def test_avg_cross(self):
        sma9 = indicators.SMA(self.ohlc.close, period=9)
        sma21 = indicators.SMA(self.ohlc.close, period=21)
        strategy = strategies.AvgCrossStrategy(self.ohlc.close, sma9.df.sma9,
                                               sma21.df.sma21)

        result = strategy.backtest(self.ohlc.close)

        self.assertEqual(result.start, datetime(2020, 1, 8, 1, 30, 0))
        self.assertEqual(result.end, datetime(2020, 1, 18, 11, 15, 0))
        self.assertEqual(result.trades, 27)
        self.assertTrue(math.isclose(result.netret, 9.8, rel_tol=1e-02))
        self.assertTrue(math.isclose(result.sharpe, 0.0533, rel_tol=1e-03))
        self.assertTrue(math.isclose(result.maxdrawdown, -3.94, rel_tol=1e-02))
        self.assertEqual(result.maxdrawdownduration, 207)
Beispiel #2
0
 def test_SMA(self):
     sma = pd.read_csv('tests/data/BTCUSDT_15m_SMA9.csv',
                       index_col='time',
                       parse_dates=True)
     mysma = indicators.SMA(self.ohlc.close, period=9)
     isclose = np.isclose(sma.sma9, mysma.df.sma9, equal_nan=True)
     self.assertTrue(np.all(isclose))
Beispiel #3
0
def drawEMA(ax, data, periods=[5, 10, 20, 30, 60, 120]):
    for period in periods:
        if data.__contains__('ema%d' % period):
            ema = data['ema%d' % period]
        elif data.__contains__('ema'):
            ema = data['ema']
        else:
            close = data['close']
            ema = ind.SMA(close, period)
        ax.plot(ema, label='ema%d' % period)
Beispiel #4
0
def drawSMA(ax, data, periods=[5, 10, 20, 30, 60, 120]):
    for period in periods:
        if data.__contains__('sma_%d' % period):
            sma = data['sma_%d' % period]
        elif data.__contains__('sma'):
            sma = data['sma']
        else:
            close = data['close']
            sma = ind.SMA(close, period)
        ax.plot(sma, label='sma_%d' % period, linewidth=1)
Beispiel #5
0
    def __init__(self, sym='SPY', sd=dt.datetime(2008,1, 1), \
            ed=dt.datetime(2009,12,31),sv=100000,verbose=False):

        self.sym = sym
        self.verbose = verbose
        self.shares = 0
        self.position = 0
        self.sv = sv
        self.cash = sv
        self.pp = 0
        #period
        n = 28
        chart = False
        #take in, normalize data
        df = ut.get_data([sym], pd.date_range(sd - dt.timedelta(100), ed))[sym]
        normed = df / df.ix[0]

        #get features
        sma = ind.SMA(normed, n)
        smap = ind.standardize(normed / sma)
        bbp = ind.standardize(ind.bband(normed, n, chart)[0])
        stdev = ind.standardize(normed.rolling(window=n, min_periods=n).std())
        mom = ind.standardize(ind.momentum(normed, n, chart))
        momvol = ind.standardize(mom / stdev)

        #daily returns & combined features
        rets = pd.DataFrame(df)
        daily_rets = rets[sym].copy()
        daily_rets[1:] = (rets[sym].ix[1:] / rets[sym].ix[:-1].values) - 1
        daily_rets.ix[0] = 0
        #print df

        #df = pd.DataFrame(df).assign(normed = normed).assign(smap=smap).\
        #        assign(stdev=stdev).assign(bbp=bbp).assign(mom=mom)[sd:]
        df = pd.DataFrame(df).assign(normed = normed).assign(smap=smap).\
                assign(bbp=bbp).assign(mom=mom)[sd:]

        #print df
        daily_rets.ix[0] = 0
        df = df.assign(dr=daily_rets)

        #print df
        self.df = df
        self.market = df.iterrows()
        self.curr = self.market.next()
        self.action = self.Action()
        #self.features = ['smap', 'stdev', 'bbp', 'mom']
        self.features = ['smap', 'bbp', 'mom']
def report_of_SMA(prices, n):
    '''Takes the input(a list of prices and N-day) to
       print the report of simple moving average and signal strategies'''

    a_list_of_SMAverage = indicators.SMA(prices, n)
    CLASS = signal_strategies.SMA_SIGNAL(prices, n, a_list_of_SMAverage)
    x = CLASS.simple_signal()
    date_close = [[], []]
    for b in information:
        date_close[0].append(b[0])
        date_close[1].append(b[4])
    print('\nSYMBOL: ' + s + '\nSTRATEGY: Simple Moving Average')
    print('\n{:10}  {:6}  {:9}  {:5}'.format('DATE', 'CLOSE', 'INDICATOR',
                                             'SIGNAL'))

    for i in range(len(date_close[0])):
        print('{:10}  {:6}  {:9}    {:5}'.format(date_close[0][i],
                                                 date_close[1][i],
                                                 a_list_of_SMAverage[i], x[i]))
Beispiel #7
0
def testPolicy(symbol = "AAPL", sd=dt.datetime(2010,1,1), \
        ed = dt.datetime(2011,12,31), sv=100000):
    chart = False
    n = 14
    #symbol = [symbol]
    prices = get_data(symbol, pd.date_range(sd, ed))
    #print prices
    #ffill and drop SPY
    prices.fillna(method='ffill', inplace=True)
    prices.fillna(method='bfill', inplace=True)
    prices = prices[symbol]
    #Generate indicators
    sma = ind.SMA(prices, n)
    smap = ind.standardize(prices / sma)
    bbp = ind.standardize(ind.bband(prices, n, chart)[0])
    stdev = ind.standardize(prices.rolling(window=n, min_periods=n).std())
    mom = ind.standardize(ind.momentum(prices, n, chart))
    momvol = ind.standardize(mom / stdev)
    orders = prices.copy()
    orders.ix[:, :] = np.nan

    smap_cross = pd.DataFrame(0, index=smap.index, columns=smap.columns)
    smap_cross[smap >= 1] = 1
    smap_cross[1:] = smap_cross.diff()
    smap_cross.ix[0] = 0

    orders[(smap < 0.95) & (bbp < 0) & (stdev < 0.1) & (mom < 0)] = 1000
    orders[(smap > 1.05) & (bbp > 1) & (stdev > 0.3) & (mom > 0)] = -1000

    orders[(smap_cross != 0)] = 0
    orders.ffill(inplace=True)
    orders.fillna(0, inplace=True)
    orders[1:] = orders.diff()
    #orders.ix[0] = 1000
    #orders.ix[-1] = -1000
    #orders = orders.loc[(orders!=0).any(axis=1)]
    #orders.ix[0] = 0
    #orders.ix[-1] = orders.ix[-2]*-1
    #print orders
    return orders
Beispiel #8
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("file")
    parser.add_argument("--sma", type=int, nargs='+', help='Adds SMA to the price graph')
    parser.add_argument("--ema", type=int, nargs='+', help='Adds EMA to the price graph')
    parser.add_argument("--rsi", type=int, help='Adds RSI in a subplot')
    parser.add_argument("--macd", type=int, nargs=3, help='Adds MACD in a subplot')
    parser.add_argument("--bbands", type=int, nargs=2, help='Adds Bollinger Bands to the price graph')
    parser.add_argument("--strategy", type=int, nargs='+', help='Adds a strategy, 1 : EMA Cross')
    args = parser.parse_args()

    ohlc = pd.read_csv(args.file, index_col='time', parse_dates=True)
    close = ohlc['close']

    # calculates the number of sublots
    rows = 1
    if args.rsi != None:
        rows += 1
    if args.macd != None:
        rows += 1

    fig = make_subplots(rows=rows, cols=1, shared_xaxes=True)

    # plots close bar graph with averages
    row = 1
    fig.add_trace(go.Scatter(x=ohlc.index, y=close, name="Close"), row=row, col=1)
    if args.ema != None:
        for period in args.ema:
            ema = indicators.EMA(close, period)
            fig.add_trace(go.Scatter(x=ohlc.index, y=ema.df['ema{}'.format(period)], name="EMA {}".format(period)), row=row, col=1)
    if args.sma != None:
        for period in args.sma:
            sma = indicators.SMA(close, period)
            fig.add_trace(go.Scatter(x=ohlc.index, y=sma.df['sma{}'.format(period)], name="SMA {}".format(period)), row=row, col=1)

    # plots Bollinger Bands
    if args.bbands != None:
        bbands = indicators.BollingerBands(close, args.bbands[0])
        fig.add_trace(go.Scatter(x=ohlc.index, y=bbands.df.ma), row=row, col=1)
        fig.add_trace(go.Scatter(x=ohlc.index, y=bbands.df.upper), row=row, col=1)
        fig.add_trace(go.Scatter(x=ohlc.index, y=bbands.df.lower), row=row, col=1)
        row += 1

    row += 1

    # plots RSI
    if args.rsi != None:
        rsi = indicators.RSI(close, args.rsi)
        fig.add_trace(go.Scatter(x=ohlc.index, y=rsi.df.rsi, name="RSI {}".format(args.rsi)), row=row, col=1)
        row += 1

    # plots MACD
    if args.macd != None:
        macd = indicators.MACD(close, args.macd[0], args.macd[1], args.macd[2])
        fig.add_trace(go.Scatter(x=ohlc.index, y=macd.df.MACD, name="MACD {} {} {}".format(args.macd[0], args.macd[1], args.macd[2])), row=row, col=1)
        fig.add_trace(go.Scatter(x=ohlc.index, y=macd.df.signal, name="MACD Signal"), row=row, col=1)
        row += 1

    # plots strategy
    if args.strategy != None:
        if args.strategy[0] == 1:

            fast_ema = indicators.EMA(ohlc.close, period=args.strategy[1])
            slow_ema = indicators.EMA(ohlc.close, period=args.strategy[2])

            strategy = strategies.AvgCrossStrategy(ohlc.close, fast_ema.data(), slow_ema.data())

            fig.add_trace(go.Scatter(x=close.loc[strategy.signals['positions'] == 1.0].index, y=close.loc[strategy.signals['positions'] == 1.0],
            mode='markers', marker=dict(size=12, symbol='triangle-up', color='green'),  name="Buy"), row=1, col=1)

            fig.add_trace(go.Scatter(x=close.loc[strategy.signals['positions'] == -1.0].index, y=close.loc[strategy.signals['positions'] == -1.0],
            mode='markers', marker=dict(size=12, symbol='triangle-down', color='red'),  name="Sell"), row=1, col=1)

        elif args.strategy[0] == 2:

            macd = indicators.MACD(ohlc.close, args.strategy[1], args.strategy[2], args.strategy[3])

            strategy = strategies.MACDStrategy(ohlc.close, macd)

            fig.add_trace(go.Scatter(x=close.loc[strategy.signals['positions'] == 1.0].index, y=close.loc[strategy.signals['positions'] == 1.0],
            mode='markers', marker=dict(size=12, symbol='triangle-up', color='green'),  name="Buy"), row=1, col=1)

            fig.add_trace(go.Scatter(x=close.loc[strategy.signals['positions'] == -1.0].index, y=close.loc[strategy.signals['positions'] == -1.0],
            mode='markers', marker=dict(size=12, symbol='triangle-down', color='red'),  name="Sell"), row=1, col=1)

        elif args.strategy[0] == 3:

            bb1 = indicators.BollingerBands(ohlc.close, 20, 1)
            bb2 = indicators.BollingerBands(ohlc.close, 20, 2)
            strategy = strategies.DBBStrategy(ohlc.close, bb1, bb2)

            fig.add_trace(go.Scatter(x=close.loc[strategy.signals['positions'] == 1.0].index, y=close.loc[strategy.signals['positions'] == 1.0],
            mode='markers', marker=dict(size=12, symbol='triangle-up', color='green'),  name="Buy"), row=1, col=1)

            fig.add_trace(go.Scatter(x=close.loc[strategy.signals['positions'] == -1.0].index, y=close.loc[strategy.signals['positions'] == -1.0],
            mode='markers', marker=dict(size=12, symbol='triangle-down', color='red'),  name="Sell"), row=1, col=1)

        elif args.strategy[0] == 4:

            rsi = indicators.RSI(ohlc.close, 9)
            macd = indicators.MACD(ohlc.close, 12, 26, 9)
            strategy = strategies.RSIMACDStrategy(ohlc.close, rsi, macd)

            fig.add_trace(go.Scatter(x=close.loc[strategy.signals['positions'] == 1.0].index, y=close.loc[strategy.signals['positions'] == 1.0],
            mode='markers', marker=dict(size=12, symbol='triangle-up', color='green'),  name="Buy"), row=1, col=1)

            fig.add_trace(go.Scatter(x=close.loc[strategy.signals['positions'] == -1.0].index, y=close.loc[strategy.signals['positions'] == -1.0],
            mode='markers', marker=dict(size=12, symbol='triangle-down', color='red'),  name="Sell"), row=1, col=1)

    fig.show()
Beispiel #9
0
stock_lib.Ping()

#price_data = ReadCsv("../data/SPFB.BR-4.20_200101_200311.csv")
#float_array_type = ctypes.c_double * len(price_data)
#my_dll.BlackScholes_Foo(float_array_type(*price_data), len(price_data))

fig = plt.figure()
#ax = plt.axes(projection='3d')
price_len = 1000 # len(price_data)
x = np.arange(0, price_len)

ax = fig.add_subplot(2, num_columns, 1)

price_data = GenerateStockPrices(len(x), 1.0)
ax.plot(x, price_data)
price_ema = indicators.SMA(price_data, 3)
ax.plot(x, price_ema)

ax = fig.add_subplot(2, num_columns, 2)
stochastic_data = indicators.StochasticOscillator(price_data, 20)
ax.plot(x, stochastic_data)
stochastic_data_smoothed = indicators.EMA(stochastic_data, 0.5)
ax.plot(x, stochastic_data_smoothed)
stochastic_data_smoothed1 = indicators.SMA(stochastic_data, 3)
ax.plot(x, stochastic_data_smoothed1)
ax.grid()
#ax = fig.add_subplot(1, num_columns, 2, projection='3d')
##ax = fig.add_subplot(111, projection='3d')
#
#X = np.arange(-5, 5, 0.25)
#Y = np.arange(-5, 5, 0.25)
Beispiel #10
0
def testPolicy(symbol="JPM",
               sd=dt.datetime(2008, 1, 1),
               ed=dt.datetime(2009, 12, 31),
               sv=100000):
    orders_df = market.make_df_to_match_trading_days(
        colnames=['Date', 'Symbol', 'Order', 'Shares'],
        symbol='JPM',
        sd=sd,
        ed=ed)

    stock_price_library = market.get_stock_prices([symbol], sd, ed)
    #iterate through stock price library and short before all the drops and buy for all the gains

    orders_df['Symbol'] = symbol  #assign to JPM
    orders_df['Order'] = ""  #initialize with no orders
    orders_df['Shares'] = 0.0  #initialize with no shares
    orders_df['Date'] = orders_df.index

    state = 0
    short_price = 0.0
    days_in_short = 0

    #load indicators
    bollinger_df = indicators.get_bollinger(symbol, sd=sd, ed=ed)
    STOK_df = indicators.stochastic_oscillator_20(symbol, sd=sd, ed=ed)
    SMA_df = indicators.SMA(symbol, sd=sd, ed=ed)

    for row in orders_df.itertuples(index=True):
        order_date = getattr(row, 'Date')
        symbol = getattr(row, 'Symbol')
        # print "The symbol is ", symbol
        order = getattr(row, 'Order')
        shares = getattr(row, 'Shares')

        bollinger_high_today = bollinger_df.loc[order_date]['bb1']
        bollinger_low_today = bollinger_df.loc[order_date]['bb2']
        STOK_D_today = STOK_df.loc[order_date]['%D']
        stock_price_today = stock_price_library.loc[order_date][symbol]
        P_over_SMA_today = SMA_df.loc[order_date]['P/SMA']

        total_votes = []
        bb_vote = 0
        bb_weight = 1
        stochastic_vote = 0
        stochastic_weight = 1
        sma_vote = 0
        sma_weight = 0.5

        if stock_price_today > bollinger_high_today:
            bb_vote = -1  #sell!

        elif stock_price_today < bollinger_low_today:
            bb_vote = 1  #buy!

        if STOK_D_today < 20:
            stochastic_vote = 1  #buy!

        elif STOK_D_today > 80:
            stochastic_vote = -1  #get out of there!

        if P_over_SMA_today < 0.7:
            sma_vote = -1  #looks like a selling opp

        total_votes.append(bb_vote * bb_weight)
        total_votes.append(stochastic_vote * stochastic_weight)
        total_votes.append(sma_vote * sma_weight)

        average_vote = sum(total_votes) / len(total_votes)

        if state < 0:
            days_in_short += 1

        if state < 0 and stock_price_today > 1.2 * short_price or days_in_short > 45:
            #if the price has risen 20% above our short price
            #or if we have been in a short position for more than 45
            #get out of our position and wait for next move.
            orders_df.set_value(order_date, 'Order', 'BUY')
            orders_df.set_value(order_date, 'Shares', abs(0 - state))
            state = 0  #reset
            days_in_short = 0

        else:

            if average_vote < 0:  #this means I want to sell
                if abs(-1000 -
                       state) == 0:  #legality check for sale transaction
                    pass
                else:
                    orders_df.set_value(order_date, 'Order', 'SELL')
                    orders_df.set_value(order_date, 'Shares',
                                        abs(-1000 - state))
                    short_price = stock_price_today
                    state = -1000  #short state

            if average_vote > 0:  #this means I want to buy
                if abs(1000 - state) == 0:  #legality check for buy transaction
                    pass
                else:
                    orders_df.set_value(order_date, 'Order', 'BUY')
                    orders_df.set_value(order_date, 'Shares',
                                        abs(1000 - state))
                    state = 1000  #long state
                    days_in_short = 0

            else:
                pass
        #my best policy (based on seeing the future)

    return orders_df
Beispiel #11
0
import database_tools as dt
import indicators
import datetime

print "standard_deviation " + str(
    indicators.standard_deviation("TXT", datetime.datetime.today(), 10))

print "simple_moving_average " + str(
    indicators.SMA("TXT", datetime.datetime.today(), 10))

print "volatility " + str(
    indicators.volatility("TXT", datetime.datetime.today(), 10))

print "WilliamsR " + str(
    indicators.willamsR("TXT", datetime.datetime.today(), 10))

print "RSI " + str(indicators.RSI("TXT", datetime.datetime.today(), 10))

print "average_true_range " + str(
    indicators.ATR("TXT", datetime.datetime.today(), 10))

print "EMA " + str(indicators.EMA("TXT", datetime.datetime.today(), 10))

print "bollinger_bands_customized " + str(
    indicators.bollinger_bands_customized("TXT", datetime.datetime.today(),
                                          10))
Beispiel #12
0
    def __init__(self, sym='SPY', sd=dt.datetime(2008,1, 1), \
            ed=dt.datetime(2009,12,31),sv=100000,verbose=False, experiment=False, impact=0.0):

        self.sym = sym
        self.verbose = verbose
        self.shares = 0
        self.position = 2
        self.sv = sv
        self.cash = sv
        self.pp = 0
        self.impact = impact
        self.experiment = experiment
        #n = 3  #period
        chart = False
        #take in, normalize data
        df = ut.get_data([sym], pd.date_range(sd - dt.timedelta(100), ed))[sym]
        #print df
        #print sd, ed
        normed = df / df.ix[0]
        #print normed
        #daily returns & combined features
        rets = pd.DataFrame(df)
        daily_rets = rets[sym].copy()
        daily_rets[1:] = (rets[sym].ix[1:] / rets[sym].ix[:-1].values) - 1
        daily_rets.ix[0] = 0

        #Simple moving average
        sma5 = normed.rolling(5).mean()
        sma15 = normed.rolling(15).mean()
        sma20 = normed.rolling(20).mean()
        sma25 = normed.rolling(25).mean()
        sma30 = normed.rolling(30).mean()
        sma40 = normed.rolling(40).mean()
        #print sma5
        # Volatility
        vol5 = normed.rolling(5).std()
        vol10 = normed.rolling(10).std()
        vol20 = normed.rolling(20).std()
        vol30 = normed.rolling(30).std()

        # Bollinger bands
        sma_bb = normed.rolling(5).mean()
        sma_bb_std = normed.rolling(5).std()
        bb = (normed -
              (sma_bb - 2 * sma_bb_std)) / ((sma_bb + 2 * sma_bb_std) -
                                            (sma_bb - 2 * sma_bb_std))

        # Moving average convergence/divergence
        #ema12 = pd.ewma(np.asarray(normed), span=12)
        #ema26 = pd.ewma(np.asarray(normed), span=26)
        #macd = ema12 - ema26

        # Momentum
        momentum2 = normed / normed.shift(2) - 1
        momentum5 = normed / normed.shift(5) - 1
        momentum10 = normed / normed.shift(10) - 1

        # Combine into new dataframe
        df = pd.DataFrame(df).assign(sma5=normed / sma5 - 1).assign(\
            bb=bb).assign(momentum2=momentum2).assign(normed=normed).\
            assign(vol10=vol10).assign(vol20=vol20).assign(vol30=vol30).assign(vol10=vol10)\
            .assign(vol5=vol5).assign(\
            momentum5=momentum5).assign(momentum10=momentum10)[sd:]

        df = df.assign(dr=daily_rets)
        #print df
        # Determine optimal features for states
        corr_df = df.corr().abs()
        corr = corr_df['dr'][:]
        corr.ix[0] = 0
        corr['normed'] = 0
        icorr = np.asarray(corr)
        scorr = icorr.argsort(
        )[-4:][::-1]  # select top 3 features and daily returns
        scorr = scorr[1:]  # remove daily returns from possible features
        optimal_ftrs = []
        for i in scorr:
            optimal_ftrs.append(corr_df.columns[i])

        if experiment:
            #print "Experiment 1 ACTIVATED"
            n = 14
            sma = ind.SMA(normed, n)
            smap = ind.standardize(normed / sma)
            bbp = ind.standardize(ind.bband(normed, n, chart)[0])
            stdev = ind.standardize(
                normed.rolling(window=n, min_periods=n).std())
            mom = ind.standardize(ind.momentum(normed, n, chart))
            momvol = ind.standardize(mom / stdev)
            df = pd.DataFrame(df).assign(normed=normed).assign(
                smap=smap).assign(stdev=stdev).assign(bbp=bbp).assign(
                    mom=mom)[sd:]
            optimal_ftrs = ['smap', 'stdev', 'bbp', 'mom']

        #df = pd.DataFrame(df).assign(normed = normed).assign(smap=smap).assign(bbp=bbp).assign(mom=mom)[sd:]
        #df = pd.DataFrame(df).assign(normed = normed)[sd:]

        self.df = df
        self.market = df.iterrows()
        self.curr = self.market.next()
        self.action = self.Action()
        self.features = optimal_ftrs