Beispiel #1
0
model.compile(optimizer=opt, loss=custom_mse)

model.summary()

start_from = 0
save_every_n_epoch = 5
n_epochs = 10000
# model.load_weights("../weights/implementation7d-reg-55.h5")

# start image downloader
ip = None

g = h5_small_vgg_generator(b_size, "../h5_data", ip)
gval = h5_small_vgg_generator(b_size, "../h5_validate", None)


for i in range(start_from // save_every_n_epoch, n_epochs // save_every_n_epoch):
    print("START", i * save_every_n_epoch, "/", n_epochs)
    history = model.fit_generator(g, steps_per_epoch=60000/b_size, epochs=save_every_n_epoch,
                                  validation_data=gval, validation_steps=(1024//b_size))
    model.save_weights("../weights/implementation8-res-" + str(i * save_every_n_epoch) + ".h5")

    # save sample images
    whole_image_check_overlapping(model, 40, "imp8-res-" + str(i * save_every_n_epoch) + "-")

    # save history
    output = open('../history/imp8-res-{:0=4d}.pkl'.format(i * save_every_n_epoch), 'wb')
    pickle.dump(history.history, output)
    output.close()

model.compile(optimizer=opt, loss=custom_mse, metrics=[root_mean_squared_error, mean_squared_error])

model.summary()

start_from = 0
save_every_n_epoch = 1
n_epochs = 10000
# model.load_weights("../weights/implementation9-bn-24.h5")

# start image downloader
ip = None

g = h5_small_vgg_generator(b_size, "../data/h5_small_train", ip)
gval = h5_small_vgg_generator(b_size, "../data/h5_small_validation", None)


for i in range(start_from // save_every_n_epoch, n_epochs // save_every_n_epoch):
    print("START", i * save_every_n_epoch, "/", n_epochs)
    history = model.fit_generator(g, steps_per_epoch=100000//b_size, epochs=save_every_n_epoch,
                                  validation_data=gval, validation_steps=(10000//b_size))
    model.save_weights("../weights/implementation9-bn-" + str(i * save_every_n_epoch) + ".h5")

    # save sample images
    whole_image_check_overlapping(model, 80, "imp9-bn-" + str(i * save_every_n_epoch) + "-")

    # save history
    output = open('../history/imp9-bn-{:0=4d}.pkl'.format(i * save_every_n_epoch), 'wb')
    pickle.dump(history.history, output)
    output.close()