Beispiel #1
0
def analyze_imitation(
    source_dir: str,
    run_name: Optional[str],
    env_name: Optional[str],
    skip_failed_runs: bool,
    csv_output_path: Optional[str],
    verbose: bool,
) -> pd.DataFrame:
    """Parse Sacred logs and generate a DataFrame for imitation learning results.

    Args:
      source_dir: A directory containing Sacred FileObserver subdirectories
        associated with the `train_adversarial` Sacred script. Behavior is
        undefined if there are Sacred subdirectories associated with other
        scripts.
      run_name: If provided, then only analyze results from Sacred directories
        associated with this run name. `run_name` is compared against the
        "experiment.name" key in `run.json`.
      skip_failed_runs: If True, then filter out runs where the status is FAILED.
      csv_output_path: If provided, then save a CSV output file to this path.
      verbose: If True, then print the dataframe.

    Returns:
      A list of dictionaries used to generate the analysis DataFrame.
    """
    sacred_dicts = _get_sacred_dicts(source_dir, run_name, env_name,
                                     skip_failed_runs)

    rows = []
    for sd in sacred_dicts:
        row = OrderedDict()
        rows.append(row)

        # Use get to prevent exceptions when reading in-progress experiments.
        row["status"] = get(sd.run, "status")
        row["use_gail"] = get(sd.config, "init_trainer_kwargs.use_gail")
        row["env_name"] = get(sd.config, "env_name")
        row["n_expert_demos"] = get(sd.config, "n_expert_demos")
        row["run_name"] = get(sd.run, "experiment.name")

        imit_stats = get(sd.run, "result.imit_stats")
        expert_stats = get(sd.run, "result.expert_stats")
        if imit_stats is not None and expert_stats is not None:
            # Assume that `result.imit_stats` and `result.expert_stats` are
            # formatted correctly.
            row["expert_return_summary"] = _make_return_summary(expert_stats)
            row["imit_return_summary"] = _make_return_summary(
                imit_stats, "monitor_")
            row["imit_expert_ratio"] = (imit_stats["monitor_return_mean"] /
                                        expert_stats["return_mean"])

    df = pd.DataFrame(rows)
    if csv_output_path is not None:
        df.to_csv(csv_output_path)
    if verbose:
        print(df.to_string())
    return df
Beispiel #2
0
def _get_sacred_dicts(source_dir: str, run_name: str, env_name: str,
                      skip_failed_runs: bool) -> List[sacred_util.SacredDicts]:
    sacred_dirs = sacred_util.filter_subdirs(source_dir)
    sacred_dicts = [
        sacred_util.SacredDicts.load_from_dir(sacred_dir)
        for sacred_dir in sacred_dirs
    ]

    if run_name is not None:
        sacred_dicts = filter(
            lambda sd: get(sd.run, "experiment.name") == run_name,
            sacred_dicts)

    if env_name is not None:
        sacred_dicts = filter(
            lambda sd: get(sd.config, "env_name") == env_name, sacred_dicts)

    if skip_failed_runs:
        sacred_dicts = filter(lambda sd: get(sd.run, "status") != "FAILED",
                              sacred_dicts)

    return list(sacred_dicts)