Beispiel #1
0
def rollouts_and_policy(
    _seed: int,
    env_name: str,
    total_timesteps: int,
    *,
    log_dir: str = None,
    num_vec: int = 8,
    parallel: bool = False,
    max_episode_steps: Optional[int] = None,
    normalize: bool = True,
    make_blank_policy_kwargs: dict = {},
    reward_type: Optional[str] = None,
    reward_path: Optional[str] = None,
    rollout_save_interval: int = 0,
    rollout_save_final: bool = False,
    rollout_save_n_timesteps: Optional[int] = None,
    rollout_save_n_episodes: Optional[int] = None,
    policy_save_interval: int = -1,
    policy_save_final: bool = True,
) -> None:
    """Trains an expert policy from scratch and saves the rollouts and policy.

  At applicable training steps `step` (where step is either an integer or
  "final"):

      - Policies are saved to `{log_dir}/policies/{step}.pkl`.
      - Rollouts are saved to `{log_dir}/rollouts/{step}.pkl`.

  Args:
      env_name: The gym.Env name. Loaded as VecEnv.
      total_timesteps: Number of training timesteps in `model.learn()`.
      log_dir: The root directory to save metrics and checkpoints to.
      num_vec: Number of environments in VecEnv.
      parallel: If True, then use DummyVecEnv. Otherwise use SubprocVecEnv.
      max_episode_steps: If not None, then environments are wrapped by
          TimeLimit so that they have at most `max_episode_steps` steps per
          episode.
      normalize: If True, then rescale observations and reward.
      make_blank_policy_kwargs: Kwargs for `make_blank_policy`.

      reward_type: If provided, then load the serialized reward of this type,
          wrapping the environment in this reward. This is useful to test
          whether a reward model transfers. For more information, see
          `imitation.rewards.serialize.load_reward`.
      reward_path: A specifier, such as a path to a file on disk, used by
          reward_type to load the reward model. For more information, see
          `imitation.rewards.serialize.load_reward`.

      rollout_save_interval: The number of training updates in between
          intermediate rollout saves. If the argument is nonpositive, then
          don't save intermediate updates.
      rollout_save_final: If True, then save rollouts right after training is
          finished.
      rollout_save_n_timesteps: The minimum number of timesteps saved in every
          file. Could be more than `rollout_save_n_timesteps` because
          trajectories are saved by episode rather than by transition.
          Must set exactly one of `rollout_save_n_timesteps`
          and `rollout_save_n_episodes`.
      rollout_save_n_episodes: The number of episodes saved in every
          file. Must set exactly one of `rollout_save_n_timesteps` and
          `rollout_save_n_episodes`.

      policy_save_interval: The number of training updates between saves. Has
          the same semantics are `rollout_save_interval`.
      policy_save_final: If True, then save the policy right after training is
          finished.
  """
    _validate_traj_generate_params(rollout_save_n_timesteps,
                                   rollout_save_n_episodes)

    with util.make_session():
        tf.logging.set_verbosity(tf.logging.INFO)
        sb_logger.configure(folder=osp.join(log_dir, 'rl'),
                            format_strs=['tensorboard', 'stdout'])

        rollout_dir = osp.join(log_dir, "rollouts")
        policy_dir = osp.join(log_dir, "policies")
        os.makedirs(rollout_dir, exist_ok=True)
        os.makedirs(policy_dir, exist_ok=True)

        venv = util.make_vec_env(env_name,
                                 num_vec,
                                 seed=_seed,
                                 parallel=parallel,
                                 log_dir=log_dir,
                                 max_episode_steps=max_episode_steps)

        log_callbacks = []
        with contextlib.ExitStack() as stack:
            if reward_type is not None:
                reward_fn_ctx = load_reward(reward_type, reward_path, venv)
                reward_fn = stack.enter_context(reward_fn_ctx)
                venv = RewardVecEnvWrapper(venv, reward_fn)
                log_callbacks.append(venv.log_callback)
                tf.logging.info(
                    f"Wrapped env in reward {reward_type} from {reward_path}.")

            vec_normalize = None
            if normalize:
                venv = vec_normalize = VecNormalize(venv)

            policy = util.init_rl(venv, verbose=1, **make_blank_policy_kwargs)

            # Make callback to save intermediate artifacts during training.
            step = 0

            def callback(locals_: dict, _) -> bool:
                nonlocal step
                step += 1
                policy = locals_['self']

                # TODO(adam): make logging frequency configurable
                for callback in log_callbacks:
                    callback(sb_logger)

                if rollout_save_interval > 0 and step % rollout_save_interval == 0:
                    util.rollout.save(rollout_dir,
                                      policy,
                                      venv,
                                      step,
                                      n_timesteps=rollout_save_n_timesteps,
                                      n_episodes=rollout_save_n_episodes)
                if policy_save_interval > 0 and step % policy_save_interval == 0:
                    output_dir = os.path.join(policy_dir, f'{step:05d}')
                    serialize.save_stable_model(output_dir, policy,
                                                vec_normalize)
                return True  # Continue training.

            policy.learn(total_timesteps, callback=callback)

            # Save final artifacts after training is complete.
            if rollout_save_final:
                util.rollout.save(rollout_dir,
                                  policy,
                                  venv,
                                  "final",
                                  n_timesteps=rollout_save_n_timesteps,
                                  n_episodes=rollout_save_n_episodes)
            if policy_save_final:
                output_dir = os.path.join(policy_dir, "final")
                serialize.save_stable_model(output_dir, policy, vec_normalize)
def rollouts_and_policy(
  _run,
  _seed: int,
  env_name: str,
  total_timesteps: int,
  *,
  log_dir: str,
  num_vec: int,
  parallel: bool,
  max_episode_steps: Optional[int],
  normalize: bool,
  normalize_kwargs: dict,
  init_rl_kwargs: dict,

  n_episodes_eval: int,

  reward_type: Optional[str],
  reward_path: Optional[str],

  rollout_save_interval: int,
  rollout_save_final: bool,
  rollout_save_n_timesteps: Optional[int],
  rollout_save_n_episodes: Optional[int],

  policy_save_interval: int,
  policy_save_final: bool,

  init_tensorboard: bool,
) -> dict:
  """Trains an expert policy from scratch and saves the rollouts and policy.

  Checkpoints:
    At applicable training steps `step` (where step is either an integer or
    "final"):

      - Policies are saved to `{log_dir}/policies/{step}/`.
      - Rollouts are saved to `{log_dir}/rollouts/{step}.pkl`.

  Args:
      env_name: The gym.Env name. Loaded as VecEnv.
      total_timesteps: Number of training timesteps in `model.learn()`.
      log_dir: The root directory to save metrics and checkpoints to.
      num_vec: Number of environments in VecEnv.
      parallel: If True, then use DummyVecEnv. Otherwise use SubprocVecEnv.
      max_episode_steps: If not None, then environments are wrapped by
          TimeLimit so that they have at most `max_episode_steps` steps per
          episode.
      normalize: If True, then rescale observations and reward.
      normalize_kwargs: kwargs for `VecNormalize`.
      init_rl_kwargs: kwargs for `init_rl`.

      n_episodes_eval: The number of episodes to average over when calculating
          the average ground truth reward return of the final policy.

      reward_type: If provided, then load the serialized reward of this type,
          wrapping the environment in this reward. This is useful to test
          whether a reward model transfers. For more information, see
          `imitation.rewards.serialize.load_reward`.
      reward_path: A specifier, such as a path to a file on disk, used by
          reward_type to load the reward model. For more information, see
          `imitation.rewards.serialize.load_reward`.

      rollout_save_interval: The number of training updates in between
          intermediate rollout saves. If the argument is nonpositive, then
          don't save intermediate updates.
      rollout_save_final: If True, then save rollouts right after training is
          finished.
      rollout_save_n_timesteps: The minimum number of timesteps saved in every
          file. Could be more than `rollout_save_n_timesteps` because
          trajectories are saved by episode rather than by transition.
          Must set exactly one of `rollout_save_n_timesteps`
          and `rollout_save_n_episodes`.
      rollout_save_n_episodes: The number of episodes saved in every
          file. Must set exactly one of `rollout_save_n_timesteps` and
          `rollout_save_n_episodes`.

      policy_save_interval: The number of training updates between saves. Has
          the same semantics are `rollout_save_interval`.
      policy_save_final: If True, then save the policy right after training is
          finished.

      init_tensorboard: If True, then write tensorboard logs to {log_dir}/sb_tb
          and "output/summary/...".

  Returns:
    The return value of `rollout_stats()` using the final policy.
  """
  os.makedirs(log_dir, exist_ok=True)
  sacred_util.build_sacred_symlink(log_dir, _run)

  sample_until = util.rollout.make_sample_until(rollout_save_n_timesteps,
                                                rollout_save_n_episodes)
  eval_sample_until = util.rollout.min_episodes(n_episodes_eval)

  with util.make_session():
    tf.logging.set_verbosity(tf.logging.INFO)
    sb_logger.configure(folder=osp.join(log_dir, 'rl'),
                        format_strs=['tensorboard', 'stdout'])

    rollout_dir = osp.join(log_dir, "rollouts")
    policy_dir = osp.join(log_dir, "policies")
    os.makedirs(rollout_dir, exist_ok=True)
    os.makedirs(policy_dir, exist_ok=True)

    if init_tensorboard:
      sb_tensorboard_dir = osp.join(log_dir, "sb_tb")
      init_rl_kwargs["tensorboard_log"] = sb_tensorboard_dir

    venv = util.make_vec_env(env_name, num_vec, seed=_seed,
                             parallel=parallel, log_dir=log_dir,
                             max_episode_steps=max_episode_steps)

    log_callbacks = []
    with contextlib.ExitStack() as stack:
      if reward_type is not None:
        reward_fn_ctx = load_reward(reward_type, reward_path, venv)
        reward_fn = stack.enter_context(reward_fn_ctx)
        venv = RewardVecEnvWrapper(venv, reward_fn)
        log_callbacks.append(venv.log_callback)
        tf.logging.info(
            f"Wrapped env in reward {reward_type} from {reward_path}.")

      vec_normalize = None
      if normalize:
        venv = vec_normalize = VecNormalize(venv, **normalize_kwargs)

      policy = util.init_rl(venv, verbose=1, **init_rl_kwargs)

      # Make callback to save intermediate artifacts during training.
      step = 0

      def callback(locals_: dict, _) -> bool:
        nonlocal step
        step += 1
        policy = locals_['self']

        # TODO(adam): make logging frequency configurable
        for callback in log_callbacks:
          callback(sb_logger)

        if rollout_save_interval > 0 and step % rollout_save_interval == 0:
          save_path = osp.join(rollout_dir, f"{step}.pkl")
          util.rollout.save(save_path, policy, venv, sample_until)
        if policy_save_interval > 0 and step % policy_save_interval == 0:
          output_dir = os.path.join(policy_dir, f'{step:05d}')
          serialize.save_stable_model(output_dir, policy, vec_normalize)

      policy.learn(total_timesteps, callback=callback)

      # Save final artifacts after training is complete.
      if rollout_save_final:
        save_path = osp.join(rollout_dir, "final.pkl")
        util.rollout.save(save_path, policy, venv, sample_until)
      if policy_save_final:
        output_dir = os.path.join(policy_dir, "final")
        serialize.save_stable_model(output_dir, policy, vec_normalize)

      # Final evaluation of expert policy.
      trajs = util.rollout.generate_trajectories(
          policy, venv, eval_sample_until)
      stats = util.rollout.rollout_stats(trajs)

  return stats
Beispiel #3
0
def rollouts_and_policy(
    _run,
    _seed: int,
    env_name: str,
    total_timesteps: int,
    *,
    log_dir: str,
    num_vec: int,
    parallel: bool,
    max_episode_steps: Optional[int],
    normalize: bool,
    normalize_kwargs: dict,
    init_rl_kwargs: dict,
    n_episodes_eval: int,
    reward_type: Optional[str],
    reward_path: Optional[str],
    rollout_save_final: bool,
    rollout_save_n_timesteps: Optional[int],
    rollout_save_n_episodes: Optional[int],
    policy_save_interval: int,
    policy_save_final: bool,
    init_tensorboard: bool,
) -> dict:
    """Trains an expert policy from scratch and saves the rollouts and policy.

    Checkpoints:
      At applicable training steps `step` (where step is either an integer or
      "final"):

        - Policies are saved to `{log_dir}/policies/{step}/`.
        - Rollouts are saved to `{log_dir}/rollouts/{step}.pkl`.

    Args:
        env_name: The gym.Env name. Loaded as VecEnv.
        total_timesteps: Number of training timesteps in `model.learn()`.
        log_dir: The root directory to save metrics and checkpoints to.
        num_vec: Number of environments in VecEnv.
        parallel: If True, then use DummyVecEnv. Otherwise use SubprocVecEnv.
        max_episode_steps: If not None, then environments are wrapped by
            TimeLimit so that they have at most `max_episode_steps` steps per
            episode.
        normalize: If True, then rescale observations and reward.
        normalize_kwargs: kwargs for `VecNormalize`.
        init_rl_kwargs: kwargs for `init_rl`.

        n_episodes_eval: The number of episodes to average over when calculating
            the average ground truth reward return of the final policy.

        reward_type: If provided, then load the serialized reward of this type,
            wrapping the environment in this reward. This is useful to test
            whether a reward model transfers. For more information, see
            `imitation.rewards.serialize.load_reward`.
        reward_path: A specifier, such as a path to a file on disk, used by
            reward_type to load the reward model. For more information, see
            `imitation.rewards.serialize.load_reward`.

        rollout_save_interval: The number of training updates in between
            intermediate rollout saves. If the argument is nonpositive, then
            don't save intermediate updates.
        rollout_save_final: If True, then save rollouts right after training is
            finished.
        rollout_save_n_timesteps: The minimum number of timesteps saved in every
            file. Could be more than `rollout_save_n_timesteps` because
            trajectories are saved by episode rather than by transition.
            Must set exactly one of `rollout_save_n_timesteps`
            and `rollout_save_n_episodes`.
        rollout_save_n_episodes: The number of episodes saved in every
            file. Must set exactly one of `rollout_save_n_timesteps` and
            `rollout_save_n_episodes`.

        policy_save_interval: The number of training updates between saves. Has
            the same semantics are `rollout_save_interval`.
        policy_save_final: If True, then save the policy right after training is
            finished.

        init_tensorboard: If True, then write tensorboard logs to {log_dir}/sb_tb
            and "output/summary/...".

    Returns:
      The return value of `rollout_stats()` using the final policy.
    """
    os.makedirs(log_dir, exist_ok=True)
    sacred_util.build_sacred_symlink(log_dir, _run)

    sample_until = rollout.make_sample_until(rollout_save_n_timesteps,
                                             rollout_save_n_episodes)
    eval_sample_until = rollout.min_episodes(n_episodes_eval)

    logging.basicConfig(level=logging.INFO)
    logger.configure(folder=osp.join(log_dir, "rl"),
                     format_strs=["tensorboard", "stdout"])

    rollout_dir = osp.join(log_dir, "rollouts")
    policy_dir = osp.join(log_dir, "policies")
    os.makedirs(rollout_dir, exist_ok=True)
    os.makedirs(policy_dir, exist_ok=True)

    if init_tensorboard:
        # sb_tensorboard_dir = osp.join(log_dir, "sb_tb")
        # Convert sacred's ReadOnlyDict to dict so we can modify on next line.
        init_rl_kwargs = dict(init_rl_kwargs)
        # init_rl_kwargs["tensorboard_log"] = sb_tensorboard_dir
        # FIXME(sam): this is another hack to prevent SB3 from configuring the
        # logger on the first .learn() call. Remove it once SB3 issue #109 is
        # fixed.
        init_rl_kwargs["tensorboard_log"] = None

    venv = util.make_vec_env(
        env_name,
        num_vec,
        seed=_seed,
        parallel=parallel,
        log_dir=log_dir,
        max_episode_steps=max_episode_steps,
    )

    callback_objs = []
    if reward_type is not None:
        reward_fn = load_reward(reward_type, reward_path, venv)
        venv = RewardVecEnvWrapper(venv, reward_fn)
        callback_objs.append(venv.make_log_callback())
        logging.info(
            f"Wrapped env in reward {reward_type} from {reward_path}.")

    vec_normalize = None
    if normalize:
        venv = vec_normalize = VecNormalize(venv, **normalize_kwargs)

    if policy_save_interval > 0:
        save_policy_callback = serialize.SavePolicyCallback(
            policy_dir, vec_normalize)
        save_policy_callback = callbacks.EveryNTimesteps(
            policy_save_interval, save_policy_callback)
        callback_objs.append(save_policy_callback)
    callback = callbacks.CallbackList(callback_objs)

    policy = util.init_rl(venv, verbose=1, **init_rl_kwargs)
    policy.learn(total_timesteps, callback=callback)

    # Save final artifacts after training is complete.
    if rollout_save_final:
        save_path = osp.join(rollout_dir, "final.pkl")
        rollout.rollout_and_save(save_path, policy, venv, sample_until)
    if policy_save_final:
        output_dir = os.path.join(policy_dir, "final")
        serialize.save_stable_model(output_dir, policy, vec_normalize)

    # Final evaluation of expert policy.
    trajs = rollout.generate_trajectories(policy, venv, eval_sample_until)
    stats = rollout.rollout_stats(trajs)

    return stats