == 3):
                image = iaa.Rain(speed=(params[0], params[1]),
                                 drop_size=(params[2], params[3]))(image=image)
            elif (aug_id == 4):
                image = iaa.imgcorruptlike.Fog(
                    severity=(params[0], params[1]))(image=image)
            elif (aug_id == 5):
                image = iaa.imgcorruptlike.Snow(
                    severity=(params[0], params[1]))(image=image)
            elif (aug_id == 6):
                image = iaa.imgcorruptlike.Spatter(
                    severity=(params[0], params[1]))(image=image)
            elif (aug_id == 7):
                image = iaa.BlendAlphaSimplexNoise(
                    iaa.EdgeDetect(1))(image=image)
            elif (aug_id == 8):
                image = iaa.Rotate(rotate=(params[0], params[1]))(image=image)
            elif (aug_id == 9):
                image = iaa.Affine()(image=image)  #to be implemented
            elif (aug_id == 10):
                image = iaa.MotionBlur(k=params[0],
                                       angle=(params[1],
                                              params[2]))(image=image)
            elif (aug_id == 11):
                image = iaa.imgcorruptlike.ZoomBlur(
                    severity=(params[0], params[1]))(image=image)
            elif (aug_id == 12):
                image = iaa.AddToBrightness()(image=image)  #to be implemented
            elif (aug_id == 13):
                image = iaa.ChangeColorTemperature(
                    kelvin=(params[0], params[1]))(image=image)
            elif (aug_id == 14):
                image = iaa.SigmoidContrast()(image=image)  #to be implemented
            elif (aug_id == 15):
                image = iaa.Cutout(nb_iterations=(params[0], params[1]),
                                   size=params[2],
                                   squared=params[3])(image=image)
            else:
                print("Not implemented")
        augmented.append(image)
    return augmented
Beispiel #11
0
def get_fg_augmentation():
    seq = iaa.Sequential([
        iaa.Resize({
            'height': 'keep',
            'width': (0.9, 1.1)
        }),
        iaa.KeepSizeByResize(iaa.Rotate((-15, 15), fit_output=True))
    ])
    return seq
Beispiel #12
0
def chapter_augmenters_rotate():
    fn_start = "geometric/rotate"

    image = ia.quokka(size=(128, 128))

    aug = iaa.Rotate((-45, 45))
    run_and_save_augseq(
        fn_start + ".jpg", aug,
        [image for _ in range(4*2)], cols=4, rows=2)
Beispiel #13
0
 def Rotation(self, image, **kwargs):
     assert len(image.shape) == 3
     image_augs = []
     List = [0, 30, 50, 70, 90]  # Rotation angle
     for angle in List:
         seq = iaa.Sequential([iaa.Rotate(rotate=angle)])
         image_aug = seq.augment_image(image)
         image_augs.append(image_aug)
     return image_augs, List
Beispiel #14
0
    def _compose_transforms(self):
        self.aug_functions = list()
        for transform_name in self._transforms.keys():
            if transform_name == 'resize':
                self.aug_functions.append(
                    iaa.Resize(
                        {
                            "height": self._transforms[transform_name].height,
                            "width": self._transforms[transform_name].width
                        },
                        name='resize'))
                continue
            elif transform_name == 'fliplr':
                self.aug_functions.append(
                    iaa.Fliplr(self._transforms[transform_name].p,
                               name='fliplr'))
                continue
            elif transform_name == 'flipud':
                self.aug_functions.append(
                    iaa.Flipud(self._transforms[transform_name].p,
                               name='flipud'))
                continue
            elif transform_name == 'rotate':
                self.aug_functions.append(
                    iaa.Rotate(self._transforms[transform_name].degrees,
                               name='rotate'))
                continue
            elif transform_name == 'JpegCompression':
                self.aug_functions.append(
                    iaa.JpegCompression(
                        compression=(self._transforms[transform_name].low,
                                     self._transforms[transform_name].high)))
                continue
            elif transform_name == 'GaussianBlur':
                self.aug_functions.append(
                    iaa.GaussianBlur(
                        sigma=(self._transforms[transform_name].low,
                               self._transforms[transform_name].high)))
                continue
            elif transform_name == 'CropToFixedSize':
                self.aug_functions.append(
                    iaa.CropToFixedSize(
                        width=self._transforms[transform_name].width,
                        height=self._transforms[transform_name].height,
                        position=self._transforms[transform_name].position))
                continue
            else:
                self.logger.info(
                    f'{transform_name} is not support in augment build')
                self.aug_functions.append(iaa.Noop())
                continue
        iaa_seq = iaa.Sequential(
            self.aug_functions,
            name=f'{self.cfg.DATASET.name}_{self.flag}_iaa_seq')

        return iaa_seq
    def __call__(self, image):
        im = image.copy()
        pix = np.array(im, dtype='float32')

        pix = iaa.Fliplr(0.5).augment_image(pix)

        aug_ratate = iaa.OneOf([
            iaa.PerspectiveTransform(scale=(0, 0.015)),
            iaa.Rotate((-10, 10))
        ])

        pix = aug_ratate.augment_image(pix)

        if self.istest:
            return pix
        pix = self.rand_brightness(pix)
        if random.randint(2):
            self.aumentone(pix)
            #distort = SSD_Compose(self.pd[:-1])
        else:
            self.aumenttwo(pix)
            #distort = SSD_Compose(self.pd[1:])
        #pix = distort(pix)

        #pix = pix.astype('uint8')

        pix = np.where(pix > 255, 255, pix)
        pix = np.where(pix < 0, 0, pix)

        #im = Image.fromarray(pix, 'RGB')
        #self.rand_light_noise(pix)

        # aug = iaa.Sequential(iaa.SomeOf(2, [
        #     iaa.AdditiveGaussianNoise(scale=(0, 0.1*255)),
        #     iaa.Dropout(p=(0, 0.1), per_channel=0.5),
        #     iaa.SaltAndPepper(p=(0, 0.1), per_channel=True),
        #     iaa.GaussianBlur(sigma=(0.0, 3.0)),
        #     iaa.MotionBlur(k=15, angle=[-45, 45]),
        #     iaa.AverageBlur(k=((0, 5), (0, 5)))
        # ], random_order=True))

        aug_noise = iaa.OneOf([
            iaa.AdditiveGaussianNoise(scale=(0, 0.1 * 255)),
            iaa.Dropout(p=(0, 0.1), per_channel=0.5),
            iaa.SaltAndPepper(p=(0, 0.1), per_channel=True),
        ])
        aug_blur = iaa.OneOf([
            iaa.GaussianBlur(sigma=(0.0, 1.5)),
            iaa.MotionBlur(k=7, angle=[-20, 20]),
            iaa.AverageBlur(k=((0, 2.5), (0, 2.5)))
        ])

        pix = aug_noise.augment_image(pix)
        pix = aug_blur.augment_image(pix)

        return pix / 255.0
Beispiel #16
0
    def __init__(self):

        self.aug = iaa.Sequential([
            iaa.Pad(percent=(0, (0, 0.5), 0, (0, 0.5))),
            iaa.Resize(size={
                "height": 32,
                "width": "keep-aspect-ratio"
            }),
            iaa.Rotate(rotate=(-10, 10)),
        ])
Beispiel #17
0
def make_data_aug(cfg):
    transf = iaa.Sequential([
        iaa.Flipud(p=0.5),
        iaa.Fliplr(p=.5),
        iaa.Fliplr(p=.5),
        iaa.Rotate(
            [360 / cfg.aug_n_angles * i for i in range(cfg.aug_n_angles)])
    ])

    return transf
 def __init__(self):
     self.augmentations = augmenters.Sequential([
         augmenters.Sometimes(0.5, augmenters.Flipud(0.5)),
         augmenters.Sometimes(0.5, augmenters.Fliplr(0.5)),
         augmenters.Sometimes(0.5, augmenters.Rotate((-45, 45))),
         augmenters.Sometimes(0.25, augmenters.ShearX((-20, 20))),
         augmenters.Sometimes(
             0.1, augmenters.AdditiveGaussianNoise(scale=(0, 0.1 * 255)))
     ],
                                                random_order=True)
def augmentation():
    train_images_horiz, train_images_verti, train_labels, test_images_horiz, test_images_verti, test_labels, val_images_horiz, val_images_verti, val_labels = list_input_network(
    )

    seq1 = iaa.Sequential([iaa.Fliplr(1)])

    seq2 = iaa.Sequential([iaa.Flipud(1)])

    seq3 = iaa.Sequential([iaa.Rotate((-45, 45))])

    seq4 = iaa.Sequential([iaa.TranslateX(px=(-20, 20))])

    seq5 = iaa.Sequential([iaa.CropToFixedSize(width=30, height=30)])

    new_train_images = train_images_horiz
    new_train_labels = train_labels
    """ different sequences of data augmentation applied """
    images_aug = seq1(images=train_images_horiz)
    new_train_images = np.concatenate((new_train_images, images_aug))
    new_train_labels = np.concatenate((new_train_labels, train_labels))

    images_aug = seq2(images=train_images_horiz)
    new_train_images_horiz = np.concatenate((new_train_images, images_aug))
    new_train_labels = np.concatenate((new_train_labels, train_labels))

    images_aug = seq3(images=train_images_horiz)
    new_train_images = np.concatenate((new_train_images, images_aug))
    new_train_labels = np.concatenate((new_train_labels, train_labels))

    images_aug = seq4(images=train_images_horiz)
    new_train_images_horiz = np.concatenate((new_train_images, images_aug))
    new_train_labels = np.concatenate((new_train_labels, train_labels))

    #new_train_images = train_images_verti
    """ same on vertical images """
    """
    images_aug = seq1(images=train_images_verti)
    new_train_images = np.concatenate((new_train_images, images_aug))

    images_aug = seq2(images=train_images_verti)
    new_train_images_verti = np.concatenate((new_train_images, images_aug))

    images_aug = seq3(images=train_images_verti)
    new_train_images = np.concatenate((new_train_images, images_aug))

    images_aug = seq4(images=train_images_verti)
    new_train_images_verti = np.concatenate((new_train_images, images_aug))
    """

    # images_aug = seq5(images=train_images)
    # new_train_images = np.concatenate((new_train_images, images_aug))
    # new_train_labels = np.concatenate((new_train_labels, train_labels))

    #return new_train_images_horiz, new_train_images_verti, new_train_labels
    return new_train_images_horiz, new_train_labels
    def __call__(self, *args, **kwargs) -> typing.Tuple[np.ndarray, typing.List[Polygon]]:

        if self.is_training:
            resize = iaa.Resize(size=dict(longer_side=self.long_sizes,
                                          width='keep-aspect-ratio'))
            rotate = iaa.Rotate(rotate=self.angles, fit_output=True)
            resize_height = iaa.Resize(size=dict(height=self.height_ratios,
                                                 width='keep'))
            crop = iaa.CropToFixedSize(width=self.cropped_size[0], height=self.cropped_size[1])
            fix_resize = iaa.Resize(size=self.output_size)


            # blur = iaa.GaussianBlur()
            # blur = iaa.Sometimes(p=self.blur_prob,
            #                      then_list=blur)

            brightness = iaa.MultiplyBrightness((0.5, 1.5))
            brightness = iaa.Sometimes(self.color_jitter_prob, then_list=brightness)

            saturation = iaa.MultiplySaturation((0.5, 1.5))
            saturation = iaa.Sometimes(self.color_jitter_prob, then_list=saturation)

            contrast = iaa.LinearContrast(0.5)
            contrast = iaa.Sometimes(self.color_jitter_prob, then_list=contrast)

            hue = iaa.MultiplyHue()
            hue = iaa.Sometimes(self.color_jitter_prob, then_list=hue)

            augs = [resize,
                    rotate,
                    resize_height,
                    crop,
                    fix_resize,
                    brightness,
                    saturation,
                    contrast,
                    hue]
            ia = iaa.Sequential(augs)
        else:
            fix_resize = iaa.Resize(size=self.output_size)
            ia = iaa.Sequential([fix_resize])

        image = args[0]
        polygons = args[1]

        polygon_list = []
        for i in range(polygons.shape[0]):
            polygon_list.append(Polygon(polygons[i].tolist()))

        polygons_on_image = PolygonsOnImage(polygon_list, shape=image.shape)

        image_aug, polygons_aug = ia(image=image, polygons=polygons_on_image)

        return image_aug, polygons_aug.polygons
def dictRotateAug(baseImageListFunc, baseMaskListFunc, fullImageListFunc, segmapListFunc):
    print('Rotation, starting number of images:', len(segmapListFunc))
    rotateAug_x00percent = 2
    rotateAug = iaa.Rotate((-3, 3), mode="reflect")
    rotateAug._mode_segmentation_maps = "reflect"
    alteredImageListFunc, alteredMaskListFunc = expandList(baseImageListFunc, baseMaskListFunc, rotateAug_x00percent)
    (alteredImageListFunc, alteredMaskListFunc) = rotateAug(images=alteredImageListFunc,
                                                            segmentation_maps=alteredMaskListFunc)

    fullImageListFunc.extend(alteredImageListFunc)
    segmapListFunc.extend(alteredMaskListFunc)
    return fullImageListFunc, segmapListFunc
Beispiel #22
0
 def __init__(self, iaalist=None):
     if iaalist is None:
         iaalist = iaa.Sequential([
             iaa.Sometimes(0.5, iaa.ChannelShuffle(0.3)),
             iaa.Sometimes(0.5, iaa.MultiplyHue((0.5, 1.5))),
             iaa.Sometimes(0.5, iaa.AddToHueAndSaturation((-50, 50), per_channel=True)),
             iaa.Sometimes(0.5, iaa.Fliplr(0.5)),
             iaa.Sometimes(0.5, iaa.Flipud(0.5)),
             iaa.Sometimes(0.5, iaa.Rotate((-50, 50)))
         ], random_order=True)
     self.transformSet = iaalist
     self.outscale = random.choice([0.8, 0.85, 0.9, 0.95])
Beispiel #23
0
def rotate(magnitude: int) -> iaa.BlendAlphaBoundingBoxes:
    """
    Rotate the bounding box in an image

    Tensorflow Policy Equivalent: rotate_with_bboxes

    :type magnitude: int
    :param magnitude: magnitude of rotation
    :rtype: iaa.BlendAlphaBoundingBoxes
    :return: Method to apply rotation
    """
    level = _rotate_mag_to_arg(magnitude)
    return iaa.Rotate(level)
Beispiel #24
0
def make_rotation_ops(increments):
    ops = []
    for increment in increments:
        suffix = f"{increment}"
        if increment < 0:
            suffix = f"Back{-increment}"
        ops.append(
            Augment("Rotate" + suffix, iaa.Sequential([
                iaa.Grayscale(alpha=1.0),
                iaa.Rotate(increment)
            ]), num_repetitions=1)
        )
    return ops
def gen_steps():

    STEPS=[
        iaa.Rotate((-50,-20)),
        iaa.Rotate((20,50)),
        iaa.Affine(shear=(-30,-10)),
        iaa.Affine(shear=(10,30)),
        iaa.ShearX(((-10, 10))),
        iaa.ShearY(((-10, 10))),
        iaa.Affine(scale=(0.5, 1.5)),
        iaa.Affine(scale=(1, 2)),
        iaa.Affine(translate_px={"x": (1, random.randint(300,800)), "y": (1, random.randint(300,800))}),
        [
            iaa.Affine(translate_px={"x": (1, random.randint(300,800)), "y": (1, random.randint(300,800))}),
            iaa.Affine(shear=(-15,15)),
        ],
        [
            iaa.Affine(translate_px={"x": (1, random.randint(300,800)), "y": (1, random.randint(300,800))}),
            iaa.Affine(shear=(-15,15)),
        ],
    ] 

    return STEPS
Beispiel #26
0
    def __init__(self):
        sometimes = lambda aug: iaa.Sometimes(0.5, aug)

        self.aug = iaa.SomeOf(
            3,
            [
                sometimes(
                    iaa.AddToHueAndSaturation((-50, 50), per_channel=True)),
                sometimes(
                    iaa.SigmoidContrast(
                        gain=(3, 10), cutoff=(0.4, 0.6), per_channel=True)),
                #sometimes(iaa.PiecewiseAffine(scale=(0.01, 0.02))),
                sometimes(iaa.Invert(0.7, per_channel=0.8)),
                sometimes(iaa.Rotate((-20, 20)))
            ])
Beispiel #27
0
def train(model):
    """Train the model."""
    # Training dataset.
    dataset_train = CharacterDataset()
    dataset_train.load_characters("train")
    dataset_train.prepare()

    # Validation dataset
    dataset_val = CharacterDataset()
    dataset_val.load_characters("val")
    dataset_val.prepare()

    #Augmentation
    aug = iaa.SomeOf(2, [
        iaa.AdditiveGaussianNoise(scale=(0, 0.10 * 255)),
        iaa.MotionBlur(),
        iaa.GaussianBlur(sigma=(0.0, 2.0)),
        iaa.RemoveSaturation(mul=(0, 0.5)),
        iaa.GammaContrast(),
        iaa.Rotate(rotate=(-45, 45)),
        iaa.PerspectiveTransform(scale=(0.01, 0.15)),
        iaa.JpegCompression(compression=(0, 75)),
        iaa.imgcorruptlike.Spatter(severity=(1, 4)),
        iaa.Rain(speed=(0.1, 0.3)),
        iaa.Fog()
    ])

    custom_callbacks = [
        ReduceLROnPlateau(monitor='val_loss',
                          factor=0.1,
                          patience=5,
                          verbose=1),
        EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1)
    ]

    # *** This training schedule is an example. Update to your needs ***
    # Since we're using a very small dataset, and starting from
    # COCO trained weights, we don't need to train too long. Also,
    # no need to train all layers, just the heads should do it.
    print("Training network heads")
    model.train(dataset_train,
                dataset_val,
                learning_rate=config.LEARNING_RATE,
                epochs=100,
                layers='heads',
                augmentation=aug,
                custom_callbacks=custom_callbacks)
def balanced_augmentation(X, Y, epochs, img_size):

    print("START AUGMENTATION...")

    cluster_df = pd.read_csv('cluster_df.csv', usecols=['cluster'])

    cluster_size = [0, 0, 0]

    cluster_size[0] = cluster_df.value_counts()[0].iloc[0]
    cluster_size[1] = cluster_df.value_counts()[1].iloc[0]
    cluster_size[2] = cluster_df.value_counts()[2].iloc[0]

    d_len = cluster_size[0] * epochs[0] + cluster_size[1] * epochs[
        1] + cluster_size[2] * epochs[2]

    augmented_x = np.zeros((d_len, img_size, img_size, 3), dtype=np.float)
    augmented_y = np.zeros((d_len, img_size, img_size, 1), dtype=np.bool)

    seq = iaa.Sequential([
        iaa.Fliplr(0.5),
        iaa.GaussianBlur(sigma=(0, 3.0)),
        iaa.Rotate((-40, 40))
    ])

    global_cnt = 0

    for i in range(X.shape[0]):

        img_cluster = cluster_df.iloc[i]['cluster']
        '''if img_cluster == 2:
            print(epochs[img_cluster])
            cv2.imshow("img", X[i])
            cv2.waitKey(0)
            cv2.destroyAllWindows()'''

        for e in range(epochs[img_cluster]):

            img, seg = seq(images=[X[i]], segmentation_maps=[Y[i]])
            augmented_x[global_cnt] = img[0]
            augmented_y[global_cnt] = seg[0]
            global_cnt += 1

    print("AUGMENTED")

    return augmented_x, augmented_y
Beispiel #29
0
def do_all_aug(image):
    do_aug(image, iaa.Noop(name="origin"))
    do_aug(image, iaa.Crop((0, 10)))  # 切边
    do_aug(image, iaa.GaussianBlur((0, 3)))
    do_aug(image, iaa.AverageBlur(1, 7))
    do_aug(image, iaa.MedianBlur(1, 7))
    do_aug(image, iaa.Sharpen())
    do_aug(image, iaa.BilateralBlur())  # 既噪音又模糊,叫双边
    do_aug(image, iaa.MotionBlur())
    do_aug(image, iaa.MeanShiftBlur())
    do_aug(image, iaa.GammaContrast())
    do_aug(image, iaa.SigmoidContrast())
    do_aug(image,
           iaa.Affine(shear={
               'x': (-10, 10),
               'y': (-10, 10)
           }, mode="edge"))  # shear:x轴往左右偏离的像素书,(a,b)是a,b间随机值,[a,b]是二选一
    do_aug(image,
           iaa.Affine(shear={
               'x': (-10, 10),
               'y': (-10, 10)
           }, mode="edge"))  # shear:x轴往左右偏离的像素书,(a,b)是a,b间随机值,[a,b]是二选一
    do_aug(image, iaa.Rotate(rotate=(-10, 10), mode="edge"))
    do_aug(image, iaa.PiecewiseAffine())  # 局部点变形
    do_aug(image, iaa.Fog())
    do_aug(image, iaa.Clouds())
    do_aug(image, iaa.Snowflakes(flake_size=(0.1, 0.2),
                                 density=(0.005, 0.025)))
    do_aug(
        image,
        iaa.Rain(
            nb_iterations=1,
            drop_size=(0.05, 0.1),
            speed=(0.04, 0.08),
        ))
    do_aug(
        image,
        iaa.ElasticTransformation(alpha=(0.0, 20.0),
                                  sigma=(3.0, 5.0),
                                  mode="nearest"))
    do_aug(image, iaa.AdditiveGaussianNoise(scale=(0, 10)))
    do_aug(image, iaa.AdditiveLaplaceNoise(scale=(0, 10)))
    do_aug(image, iaa.AdditivePoissonNoise(lam=(0, 10)))
    do_aug(image, iaa.Salt((0, 0.02)))
    do_aug(image, iaa.Pepper((0, 0.02)))
def train(model):
    """Train the model."""
    # Training dataset.
    dataset_train = PlateDataset()
    dataset_train.load_plates("train")
    dataset_train.prepare()

    # Validation dataset
    dataset_val = PlateDataset()
    dataset_val.load_plates("val")
    dataset_val.prepare()

    #Augmentation
    aug = iaa.OneOf([
        iaa.GaussianBlur(sigma=(0, 1.0)),
        iaa.MotionBlur(),
        iaa.RemoveSaturation((0.0, 0.5)),
        iaa.GammaContrast(),
        iaa.Rotate(rotate=(-45, 45)),
        iaa.PerspectiveTransform(scale=(0.01, 0.15)),
        iaa.SaltAndPepper(),
        iaa.JpegCompression(compression=(0, 75)),
        iaa.imgcorruptlike.Spatter(severity=(1, 4)),
        iaa.imgcorruptlike.DefocusBlur(severity=1)
    ])

    custom_callbacks = [
        ReduceLROnPlateau(monitor='val_loss',
                          factor=0.1,
                          patience=5,
                          verbose=1),
        EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1)
    ]

    # Since we're using a very small dataset, and starting from
    # COCO trained weights, we don't need to train too long. Also,
    # no need to train all layers, just the heads should do it.
    print("Training network heads")
    model.train(dataset_train,
                dataset_val,
                learning_rate=config.LEARNING_RATE,
                epochs=100,
                layers='all',
                augmentation=aug,
                custom_callbacks=custom_callbacks)