Beispiel #1
0
def VKmeanupper(
    pa, pb, k1, k2, k3, k4
):  # Interval pa, Interval pb, double k1, double k2, double k3, double k4)
    #double p1, p2, ec2;
    lpa = utils.left(pa)
    rpa = utils.right(pa)
    lpb = utils.left(pb)
    rpb = utils.right(pb)
    touch = touching(pa, pb)
    p1 = lpa
    p2 = lpb
    ec2 = VKmeanup(p1, p2, k1, k2, k3, k4)
    p1 = lpa
    p2 = rpb
    ec2 = np.max([ec2, VKmeanup(p1, p2, k1, k2, k3, k4)])
    p1 = rpa
    p2 = lpb
    ec2 = np.max([ec2, VKmeanup(p1, p2, k1, k2, k3, k4)])
    p1 = rpa
    p2 = rpb
    ec2 = np.max([ec2, VKmeanup(p1, p2, k1, k2, k3, k4)])
    p1 = np.max([lpa, 1 - rpb])
    p2 = 1 - p1

    if (touch): ec2 = np.max([ec2, VKmeanup(p1, p2, k1, k2, k3, k4)])

    p1 = np.min([rpa, 1 - lpb])
    p2 = 1 - p1

    if (touch): ec2 = np.max([ec2, VKmeanup(p1, p2, k1, k2, k3, k4)])

    return ec2
Beispiel #2
0
def VKmeanlower(
    pa, pb, k1, k2, k3, k4
):  # Interval pa, Interval pb, double k1, double k2, double k3, double k4)
    # double p1, p2, ec1;
    lpa = utils.left(pa)
    rpa = utils.right(pa)
    lpb = utils.left(pb)
    rpb = utils.right(pb)
    touch = touching(pa + pb, 1.0)
    p1 = lpa
    p2 = lpb
    ec1 = VKmeanlo(p1, p2, k1, k2, k3, k4)
    p1 = lpa
    p2 = rpb
    ec1 = np.min([ec1, VKmeanlo(p1, p2, k1, k2, k3, k4)])
    p1 = rpa
    p2 = lpb
    ec1 = np.min([ec1, VKmeanlo(p1, p2, k1, k2, k3, k4)])
    p1 = rpa
    p2 = rpb
    ec1 = np.min([ec1, VKmeanlo(p1, p2, k1, k2, k3, k4)])
    p1 = np.max([lpa, 1 - rpb])
    p2 = 1 - p1

    if touch:
        ec1 = np.min([ec1, VKmeanlo(p1, p2, k1, k2, k3, k4)])

    p1 = np.min([rpa, 1 - lpb])
    p2 = 1 - p1

    if touch:
        ec1 = np.min([ec1, VKmeanlo(p1, p2, k1, k2, k3, k4)])

    return ec1
Beispiel #3
0
def touching(a, b):  # const Interval& a, const Interval& b )
    if np.all(utils.left(a) == utils.right(a)) and np.all(
            utils.left(b) == utils.right(b)):
        return utils.left(a) == utils.left(b)
    if utils.straddles(a - b):
        return True

    return False
Beispiel #4
0
def VKmeanproduct(a, b):
    # Interval ea,eb,ec,pa,pb;
    # double la,ra,lb,rb,k1,k2,k3,k4,ec1,ec2;
    ec = interval.Interval(-np.inf, np.inf)
    ea = interval.Interval(a.mean_lo, a.mean_hi)
    eb = interval.Interval(b.mean_lo, b.mean_hi)
    la = utils.left(a)
    ra = utils.right(a)
    lb = utils.left(b)
    rb = utils.right(b)
    k1 = ra * rb
    k2 = ra * lb
    k3 = la * rb
    k4 = la * lb
    pa = interval.Interval((utils.left(ea) - la) / (ra - la),
                           (utils.right(ea) - la) / (ra - la))
    pb = interval.Interval((utils.left(eb) - lb) / (rb - lb),
                           (utils.right(eb) - lb) / (rb - lb))
    ec = utils.env_int(VKmeanlower(pa, pb, k1, k2, k3, k4),
                       VKmeanupper(pa, pb, k1, k2, k3, k4))

    return ec
Beispiel #5
0
    def reciprocal(self):
        if self.shape in [
                'Cauchy', '{min, max, median}', '{min, max, percentile}',
                '{min, max}'
        ]:
            sh = self.shape
        elif self.shape == 'Pareto':
            sh = 'power function'
        elif self.shape == 'power function':
            sh = 'Pareto'
        else:
            sh = ''
        t = lambda x: 1 / x

        if utils.left(self) <= 0 and utils.right(self) >= 0:
            return np.nan
        elif utils.left(self) > 0:
            mymean = rowebounds.transformedMean(self, t, False, True)
            myvar = rowebounds.transformedVariance(self, t, False, True,
                                                   mymean)
        else:
            mymean = rowebounds.transformedMean(self, t, False, False)
            myvar = rowebounds.transformedVariance(self, t, False, False,
                                                   mymean)

        pbox_parms = {
            "hi": 1 / np.flip(self.lo),
            "lo": 1 / np.flip(self.hi),
            "shape": sh,
            "mean_lo": utils.left(mymean),
            "mean_hi": utils.right(mymean),
            "var_lo": utils.left(myvar),
            "var_hi": utils.right(myvar)
        }

        return Pbox(**pbox_parms)
Beispiel #6
0
    def _naivefrechetconv(self, other, op='*'):
        if op == '+':
            return self._frechetconv(other, '+')
        if op == '-':
            return self._frechetconv(-other, '+')
        if op == '/':
            return self._naivefrechetconv(other.reciprocal(), '*')

        # x = makepbox(x)
        # y = makepbox(y)
        n = len(self.hi)

        c = (utils.get_op(op)([[i] for i in self.hi], other.hi)).flatten()
        c.sort()
        Zd = c[np.array(range(n * n - n, n * n))]

        c = (utils.get_op(op)([[i] for i in self.lo], other.lo)).flatten()
        c.sort()
        Zu = c[np.array(range(n))]

        # mean
        m = interval.Interval(self.mean_lo, self.mean_hi) * interval.Interval(
            other.mean_lo, other.mean_hi)
        a = np.sqrt(
            interval.Interval(self.var_lo, self.var_hi) *
            interval.Interval(other.var_lo, other.var_hi))

        ml = m - a
        mh = m + a

        VK = vkmean.VKmeanproduct(self, other)
        m = utils.imp(interval.Interval(ml, mh), VK)

        # variance
        vl = 0
        vh = np.inf

        pbox_parms = {
            "hi": Zd,
            "lo": Zu,
            "mean_lo": utils.left(m),
            "mean_hi": utils.right(m),
            "var_lo": vl,
            "var_hi": vh
        }

        return Pbox(**pbox_parms)
Beispiel #7
0
    def _checkmoments(self):
        a = interval.Interval(self.mean_lo, self.mean_hi)  #mean(x)
        b = utils.dwMean(self)

        self.mean_lo = np.max([utils.left(a), utils.left(b)])
        self.mean_hi = np.min([utils.right(a), utils.right(b)])

        if self.mean_hi < self.mean_lo:
            # use the observed mean
            self.mean_lo = utils.left(b)
            self.mean_hi = utils.right(b)

        a = interval.Interval(self.var_lo, self.var_hi)  #var(x)
        b = utils.dwVariance(self)

        self.var_lo = np.max([utils.left(a), utils.left(b)])
        self.var_hi = np.min([utils.right(a), utils.right(b)])

        if self.var_hi < self.var_lo:
            # use the observed variance
            self.var_lo = utils.left(b)
            self.var_hi = utils.right(b)
Beispiel #8
0
    def __init__(self,
                 lo=None,
                 hi=None,
                 steps=200,
                 shape=None,
                 mean_lo=None,
                 mean_hi=None,
                 var_lo=None,
                 var_hi=None,
                 interpolation='linear'):
        if isinstance(lo, Pbox):
            self.lo = lo.lo
            self.hi = lo.hi
            self.steps = lo.steps
            self.n = lo.steps
            self.shape = lo.shape
            self.mean_lo = lo.mean_lo
            self.mean_hi = lo.mean_hi
            self.var_lo = lo.var_lo
            self.var_hi = lo.var_hi

        else:
            if lo is None and hi is None:
                lo = -np.inf
                hi = np.inf

            if (lo is not None) and (hi is None):
                hi = lo

            if isinstance(lo,
                          interval.Interval) or (not hasattr(lo, '__len__')):
                lo = np.array([utils.left(lo)])

            if isinstance(hi,
                          interval.Interval) or (not hasattr(hi, '__len__')):
                hi = np.array([utils.right(hi)])

            if len(lo) != steps:
                lo = utils.interpolate(lo,
                                       interpolation=interpolation,
                                       left=True,
                                       pbox_steps=steps)

            if len(hi) != steps:
                hi = utils.interpolate(hi,
                                       interpolation=interpolation,
                                       left=False,
                                       pbox_steps=steps)

            self.lo = lo
            self.hi = hi
            self.steps = steps
            self.n = self.steps
            self.shape = shape
            self.mean_lo = -np.inf
            self.mean_hi = np.inf
            self.var_lo = 0
            self.var_hi = np.inf

        self._computemoments()
        if shape is not None: self.shape = shape
        if mean_lo is not None: self.mean_lo = np.max([mean_lo, self.mean_lo])
        if mean_hi is not None: self.mean_hi = np.min([mean_hi, self.mean_hi])
        if var_lo is not None: self.var_lo = np.max([var_lo, self.var_lo])
        if var_hi is not None: self.var_hi = np.min([var_hi, self.var_hi])
        self._checkmoments()