Beispiel #1
0
def test_reward_overwrite():
    """Test that reward wrapper actually overwrites base rewards."""
    env_name = "Pendulum-v0"
    num_envs = 3
    env = util.make_vec_env(env_name, num_envs)
    reward_fn = FunkyReward()
    wrapped_env = reward_wrapper.RewardVecEnvWrapper(env, reward_fn)
    policy = RandomPolicy(env.observation_space, env.action_space)
    sample_until = rollout.min_episodes(10)
    default_stats = rollout.rollout_stats(
        rollout.generate_trajectories(policy, env, sample_until))
    wrapped_stats = rollout.rollout_stats(
        rollout.generate_trajectories(policy, wrapped_env, sample_until))
    # Pendulum-v0 always has negative rewards
    assert default_stats["return_max"] < 0
    # ours gives between 1 * traj_len and num_envs * traj_len reward
    # (trajectories are all constant length of 200 in Pendulum)
    steps = wrapped_stats["len_mean"]
    assert wrapped_stats["return_min"] == 1 * steps
    assert wrapped_stats["return_max"] == num_envs * steps

    # check that wrapped reward is negative (all pendulum rewards is negative)
    # and other rewards are non-negative
    rand_act, _, _, _ = policy.step(wrapped_env.reset())
    _, rew, _, infos = wrapped_env.step(rand_act)
    assert np.all(rew >= 0)
    assert np.all([info_dict["wrapped_env_rew"] < 0 for info_dict in infos])
Beispiel #2
0
def eval_policy(
    rl_algo: Union[base_class.BaseAlgorithm, policies.BasePolicy],
    venv: vec_env.VecEnv,
    n_episodes_eval: int,
) -> Mapping[str, float]:
    """Evaluation of imitation learned policy.

    Args:
        rl_algo: Algorithm to evaluate.
        venv: Environment to evaluate on.
        n_episodes_eval: The number of episodes to average over when calculating
            the average episode reward of the imitation policy for return.

    Returns:
        A dictionary with two keys. "imit_stats" gives the return value of
        `rollout_stats()` on rollouts test-reward-wrapped environment, using the final
        policy (remember that the ground-truth reward can be recovered from the
        "monitor_return" key). "expert_stats" gives the return value of
        `rollout_stats()` on the expert demonstrations loaded from `rollout_path`.
    """
    sample_until_eval = rollout.make_min_episodes(n_episodes_eval)
    trajs = rollout.generate_trajectories(
        rl_algo,
        venv,
        sample_until=sample_until_eval,
    )
    return rollout.rollout_stats(trajs)
Beispiel #3
0
    def test_policy(self, *, min_episodes: int = 10) -> dict:
        """Test current imitation policy on environment & give some rollout stats.

        Args:
          min_episodes: Minimum number of rolled-out episodes.

        Returns:
          rollout statistics collected by `imitation.utils.rollout.rollout_stats()`.
        """
        trajs = rollout.generate_trajectories(
            self.policy,
            self.env,
            sample_until=rollout.min_episodes(min_episodes))
        reward_stats = rollout.rollout_stats(trajs)
        return reward_stats
Beispiel #4
0
def test_rollout_stats():
    """Applying `ObsRewIncrementWrapper` halves the reward mean.

    `rollout_stats` should reflect this.
    """
    env = gym.make("CartPole-v1")
    env = bench.Monitor(env, None)
    env = ObsRewHalveWrapper(env)
    venv = vec_env.DummyVecEnv([lambda: env])

    with serialize.load_policy("zero", "UNUSED", venv) as policy:
        trajs = rollout.generate_trajectories(policy, venv, rollout.min_episodes(10))
    s = rollout.rollout_stats(trajs)

    np.testing.assert_allclose(s["return_mean"], s["monitor_return_mean"] / 2)
    np.testing.assert_allclose(s["return_std"], s["monitor_return_std"] / 2)
    np.testing.assert_allclose(s["return_min"], s["monitor_return_min"] / 2)
    np.testing.assert_allclose(s["return_max"], s["monitor_return_max"] / 2)
    def test_policy(self, *, n_trajectories=10, true_reward=True):
        """Test current imitation policy on environment & give some rollout stats.

        Args:
            n_trajectories (int): number of rolled-out trajectories.
            true_reward (bool): should this use ground truth reward from underlying
                environment (True), or imitation reward (False)?

        Returns:
            dict: rollout statistics collected by
                `imitation.utils.rollout.rollout_stats()`.
        """
        self.imitation_trainer.set_env(self.venv)
        trajs = rollout.generate_trajectories(
            self.imitation_trainer,
            self.venv if true_reward else self.wrapped_env,
            sample_until=rollout.min_episodes(n_trajectories),
        )
        reward_stats = rollout.rollout_stats(trajs)
        return reward_stats
Beispiel #6
0
def rollouts_and_policy(
    _run,
    _seed: int,
    env_name: str,
    total_timesteps: int,
    *,
    log_dir: str,
    num_vec: int,
    parallel: bool,
    max_episode_steps: Optional[int],
    normalize: bool,
    normalize_kwargs: dict,
    init_rl_kwargs: dict,
    n_episodes_eval: int,
    reward_type: Optional[str],
    reward_path: Optional[str],
    rollout_save_interval: int,
    rollout_save_final: bool,
    rollout_save_n_timesteps: Optional[int],
    rollout_save_n_episodes: Optional[int],
    policy_save_interval: int,
    policy_save_final: bool,
    init_tensorboard: bool,
) -> dict:
    """Trains an expert policy from scratch and saves the rollouts and policy.

    Checkpoints:
      At applicable training steps `step` (where step is either an integer or
      "final"):

        - Policies are saved to `{log_dir}/policies/{step}/`.
        - Rollouts are saved to `{log_dir}/rollouts/{step}.pkl`.

    Args:
        env_name: The gym.Env name. Loaded as VecEnv.
        total_timesteps: Number of training timesteps in `model.learn()`.
        log_dir: The root directory to save metrics and checkpoints to.
        num_vec: Number of environments in VecEnv.
        parallel: If True, then use DummyVecEnv. Otherwise use SubprocVecEnv.
        max_episode_steps: If not None, then environments are wrapped by
            TimeLimit so that they have at most `max_episode_steps` steps per
            episode.
        normalize: If True, then rescale observations and reward.
        normalize_kwargs: kwargs for `VecNormalize`.
        init_rl_kwargs: kwargs for `init_rl`.

        n_episodes_eval: The number of episodes to average over when calculating
            the average ground truth reward return of the final policy.

        reward_type: If provided, then load the serialized reward of this type,
            wrapping the environment in this reward. This is useful to test
            whether a reward model transfers. For more information, see
            `imitation.rewards.serialize.load_reward`.
        reward_path: A specifier, such as a path to a file on disk, used by
            reward_type to load the reward model. For more information, see
            `imitation.rewards.serialize.load_reward`.

        rollout_save_interval: The number of training updates in between
            intermediate rollout saves. If the argument is nonpositive, then
            don't save intermediate updates.
        rollout_save_final: If True, then save rollouts right after training is
            finished.
        rollout_save_n_timesteps: The minimum number of timesteps saved in every
            file. Could be more than `rollout_save_n_timesteps` because
            trajectories are saved by episode rather than by transition.
            Must set exactly one of `rollout_save_n_timesteps`
            and `rollout_save_n_episodes`.
        rollout_save_n_episodes: The number of episodes saved in every
            file. Must set exactly one of `rollout_save_n_timesteps` and
            `rollout_save_n_episodes`.

        policy_save_interval: The number of training updates between saves. Has
            the same semantics are `rollout_save_interval`.
        policy_save_final: If True, then save the policy right after training is
            finished.

        init_tensorboard: If True, then write tensorboard logs to {log_dir}/sb_tb
            and "output/summary/...".

    Returns:
      The return value of `rollout_stats()` using the final policy.
    """
    os.makedirs(log_dir, exist_ok=True)
    sacred_util.build_sacred_symlink(log_dir, _run)

    sample_until = rollout.make_sample_until(rollout_save_n_timesteps,
                                             rollout_save_n_episodes)
    eval_sample_until = rollout.min_episodes(n_episodes_eval)

    with networks.make_session():
        tf.logging.set_verbosity(tf.logging.INFO)
        logger.configure(folder=osp.join(log_dir, "rl"),
                         format_strs=["tensorboard", "stdout"])

        rollout_dir = osp.join(log_dir, "rollouts")
        policy_dir = osp.join(log_dir, "policies")
        os.makedirs(rollout_dir, exist_ok=True)
        os.makedirs(policy_dir, exist_ok=True)

        if init_tensorboard:
            sb_tensorboard_dir = osp.join(log_dir, "sb_tb")
            # Convert sacred's ReadOnlyDict to dict so we can modify on next line.
            init_rl_kwargs = dict(init_rl_kwargs)
            init_rl_kwargs["tensorboard_log"] = sb_tensorboard_dir

        venv = util.make_vec_env(
            env_name,
            num_vec,
            seed=_seed,
            parallel=parallel,
            log_dir=log_dir,
            max_episode_steps=max_episode_steps,
        )

        log_callbacks = []
        with contextlib.ExitStack() as stack:
            if reward_type is not None:
                reward_fn_ctx = load_reward(reward_type, reward_path, venv)
                reward_fn = stack.enter_context(reward_fn_ctx)
                venv = RewardVecEnvWrapper(venv, reward_fn)
                log_callbacks.append(venv.log_callback)
                tf.logging.info(
                    f"Wrapped env in reward {reward_type} from {reward_path}.")

            vec_normalize = None
            if normalize:
                venv = vec_normalize = VecNormalize(venv, **normalize_kwargs)

            policy = util.init_rl(venv, verbose=1, **init_rl_kwargs)

            # Make callback to save intermediate artifacts during training.
            step = 0

            def callback(locals_: dict, _) -> bool:
                nonlocal step
                step += 1
                policy = locals_["self"]

                # TODO(adam): make logging frequency configurable
                for callback in log_callbacks:
                    callback(sb_logger)

                if rollout_save_interval > 0 and step % rollout_save_interval == 0:
                    save_path = osp.join(rollout_dir, f"{step}.pkl")
                    rollout.rollout_and_save(save_path, policy, venv,
                                             sample_until)
                if policy_save_interval > 0 and step % policy_save_interval == 0:
                    output_dir = os.path.join(policy_dir, f"{step:05d}")
                    serialize.save_stable_model(output_dir, policy,
                                                vec_normalize)

            policy.learn(total_timesteps, callback=callback)

            # Save final artifacts after training is complete.
            if rollout_save_final:
                save_path = osp.join(rollout_dir, "final.pkl")
                rollout.rollout_and_save(save_path, policy, venv, sample_until)
            if policy_save_final:
                output_dir = os.path.join(policy_dir, "final")
                serialize.save_stable_model(output_dir, policy, vec_normalize)

            # Final evaluation of expert policy.
            trajs = rollout.generate_trajectories(policy, venv,
                                                  eval_sample_until)
            stats = rollout.rollout_stats(trajs)

    return stats
Beispiel #7
0
def eval_policy(
    _run,
    _seed: int,
    env_name: str,
    eval_n_timesteps: Optional[int],
    eval_n_episodes: Optional[int],
    num_vec: int,
    parallel: bool,
    render: bool,
    render_fps: int,
    log_dir: str,
    policy_type: str,
    policy_path: str,
    reward_type: Optional[str] = None,
    reward_path: Optional[str] = None,
    max_episode_steps: Optional[int] = None,
):
    """Rolls a policy out in an environment, collecting statistics.

    Args:
      _seed: generated by Sacred.
      env_name: Gym environment identifier.
      eval_n_timesteps: Minimum number of timesteps to evaluate for. Set exactly
          one of `eval_n_episodes` and `eval_n_timesteps`.
      eval_n_episodes: Minimum number of episodes to evaluate for. Set exactly
          one of `eval_n_episodes` and `eval_n_timesteps`.
      num_vec: Number of environments to run simultaneously.
      parallel: If True, use `SubprocVecEnv` for true parallelism; otherwise,
          uses `DummyVecEnv`.
      max_episode_steps: If not None, then environments are wrapped by
          TimeLimit so that they have at most `max_episode_steps` steps per
          episode.
      render: If True, renders interactively to the screen.
      log_dir: The directory to log intermediate output to. (As of 2019-07-19
          this is just episode-by-episode reward from bench.Monitor.)
      policy_type: A unique identifier for the saved policy,
          defined in POLICY_CLASSES.
      policy_path: A path to the serialized policy.
      reward_type: If specified, overrides the environment reward with
          a reward of this.
      reward_path: If reward_type is specified, the path to a serialized reward
          of `reward_type` to override the environment reward with.

    Returns:
      Return value of `imitation.util.rollout.rollout_stats()`.
    """
    os.makedirs(log_dir, exist_ok=True)
    sacred_util.build_sacred_symlink(log_dir, _run)

    tf.logging.set_verbosity(tf.logging.INFO)
    tf.logging.info("Logging to %s", log_dir)
    sample_until = rollout.make_sample_until(eval_n_timesteps, eval_n_episodes)
    venv = util.make_vec_env(
        env_name,
        num_vec,
        seed=_seed,
        parallel=parallel,
        log_dir=log_dir,
        max_episode_steps=max_episode_steps,
    )

    if render:
        venv = InteractiveRender(venv, render_fps)
    # TODO(adam): add support for videos using VideoRecorder?

    with contextlib.ExitStack() as stack:
        if reward_type is not None:
            reward_fn_ctx = load_reward(reward_type, reward_path, venv)
            reward_fn = stack.enter_context(reward_fn_ctx)
            venv = reward_wrapper.RewardVecEnvWrapper(venv, reward_fn)
            tf.logging.info(
                f"Wrapped env in reward {reward_type} from {reward_path}.")

        with serialize.load_policy(policy_type, policy_path, venv) as policy:
            trajs = rollout.generate_trajectories(policy, venv, sample_until)
    return rollout.rollout_stats(trajs)
Beispiel #8
0
def train(
    _run,
    _seed: int,
    algorithm: str,
    env_name: str,
    num_vec: int,
    parallel: bool,
    max_episode_steps: Optional[int],
    rollout_path: str,
    n_expert_demos: Optional[int],
    log_dir: str,
    total_timesteps: int,
    n_episodes_eval: int,
    init_tensorboard: bool,
    checkpoint_interval: int,
    gen_batch_size: int,
    init_rl_kwargs: Mapping,
    algorithm_kwargs: Mapping[str, Mapping],
    discrim_net_kwargs: Mapping[str, Mapping],
) -> dict:
    """Train an adversarial-network-based imitation learning algorithm.

    Checkpoints:
        - DiscrimNets are saved to `f"{log_dir}/checkpoints/{step}/discrim/"`,
            where step is either the training round or "final".
        - Generator policies are saved to `f"{log_dir}/checkpoints/{step}/gen_policy/"`.

    Args:
        _seed: Random seed.
        algorithm: A case-insensitive string determining which adversarial imitation
            learning algorithm is executed. Either "airl" or "gail".
        env_name: The environment to train in.
        num_vec: Number of `gym.Env` to vectorize.
        parallel: Whether to use "true" parallelism. If True, then use `SubProcVecEnv`.
            Otherwise, use `DummyVecEnv` which steps through environments serially.
        max_episode_steps: If not None, then a TimeLimit wrapper is applied to each
            environment to artificially limit the maximum number of timesteps in an
            episode.
        rollout_path: Path to pickle containing list of Trajectories. Used as
            expert demonstrations.
        n_expert_demos: The number of expert trajectories to actually use
            after loading them from `rollout_path`.
            If None, then use all available trajectories.
            If `n_expert_demos` is an `int`, then use exactly `n_expert_demos`
            trajectories, erroring if there aren't enough trajectories. If there are
            surplus trajectories, then use the first `n_expert_demos` trajectories and
            drop the rest.
        log_dir: Directory to save models and other logging to.
        total_timesteps: The number of transitions to sample from the environment
            during training.
        n_episodes_eval: The number of episodes to average over when calculating
            the average episode reward of the imitation policy for return.
        init_tensorboard: If True, then write tensorboard logs to `{log_dir}/sb_tb`.
        checkpoint_interval: Save the discriminator and generator models every
            `checkpoint_interval` rounds and after training is complete. If 0,
            then only save weights after training is complete. If <0, then don't
            save weights at all.
        gen_batch_size: Batch size for generator updates. Sacred automatically uses
            this to calculate `n_steps` in `init_rl_kwargs`. In the script body, this
            is only used in sanity checks.
        init_rl_kwargs: Keyword arguments for `init_rl`, the RL algorithm initialization
            utility function.
        algorithm_kwargs: Keyword arguments for the `GAIL` or `AIRL` constructor
            that can apply to either constructor. Unlike a regular kwargs argument, this
            argument can only have the following keys: "shared", "airl", and "gail".

            `algorithm_kwargs["airl"]`, if it is provided, is a kwargs `Mapping` passed
            to the `AIRL` constructor when `algorithm == "airl"`. Likewise
            `algorithm_kwargs["gail"]` is passed to the `GAIL` constructor when
            `algorithm == "gail"`. `algorithm_kwargs["shared"]`, if provided, is passed
            to both the `AIRL` and `GAIL` constructors. Duplicate keyword argument keys
            between `algorithm_kwargs["shared"]` and `algorithm_kwargs["airl"]` (or
            "gail") leads to an error.
        discrim_net_kwargs: Keyword arguments for the `DiscrimNet` constructor. Unlike a
            regular kwargs argument, this argument can only have the following keys:
            "shared", "airl", "gail". These keys have the same meaning as they do in
            `algorithm_kwargs`.

    Returns:
        A dictionary with two keys. "imit_stats" gives the return value of
        `rollout_stats()` on rollouts test-reward-wrapped environment, using the final
        policy (remember that the ground-truth reward can be recovered from the
        "monitor_return" key). "expert_stats" gives the return value of
        `rollout_stats()` on the expert demonstrations loaded from `rollout_path`.
    """
    if gen_batch_size % num_vec != 0:
        raise ValueError(
            f"num_vec={num_vec} must evenly divide gen_batch_size={gen_batch_size}."
        )

    allowed_keys = {"shared", "gail", "airl"}
    if not discrim_net_kwargs.keys() <= allowed_keys:
        raise ValueError(
            f"Invalid discrim_net_kwargs.keys()={discrim_net_kwargs.keys()}. "
            f"Allowed keys: {allowed_keys}"
        )
    if not algorithm_kwargs.keys() <= allowed_keys:
        raise ValueError(
            f"Invalid discrim_net_kwargs.keys()={algorithm_kwargs.keys()}. "
            f"Allowed keys: {allowed_keys}"
        )

    if not os.path.exists(rollout_path):
        raise ValueError(f"File at rollout_path={rollout_path} does not exist.")

    expert_trajs = types.load(rollout_path)
    if n_expert_demos is not None:
        if not len(expert_trajs) >= n_expert_demos:
            raise ValueError(
                f"Want to use n_expert_demos={n_expert_demos} trajectories, but only "
                f"{len(expert_trajs)} are available via {rollout_path}."
            )
        expert_trajs = expert_trajs[:n_expert_demos]
    expert_transitions = rollout.flatten_trajectories(expert_trajs)

    total_timesteps = int(total_timesteps)

    logging.info("Logging to %s", log_dir)
    logger.configure(log_dir, ["tensorboard", "stdout"])
    os.makedirs(log_dir, exist_ok=True)
    sacred_util.build_sacred_symlink(log_dir, _run)

    venv = util.make_vec_env(
        env_name,
        num_vec,
        seed=_seed,
        parallel=parallel,
        log_dir=log_dir,
        max_episode_steps=max_episode_steps,
    )

    # if init_tensorboard:
    #     tensorboard_log = osp.join(log_dir, "sb_tb")
    # else:
    #     tensorboard_log = None

    gen_algo = util.init_rl(
        # FIXME(sam): ignoring tensorboard_log is a hack to prevent SB3 from
        # re-configuring the logger (SB3 issue #109). See init_rl() for details.
        # TODO(shwang): Let's get rid of init_rl after SB3 issue #109 is fixed?
        # Besides sidestepping #109, init_rl is just a stub function.
        venv,
        **init_rl_kwargs,
    )

    discrim_kwargs_shared = discrim_net_kwargs.get("shared", {})
    discrim_kwargs_algo = discrim_net_kwargs.get(algorithm, {})
    final_discrim_kwargs = dict(**discrim_kwargs_shared, **discrim_kwargs_algo)

    algorithm_kwargs_shared = algorithm_kwargs.get("shared", {})
    algorithm_kwargs_algo = algorithm_kwargs.get(algorithm, {})
    final_algorithm_kwargs = dict(
        **algorithm_kwargs_shared,
        **algorithm_kwargs_algo,
    )

    if algorithm.lower() == "gail":
        algo_cls = adversarial.GAIL
    elif algorithm.lower() == "airl":
        algo_cls = adversarial.AIRL
    else:
        raise ValueError(f"Invalid value algorithm={algorithm}.")

    trainer = algo_cls(
        venv=venv,
        expert_data=expert_transitions,
        gen_algo=gen_algo,
        log_dir=log_dir,
        discrim_kwargs=final_discrim_kwargs,
        **final_algorithm_kwargs,
    )

    def callback(round_num):
        if checkpoint_interval > 0 and round_num % checkpoint_interval == 0:
            save(trainer, os.path.join(log_dir, "checkpoints", f"{round_num:05d}"))

    trainer.train(total_timesteps, callback)

    # Save final artifacts.
    if checkpoint_interval >= 0:
        save(trainer, os.path.join(log_dir, "checkpoints", "final"))

    # Final evaluation of imitation policy.
    results = {}
    sample_until_eval = rollout.min_episodes(n_episodes_eval)
    trajs = rollout.generate_trajectories(
        trainer.gen_algo, trainer.venv_train_norm, sample_until=sample_until_eval
    )
    results["expert_stats"] = rollout.rollout_stats(expert_trajs)
    results["imit_stats"] = rollout.rollout_stats(trajs)
    return results
Beispiel #9
0
def eval_policy(
    _run,
    _seed: int,
    env_name: str,
    eval_n_timesteps: Optional[int],
    eval_n_episodes: Optional[int],
    num_vec: int,
    parallel: bool,
    render: bool,
    render_fps: int,
    videos: bool,
    video_kwargs: Mapping[str, Any],
    log_dir: str,
    policy_type: str,
    policy_path: str,
    reward_type: Optional[str] = None,
    reward_path: Optional[str] = None,
    max_episode_steps: Optional[int] = None,
):
    """Rolls a policy out in an environment, collecting statistics.

    Args:
      _seed: generated by Sacred.
      env_name: Gym environment identifier.
      eval_n_timesteps: Minimum number of timesteps to evaluate for. Set exactly
          one of `eval_n_episodes` and `eval_n_timesteps`.
      eval_n_episodes: Minimum number of episodes to evaluate for. Set exactly
          one of `eval_n_episodes` and `eval_n_timesteps`.
      num_vec: Number of environments to run simultaneously.
      parallel: If True, use `SubprocVecEnv` for true parallelism; otherwise,
          uses `DummyVecEnv`.
      max_episode_steps: If not None, then environments are wrapped by
          TimeLimit so that they have at most `max_episode_steps` steps per
          episode.
      render: If True, renders interactively to the screen.
      render_fps: The target number of frames per second to render on screen.
      videos: If True, saves videos to `log_dir`.
      video_kwargs: Keyword arguments passed through to `video_wrapper.VideoWrapper`.
      log_dir: The directory to log intermediate output to, such as episode reward.
      policy_type: A unique identifier for the saved policy,
          defined in POLICY_CLASSES.
      policy_path: A path to the serialized policy.
      reward_type: If specified, overrides the environment reward with
          a reward of this.
      reward_path: If reward_type is specified, the path to a serialized reward
          of `reward_type` to override the environment reward with.

    Returns:
      Return value of `imitation.util.rollout.rollout_stats()`.
    """
    os.makedirs(log_dir, exist_ok=True)
    sacred_util.build_sacred_symlink(log_dir, _run)

    logging.basicConfig(level=logging.INFO)
    logging.info("Logging to %s", log_dir)
    sample_until = rollout.make_sample_until(eval_n_timesteps, eval_n_episodes)
    post_wrappers = [video_wrapper_factory(log_dir, **video_kwargs)
                     ] if videos else None
    venv = util.make_vec_env(
        env_name,
        num_vec,
        seed=_seed,
        parallel=parallel,
        log_dir=log_dir,
        max_episode_steps=max_episode_steps,
        post_wrappers=post_wrappers,
    )

    try:
        if render:
            # As of July 31, 2020, DummyVecEnv rendering only works with num_vec=1
            # due to a bug on Stable Baselines 3.
            venv = InteractiveRender(venv, render_fps)

        if reward_type is not None:
            reward_fn = load_reward(reward_type, reward_path, venv)
            venv = reward_wrapper.RewardVecEnvWrapper(venv, reward_fn)
            logging.info(
                f"Wrapped env in reward {reward_type} from {reward_path}.")

        policy = serialize.load_policy(policy_type, policy_path, venv)
        trajs = rollout.generate_trajectories(policy, venv, sample_until)
        return rollout.rollout_stats(trajs)
    finally:
        venv.close()
def train(
    _run,
    _seed: int,
    env_name: str,
    rollout_path: str,
    n_expert_demos: Optional[int],
    log_dir: str,
    init_trainer_kwargs: dict,
    total_timesteps: int,
    n_episodes_eval: int,
    init_tensorboard: bool,
    checkpoint_interval: int,
) -> dict:
    """Train an adversarial-network-based imitation learning algorithm.

    Plots (turn on using `plot_interval > 0`):
      - Plot discriminator loss during discriminator training steps in blue and
        discriminator loss during generator training steps in red.
      - Plot the performance of the generator policy versus the performance of
        a random policy. Also plot the performance of an expert policy if that is
        provided in the arguments.

    Checkpoints:
      - DiscrimNets are saved to f"{log_dir}/checkpoints/{step}/discrim/",
        where step is either the training epoch or "final".
      - Generator policies are saved to
        f"{log_dir}/checkpoints/{step}/gen_policy/".

    Args:
      _seed: Random seed.
      env_name: The environment to train in.
      rollout_path: Path to pickle containing list of Trajectories. Used as
        expert demonstrations.
      n_expert_demos: The number of expert trajectories to actually use
        after loading them from `rollout_path`.
        If None, then use all available trajectories.
        If `n_expert_demos` is an `int`, then use exactly `n_expert_demos`
        trajectories, erroring if there aren't enough trajectories. If there are
        surplus trajectories, then use the
        first `n_expert_demos` trajectories and drop the rest.
      log_dir: Directory to save models and other logging to.

      init_trainer_kwargs: Keyword arguments passed to `init_trainer`,
        used to initialize the trainer.
      total_timesteps: The number of transitions to sample from the environment
        during training.
      n_episodes_eval: The number of episodes to average over when calculating
        the average episode reward of the imitation policy for return.

      plot_interval: The number of epochs between each plot. If negative,
        then plots are disabled. If zero, then only plot at the end of training.
      n_plot_episodes: The number of episodes averaged over when
        calculating the average episode reward of a policy for the performance
        plots.
      extra_episode_data_interval: Usually mean episode rewards are calculated
        immediately before every plot. Set this parameter to a nonnegative number
        to also add episode reward data points every
        `extra_episodes_data_interval` epochs.
      show_plots: Figures are always saved to `f"{log_dir}/plots/*.png"`. If
        `show_plots` is True, then also show plots as they are created.
      init_tensorboard: If True, then write tensorboard logs to `{log_dir}/sb_tb`.

      checkpoint_interval: Save the discriminator and generator models every
        `checkpoint_interval` epochs and after training is complete. If 0,
        then only save weights after training is complete. If <0, then don't
        save weights at all.

    Returns:
      A dictionary with two keys. "imit_stats" gives the return value of
        `rollout_stats()` on rollouts test-reward-wrapped
        environment, using the final policy (remember that the ground-truth reward
        can be recovered from the "monitor_return" key). "expert_stats" gives the
        return value of `rollout_stats()` on the expert demonstrations loaded from
        `rollout_path`.
    """
    total_timesteps = int(total_timesteps)

    tf.logging.info("Logging to %s", log_dir)
    os.makedirs(log_dir, exist_ok=True)
    sacred_util.build_sacred_symlink(log_dir, _run)

    # Calculate stats for expert rollouts. Used for plot and return value.
    expert_trajs = types.load(rollout_path)

    if n_expert_demos is not None:
        assert len(expert_trajs) >= n_expert_demos
        expert_trajs = expert_trajs[:n_expert_demos]

    expert_stats = rollout.rollout_stats(expert_trajs)

    with networks.make_session():
        if init_tensorboard:
            sb_tensorboard_dir = osp.join(log_dir, "sb_tb")
            kwargs = init_trainer_kwargs
            kwargs["init_rl_kwargs"] = kwargs.get("init_rl_kwargs", {})
            kwargs["init_rl_kwargs"]["tensorboard_log"] = sb_tensorboard_dir

        trainer = init_trainer(env_name,
                               expert_trajs,
                               seed=_seed,
                               log_dir=log_dir,
                               **init_trainer_kwargs)

        def callback(epoch):
            if checkpoint_interval > 0 and epoch % checkpoint_interval == 0:
                save(trainer,
                     os.path.join(log_dir, "checkpoints", f"{epoch:05d}"))

        trainer.train(total_timesteps, callback)

        # Save final artifacts.
        if checkpoint_interval >= 0:
            save(trainer, os.path.join(log_dir, "checkpoints", "final"))

        # Final evaluation of imitation policy.
        results = {}
        sample_until_eval = rollout.min_episodes(n_episodes_eval)
        trajs = rollout.generate_trajectories(trainer.gen_policy,
                                              trainer.venv_test,
                                              sample_until=sample_until_eval)
        results["imit_stats"] = rollout.rollout_stats(trajs)
        results["expert_stats"] = expert_stats
        return results