This function is only  for this Face Recoginition System.
if you want to import to another functions please modify

---------Created by ZOU Zijie :)

"""

#/------Initial Logger------/
log_timee = time.strftime("_%d-%b-%Y_%H:%M:%S", time.localtime())

#/---Dlib initial---/
model = './models/shape_predictor_68_face_landmarks.dat'
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(model)
fa = face_utils.FaceAligner(predictor, desiredFaceWidth=250)


def log_time():
    #/--1 for info; 2 for warning; 3 for error--/
    log_time = time.strftime("%d-%b-%Y_%H:%M:%S", time.localtime())

    return log_time


def align_unknown():
    user = "******"
    path = './Users/people_ori/Unkonwn'
    un_vec = './Users/people_vectors/Unkonwn'

    count = 0
Beispiel #2
0
    # 随机颜色
    color = np.random.randint(0, 255, (100, 3))

    cap = cv2.VideoCapture("stable.mp4")
    cap.set(3, 1280)
    cap.set(4, 720)

    detector = dlib.get_frontal_face_detector()
    predictor = dlib.shape_predictor("./68Marks.dat")
    p0 = []
    Face_Counter = 0
    old_gray = None

    aligner = face_utils.FaceAligner(predictor,
                                     desiredFaceWidth=512,
                                     desiredFaceHeight=512,
                                     desiredLeftEye=(0.30, 0.30))
    while True:
        rect, frame = cap.read()
        frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        old_gray = frame_gray
        print(old_gray.shape)
        dets = detector(frame_gray, 0)
        if len(dets) != 0:
            face = dets[0]
            Face_Counter = Face_Counter + 1
            left = face.left()
            right = face.right()
            bottom = face.bottom()
            top = face.top()
            cv2.rectangle(frame, (left, top), (right, bottom), (0, 255, 0), 2)
 def __init__(self):
     self.detector = dlib.get_frontal_face_detector()
     self.predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
     self.fa = face_utils.FaceAligner(self.predictor, desiredFaceWidth=256)
def main():
    # return
    cap = cv2.VideoCapture(0)
    if not cap.isOpened():
        print("Unable to connect to camera.")
        return
    
    counter = 0
    frame_count = 0
    record = False

    detector = dlib.get_frontal_face_detector()
    predictor = dlib.shape_predictor(face_landmark_path)
    fa = face_utils.FaceAligner(predictor, desiredFaceWidth=256)

    while cap.isOpened():

        ret, img = cap.read()
        #flip img
        img = cv2.flip(img, 1)
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        res = img.copy()

        if ret:
            #detect faces from image
            face_rects = detector(img, 0)
            
            for i in range(len(face_rects)):
                mask = np.zeros(img.shape[:2], dtype = np.uint8)

                #get face landmarks
                face_rect = face_rects[i]
                shape = predictor(img, face_rect)
                shape = face_utils.shape_to_np(shape)
                reprojectdst, euler_angle = get_head_pose(shape)
                
                #detect hull to crop face
                hull = cv2.convexHull(shape)
                cv2.fillPoly(mask, pts =[hull], color=1)


                #visualize
                cv2.polylines(res,[hull],True,(255, 0, 0))
                
                for (x, y) in shape:
                    cv2.circle(res, (x, y), 1, (0, 255, 0), -1)

                for start, end in line_pairs:
                    cv2.line(res, reprojectdst[start], reprojectdst[end], (0, 0, 255))

                (x, y, w, h) = face_utils.rect_to_bb(face_rect)

                x = np.clip(x, 0, img.shape[1])
                y = np.clip(y, 0, img.shape[0])
                w = np.clip(w, 1, img.shape[1]-x)
                h = np.clip(h, 1, img.shape[0]-y)

                img_masked = cv2.bitwise_and(img, img, mask = mask)

                faceOrig = cv2.resize(img_masked[y:y + h, x:x + w], (256, 256))
                faceAligned = cv2.resize(fa.align(img_masked, gray, face_rect), (img.shape[1], img.shape[0]))

                if record:
                    if frame_count % 2 == 0:
                        path = './face_database/'+person_name+'/'+person_name+str(counter)+'.jpg'
                        counter+=1
                        cv2.imwrite(path, faceAligned)

                res = np.hstack((res, faceAligned))

            frame_count += 1
            cv2.imshow("demo", res)
            key = cv2.waitKey(1) & 0xFF
            if  key == ord('q'):
                break
            elif key == ord('r'):
                if not record:
                    record = True
                    print("recording...")
                else:
                    record = False
                    print("stop recording")
 def __init__(self):
     self.detector = dlib.get_frontal_face_detector()
     datapath = pathlib.Path(__file__).parent.absolute() 
     datapath = os.path.join(datapath, "shape_predictor_68_face_landmarks.dat")
     self.predictor = dlib.shape_predictor(datapath)
     self.fa = face_utils.FaceAligner(self.predictor, desiredFaceWidth=256)