Beispiel #1
0
def run_experiment(name, cname, rname, models, data):
    data_by_image = defaultdict(list)
    for datum in data:
        data_by_image[datum.image_id].append(datum)

    with open("experiments/%s/%s.ids.txt" % (name, cname)) as id_f, \
         open("experiments/%s/%s.results.%s.txt" % (name, cname, rname), "w") as results_f:
        print >>results_f, "id,target,distractor,similarity,model_name,speaker_score,listener_score,description"
        counter = 0
        for line in id_f:
            img1, img2, similarity = line.strip().split(",")
            assert img1 in data_by_image and img2 in data_by_image
            d1 = data_by_image[img1][0]
            d2 = data_by_image[img2][0]
            for model_name, model in models.items():
                for i_sample in range(10):
                    speaker_scores, listener_scores, samples = \
                            model.sample([d1], [[d2]], dropout=False, viterbi=False)
                    parts = [
                        counter,
                        img1,
                        img2,
                        similarity,
                        model_name,
                        speaker_scores[0],
                        listener_scores[0],
                        " ".join([WORD_INDEX.get(i) for i in samples[0][1:-1]])
                    ]
                    print >>results_f, ",".join([str(s) for s in parts])
                    counter += 1
Beispiel #2
0
def demo(scenes, model, apollo_net, config):
    data = scenes[:config.batch_size]
    alt_indices = \
            [np.random.choice(len(scenes), size=config.batch_size)
             for i_alt in range(config.alternatives)]
    alt_data = [[scenes[i] for i in alt] for alt in alt_indices]

    _, samples = model.sample(data, alt_data, dropout=False)
    for i in range(10):
        sample = samples[i]
        print data[i].image_id
        print " ".join([WORD_INDEX.get(i) for i in sample])
        print
Beispiel #3
0
    def sample(self, prefix, encoding, viterbi):
        net = self.apollo_net

        batch_size = net.blobs[encoding].shape[0]
        max_words = 20

        l_seed = "LstmStringDecoder_%s_%s_seed"
        l_prev_word = "LstmStringDecoder_%s_%s_word_%d"
        l_word_vec = "LstmStringDecoder_%s_%s_word_vec_%d"
        l_concat = "LstmStringDecoder_%s_%s_concat_%d"
        l_lstm = "LstmStringDecoder_%s_%s_lstm_%d"
        l_hidden = "LstmStringDecoder_%s_%s_hidden_%d"
        l_mem = "LstmStringDecoder_%s_%s_mem_%d"
        l_output = "LstmStringDecoder_%s_%s_output_%d"
        l_softmax = "LstmStringDecoder_%s_%s_softmax_%d"

        p_word_vec = ["LstmStringDecoder_%s_word_vec" % self.name]
        p_lstm = [
            "LstmStringDecoder_%s_lstm_iv" % self.name,
            "LstmStringDecoder_%s_lstm_ig" % self.name,
            "LstmStringDecoder_%s_lstm_fg" % self.name,
            "LstmStringDecoder_%s_lstm_og" % self.name
        ]
        p_output = [
            "LstmStringDecoder_%s_output_weight" % self.name,
            "LstmStringDecoder_%s_output_bias" % self.name
        ]

        samples = np.zeros((batch_size, max_words), dtype=int)
        samples[:, 0] = WORD_INDEX["<s>"]

        net.f(
            NumpyData(l_seed, np.zeros((batch_size, self.config.hidden_size))))
        for i_step in range(1, max_words):
            l_prev_word_i = l_prev_word % (self.name, prefix, i_step)
            l_word_vec_i = l_word_vec % (self.name, prefix, i_step)
            l_concat_i = l_concat % (self.name, prefix, i_step)
            l_lstm_i = l_lstm % (self.name, prefix, i_step)
            l_hidden_i = l_hidden % (self.name, prefix, i_step)
            l_mem_i = l_mem % (self.name, prefix, i_step)
            l_output_i = l_output % (self.name, prefix, i_step)
            l_softmax_i = l_softmax % (self.name, prefix, i_step)

            if i_step == 1:
                prev_hidden = l_seed
                prev_mem = l_seed
            else:
                prev_hidden = l_hidden % (self.name, prefix, i_step - 1)
                prev_mem = l_mem % (self.name, prefix, i_step - 1)

            net.f(NumpyData(l_prev_word_i, samples[:, i_step - 1]))
            net.f(
                Wordvec(l_word_vec_i,
                        self.config.word_embedding_size,
                        len(WORD_INDEX),
                        bottoms=[l_prev_word_i],
                        param_names=p_word_vec))
            net.f(
                Concat(l_concat_i,
                       bottoms=[prev_hidden, l_word_vec_i, encoding]))
            net.f(
                LstmUnit(l_lstm_i,
                         bottoms=[l_concat_i, prev_mem],
                         param_names=p_lstm,
                         tops=[l_hidden_i, l_mem_i],
                         num_cells=self.config.hidden_size))
            net.f(
                InnerProduct(l_output_i,
                             len(WORD_INDEX),
                             bottoms=[l_hidden_i],
                             param_names=p_output))
            net.f(Softmax(l_softmax_i, bottoms=[l_output_i]))

            choices = []
            for i in range(batch_size):
                probs = net.blobs[l_softmax_i].data[i, :].astype(np.float64)
                probs /= probs.sum()
                if viterbi:
                    choices.append(np.argmax(probs))
                else:
                    choices.append(np.random.choice(len(WORD_INDEX), p=probs))
            samples[:, i_step] = choices

        out_samples = []
        for i in range(samples.shape[0]):
            this_sample = []
            for j in range(samples.shape[1]):
                word = WORD_INDEX.get(samples[i, j])
                this_sample.append(samples[i, j])
                if word == "</s>":
                    break
            out_samples.append(this_sample)
        return out_samples
Beispiel #4
0
    def sample(self, prefix, encoding, viterbi):
        net = self.apollo_net

        max_words = 20
        batch_size = net.blobs[encoding].shape[0]

        out_logprobs = np.zeros((batch_size, ))
        samples = np.zeros((batch_size, max_words))
        history_features = np.zeros((batch_size, len(WORD_INDEX)))
        last_features = np.zeros((batch_size, len(WORD_INDEX)))
        samples[:, 0] = WORD_INDEX["<s>"]
        last_features[:, WORD_INDEX["<s>"]] += 1

        l_history_data = "MlpStringDecoder_%s_%s_history_data_%d"
        l_last_data = "MlpStringDecoder_%s_%s_last_data_%d"
        l_cat_features = "MlpStringDecoder_%s_%s_cat_features_%d"
        l_ip1 = "MlpStringDecoder_%s_%s_ip1_%d"
        l_cat = "MlpStringDecoder_%s_%s_cat_%d"
        l_relu1 = "MlpStringDecoder_%s_%s_relu1_%d"
        l_ip2 = "MlpStringDecoder_%s_%s_ip2_%d"
        l_softmax = "MlpStringDecoder_%s_%s_softmax_%d"

        p_ip1 = [
            "MlpStringDecoder_%s_ip1_weight" % self.name,
            "MlpStringDecoder_%s_ip1_bias" % self.name
        ]
        p_ip2 = [
            "MlpStringDecoder_%s_ip2_weight" % self.name,
            "MlpStringDecoder_%s_ip2_bias" % self.name
        ]

        for i_step in range(1, max_words):
            l_history_data_i = l_history_data % (self.name, prefix, i_step)
            l_last_data_i = l_last_data % (self.name, prefix, i_step)
            l_cat_features_i = l_cat_features % (self.name, prefix, i_step)
            l_ip1_i = l_ip1 % (self.name, prefix, i_step)
            l_cat_i = l_cat % (self.name, prefix, i_step)
            l_relu1_i = l_relu1 % (self.name, prefix, i_step)
            l_ip2_i = l_ip2 % (self.name, prefix, i_step)
            l_softmax_i = l_softmax % (self.name, prefix, i_step)

            net.f(DummyData(l_history_data_i, (1, 1, 1, 1)))
            net.blobs[l_history_data_i].reshape(history_features.shape)
            net.f(DummyData(l_last_data_i, (1, 1, 1, 1)))
            net.blobs[l_last_data_i].reshape(last_features.shape)
            net.blobs[l_history_data_i].data[...] = history_features
            net.blobs[l_last_data_i].data[...] = last_features
            net.f(
                Concat(l_cat_features_i,
                       bottoms=[l_history_data_i, l_last_data_i]))
            net.f(
                InnerProduct(l_ip1_i,
                             self.config.hidden_size,
                             bottoms=[l_cat_features_i],
                             param_names=p_ip1))
            net.f(Concat(l_cat_i, bottoms=[l_ip1_i, encoding]))
            net.f(ReLU(l_relu1_i, bottoms=[l_cat_i]))
            net.f(
                InnerProduct(l_ip2_i,
                             len(WORD_INDEX),
                             bottoms=[l_relu1_i],
                             param_names=p_ip2))
            net.f(Softmax(l_softmax_i, bottoms=[l_ip2_i]))

            probs = net.blobs[l_softmax_i].data
            history_features += last_features
            last_features[...] = 0
            for i_datum in range(batch_size):
                d_probs = probs[i_datum, :].astype(float)
                d_probs /= d_probs.sum()
                if viterbi:
                    choice = d_probs.argmax()
                else:
                    choice = np.random.multinomial(1, d_probs).argmax()
                samples[i_datum, i_step] = choice
                last_features[i_datum, choice] += 1
                out_logprobs[i_datum] += np.log(d_probs[choice])

        out_samples = []
        for i in range(samples.shape[0]):
            this_sample = []
            for j in range(samples.shape[1]):
                word = WORD_INDEX.get(samples[i, j])
                #this_sample.append(word)
                this_sample.append(samples[i, j])
                if word == "</s>":
                    break
            if this_sample[-1] != WORD_INDEX["</s>"]:
                this_sample.append(WORD_INDEX["</s>"])
            out_samples.append(this_sample)
        return out_logprobs, out_samples
Beispiel #5
0
    def sample(self, prefix, encoding, viterbi):
        net = self.apollo_net

        batch_size = net.blobs[encoding].shape[0]
        max_words = 20

        l_seed = "LstmStringDecoder_%s_%s_seed"
        l_prev_word = "LstmStringDecoder_%s_%s_word_%d"
        l_word_vec = "LstmStringDecoder_%s_%s_word_vec_%d"
        l_concat = "LstmStringDecoder_%s_%s_concat_%d"
        l_lstm = "LstmStringDecoder_%s_%s_lstm_%d"
        l_hidden = "LstmStringDecoder_%s_%s_hidden_%d"
        l_mem = "LstmStringDecoder_%s_%s_mem_%d"
        l_output = "LstmStringDecoder_%s_%s_output_%d"
        l_softmax = "LstmStringDecoder_%s_%s_softmax_%d"

        p_word_vec = ["LstmStringDecoder_%s_word_vec" % self.name]
        p_lstm = ["LstmStringDecoder_%s_lstm_iv" % self.name, 
                  "LstmStringDecoder_%s_lstm_ig" % self.name,
                  "LstmStringDecoder_%s_lstm_fg" % self.name, 
                  "LstmStringDecoder_%s_lstm_og" % self.name]
        p_output = ["LstmStringDecoder_%s_output_weight" % self.name, 
                    "LstmStringDecoder_%s_output_bias" % self.name]

        samples = np.zeros((batch_size, max_words), dtype=int)
        samples[:,0] = WORD_INDEX["<s>"]

        net.f(NumpyData(
                l_seed, np.zeros((batch_size, self.config.hidden_size))))
        for i_step in range(1, max_words):
            l_prev_word_i = l_prev_word % (self.name, prefix, i_step)
            l_word_vec_i = l_word_vec % (self.name, prefix, i_step)
            l_concat_i = l_concat % (self.name, prefix, i_step)
            l_lstm_i = l_lstm % (self.name, prefix, i_step)
            l_hidden_i = l_hidden % (self.name, prefix, i_step)
            l_mem_i = l_mem % (self.name, prefix, i_step)
            l_output_i = l_output % (self.name, prefix, i_step)
            l_softmax_i = l_softmax % (self.name, prefix, i_step)

            if i_step == 1:
                prev_hidden = l_seed
                prev_mem = l_seed
            else:
                prev_hidden = l_hidden % (self.name, prefix, i_step - 1)
                prev_mem = l_mem % (self.name, prefix, i_step - 1)

            net.f(NumpyData(l_prev_word_i, samples[:, i_step-1]))
            net.f(Wordvec(
                    l_word_vec_i, self.config.word_embedding_size, 
                    len(WORD_INDEX), bottoms=[l_prev_word_i], 
                    param_names=p_word_vec))
            net.f(Concat(
                    l_concat_i, bottoms=[prev_hidden, l_word_vec_i, encoding]))
            net.f(LstmUnit(
                    l_lstm_i, bottoms=[l_concat_i, prev_mem],
                    param_names=p_lstm, tops=[l_hidden_i, l_mem_i],
                    num_cells=self.config.hidden_size))
            net.f(InnerProduct(
                    l_output_i, len(WORD_INDEX), bottoms=[l_hidden_i],
                    param_names=p_output))
            net.f(Softmax(l_softmax_i, bottoms=[l_output_i]))

            choices = []
            for i in range(batch_size):
                probs = net.blobs[l_softmax_i].data[i,:].astype(np.float64)
                probs /= probs.sum()
                if viterbi:
                    choices.append(np.argmax(probs))
                else:
                    choices.append(np.random.choice(len(WORD_INDEX), p=probs))
            samples[:, i_step] = choices

        out_samples = []
        for i in range(samples.shape[0]):
            this_sample = []
            for j in range(samples.shape[1]):
                word = WORD_INDEX.get(samples[i,j])
                this_sample.append(samples[i,j])
                if word == "</s>":
                    break
            out_samples.append(this_sample)
        return out_samples
Beispiel #6
0
    def sample(self, prefix, encoding, viterbi):
        net = self.apollo_net

        max_words = 20
        batch_size = net.blobs[encoding].shape[0]

        out_logprobs = np.zeros((batch_size,))
        samples = np.zeros((batch_size, max_words))
        history_features = np.zeros((batch_size, len(WORD_INDEX)))
        last_features = np.zeros((batch_size, len(WORD_INDEX)))
        samples[:,0] = WORD_INDEX["<s>"]
        last_features[:,WORD_INDEX["<s>"]] += 1

        l_history_data = "MlpStringDecoder_%s_%s_history_data_%d"
        l_last_data = "MlpStringDecoder_%s_%s_last_data_%d"
        l_cat_features = "MlpStringDecoder_%s_%s_cat_features_%d"
        l_ip1 = "MlpStringDecoder_%s_%s_ip1_%d"
        l_cat = "MlpStringDecoder_%s_%s_cat_%d"
        l_relu1 = "MlpStringDecoder_%s_%s_relu1_%d"
        l_ip2 = "MlpStringDecoder_%s_%s_ip2_%d"
        l_softmax = "MlpStringDecoder_%s_%s_softmax_%d"

        p_ip1 = ["MlpStringDecoder_%s_ip1_weight" % self.name,
                 "MlpStringDecoder_%s_ip1_bias" % self.name] 
        p_ip2 = ["MlpStringDecoder_%s_ip2_weight" % self.name,
                 "MlpStringDecoder_%s_ip2_bias" % self.name] 

        for i_step in range(1, max_words):
            l_history_data_i = l_history_data % (self.name, prefix, i_step)
            l_last_data_i = l_last_data % (self.name, prefix, i_step)
            l_cat_features_i = l_cat_features % (self.name, prefix, i_step)
            l_ip1_i = l_ip1 % (self.name, prefix, i_step)
            l_cat_i = l_cat % (self.name, prefix, i_step)
            l_relu1_i = l_relu1 % (self.name, prefix, i_step)
            l_ip2_i = l_ip2 % (self.name, prefix, i_step)
            l_softmax_i = l_softmax % (self.name, prefix, i_step)

            net.f(DummyData(l_history_data_i, (1,1,1,1)))
            net.blobs[l_history_data_i].reshape(history_features.shape)
            net.f(DummyData(l_last_data_i, (1,1,1,1)))
            net.blobs[l_last_data_i].reshape(last_features.shape)
            net.blobs[l_history_data_i].data[...] = history_features
            net.blobs[l_last_data_i].data[...] = last_features
            net.f(Concat(l_cat_features_i, bottoms=[l_history_data_i, l_last_data_i]))
            net.f(InnerProduct(
                l_ip1_i, self.config.hidden_size, bottoms=[l_cat_features_i],
                param_names=p_ip1))
            net.f(Concat(l_cat_i, bottoms=[l_ip1_i, encoding]))
            net.f(ReLU(l_relu1_i, bottoms=[l_cat_i]))
            net.f(InnerProduct(
                l_ip2_i, len(WORD_INDEX), bottoms=[l_relu1_i],
                param_names=p_ip2))
            net.f(Softmax(l_softmax_i, bottoms=[l_ip2_i]))

            probs = net.blobs[l_softmax_i].data
            history_features += last_features
            last_features[...] = 0
            for i_datum in range(batch_size):
                d_probs = probs[i_datum,:].astype(float)
                d_probs /= d_probs.sum()
                if viterbi:
                    choice = d_probs.argmax()
                else:
                    choice = np.random.multinomial(1, d_probs).argmax()
                samples[i_datum, i_step] = choice
                last_features[i_datum, choice] += 1
                out_logprobs[i_datum] += np.log(d_probs[choice])

        out_samples = []
        for i in range(samples.shape[0]):
            this_sample = []
            for j in range(samples.shape[1]):
                word = WORD_INDEX.get(samples[i,j])
                #this_sample.append(word)
                this_sample.append(samples[i,j])
                if word == "</s>":
                    break
            if this_sample[-1] != WORD_INDEX["</s>"]:
                this_sample.append(WORD_INDEX["</s>"])
            out_samples.append(this_sample)
        return out_logprobs, out_samples