Beispiel #1
0
    def get_additional_transforms(self, master_config):
        transforms = self.transforms if self.transforms is not None else Compose(
        )

        master_config = {} if master_config is None else master_config

        # Replicate and downscale batch:
        if master_config.get("downscale_and_crop") is not None:
            ds_config = master_config.get("downscale_and_crop")
            apply_to = [conf.pop('apply_to') for conf in ds_config]
            transforms.add(ReplicateTensorsInBatch(apply_to))
            for indx, conf in enumerate(ds_config):
                transforms.add(
                    DownSampleAndCropTensorsInBatch(apply_to=[indx],
                                                    order=None,
                                                    **conf))

        # crop invalid affinity labels and elastic augment reflection padding assymetrically
        crop_config = master_config.get('crop_after_target', {})
        if crop_config:
            # One might need to crop after elastic transform to avoid edge artefacts of affinity
            # computation being warped into the FOV.
            transforms.add(VolumeAsymmetricCrop(**crop_config))

        transforms.add(AsTorchBatch(3, add_channel_axis_if_necessary=True))

        return transforms
Beispiel #2
0
    def get_transforms(self):
        transforms = Compose()

        if self.master_config.get('random_flip', False):
            transforms.add(RandomFlip3D())
            transforms.add(RandomRotate())

        # Elastic transforms can be skipped by
        # setting elastic_transform to false in the
        # yaml config file.
        if self.master_config.get('elastic_transform'):
            elastic_transform_config = self.master_config.get(
                'elastic_transform')
            if elastic_transform_config.get('apply', False):
                transforms.add(
                    ElasticTransform(
                        alpha=elastic_transform_config.get('alpha', 2000.),
                        sigma=elastic_transform_config.get('sigma', 50.),
                        order=elastic_transform_config.get('order', 0)))

        # random slide augmentation
        if self.master_config.get('random_slides', False):
            # TODO slide probability
            ouput_shape = self.master_config.get('shape_after_slide', None)
            max_misalign = self.master_config.get('max_misalign', None)
            transforms.add(
                RandomSlide(output_image_size=ouput_shape,
                            max_misalign=max_misalign))

        # affinity transforms for affinity targets
        # we apply the affinity target calculation only to the segmentation (1)
        #assert self.affinity_config is not None
        #transforms.add(affinity_config_to_transform(apply_to=[1], **self.affinity_config))

        # TODO: add transfrom for directional DT
        if self.master_config.get('compute_directions', False):
            direction_config = self.master_config.get('compute_directions')
            transforms.add(
                LabelToDirections(
                    n_directions=direction_config.get('n_directions'),
                    compute_z=direction_config.get('z_direction')))

        # TODO: add clipping transformation
        if self.master_config.get('clip', False):
            clipping_config = self.master_config.get('clip')
            transforms.add(Clip(**clipping_config))

        if self.master_config.get('multiply', False):
            mult_config = self.master_config.get('multiply')
            transforms.add(Multiply(**mult_config))

        # crop invalid affinity labels and elastic augment reflection padding assymetrically
        crop_config = self.master_config.get('crop_after_target', False)
        if crop_config:
            # One might need to crop after elastic transform to avoid edge artefacts of affinity
            # computation being warped into the FOV.
            transforms.add(VolumeAsymmetricCrop(**crop_config))

        return transforms
    def get_transforms(self):
        transforms = Compose()

        if self.transform_config.get('random_flip', False):
            transforms.add(RandomFlip3D())
            transforms.add(RandomRotate())

        # Elastic transforms can be skipped by
        # setting elastic_transform to false in the
        # yaml config file.
        if self.transform_config.get('elastic_transform'):
            elastic_transform_config = self.transform_config.get(
                'elastic_transform')
            if elastic_transform_config.get('apply', False):
                transforms.add(
                    ElasticTransform(
                        alpha=elastic_transform_config.get('alpha', 2000.),
                        sigma=elastic_transform_config.get('sigma', 50.),
                        order=elastic_transform_config.get('order', 0)))

        # Replicate and downscale batch:
        nb_inputs = 1
        if self.transform_config.get("downscale_and_crop") is not None:
            ds_config = self.transform_config.get("downscale_and_crop")
            apply_to = [conf.pop('apply_to') for conf in ds_config]
            nb_inputs = (np.array(apply_to) == 0).sum()
            transforms.add(ReplicateTensorsInBatch(apply_to))
            for indx, conf in enumerate(ds_config):
                transforms.add(
                    DownSampleAndCropTensorsInBatch(apply_to=[indx],
                                                    order=None,
                                                    **conf))

        # Check if to compute binary-affinity-targets from GT labels:
        if self.transform_config.get("affinity_config") is not None:
            affs_config = deepcopy(
                self.transform_config.get("affinity_config"))
            global_kwargs = affs_config.pop("global", {})

            aff_transform = Segmentation2AffinitiesDynamicOffsets if affs_config.pop("use_dynamic_offsets", False) \
                else affinity_config_to_transform

            for input_index in affs_config:
                affs_kwargs = deepcopy(global_kwargs)
                affs_kwargs.update(affs_config[input_index])
                transforms.add(
                    aff_transform(apply_to=[input_index + nb_inputs],
                                  **affs_kwargs))

        # crop invalid affinity labels and elastic augment reflection padding assymetrically
        crop_config = self.transform_config.get('crop_after_target', {})
        if crop_config:
            # One might need to crop after elastic transform to avoid edge artefacts of affinity
            # computation being warped into the FOV.
            transforms.add(VolumeAsymmetricCrop(**crop_config))

        transforms.add(AsTorchBatch(3))
        return transforms
    def get_transforms(self):
        transforms = Compose()

        if self.master_config.get('random_flip', False):
            transforms.add(RandomFlip3D())
            transforms.add(RandomRotate())

        # Elastic transforms can be skipped by
        # setting elastic_transform to false in the
        # yaml config file.
        if self.master_config.get('elastic_transform'):
            elastic_transform_config = self.master_config.get(
                'elastic_transform')
            if elastic_transform_config.get('apply', False):
                transforms.add(
                    ElasticTransform(
                        alpha=elastic_transform_config.get('alpha', 2000.),
                        sigma=elastic_transform_config.get('sigma', 50.),
                        order=elastic_transform_config.get('order', 0)))

        # random slide augmentation
        if self.master_config.get('random_slides', False):
            # TODO slide probability
            ouput_shape = self.master_config.get('shape_after_slide', None)
            max_misalign = self.master_config.get('max_misalign', None)
            transforms.add(
                RandomSlide(output_image_size=ouput_shape,
                            max_misalign=max_misalign))

        # affinity transforms for affinity targets
        # we apply the affinity target calculation only to the segmentation (1)
        assert self.affinity_config is not None
        # transforms.add(Segmentation2AffinitiesDynamicOffsets(apply_to=[1], **self.affinity_config))
        transforms.add(
            affinity_config_to_transform(apply_to=[1], **self.affinity_config))

        # TODO: add clipping transformation

        # crop invalid affinity labels and elastic augment reflection padding assymetrically
        crop_config = self.master_config.get('crop_after_target', {})
        if crop_config:
            # One might need to crop after elastic transform to avoid edge artefacts of affinity
            # computation being warped into the FOV.
            transforms.add(VolumeAsymmetricCrop(**crop_config))

        # transforms.add(InvertTarget(self.affinity_config.get("retain_segmentation", False)))
        # transforms.add(HackyHacky())
        #transforms.add(ComputeVAETarget()), HackyHacky

        return transforms
    def get_transforms(self):
        transforms = Compose()

        if self.master_config.get('random_flip', False):
            transforms.add(RandomFlip3D())
            transforms.add(RandomRotate())

        # # Elastic transforms can be skipped by
        # # setting elastic_transform to false in the
        # # yaml config file.
        # if self.master_config.get('elastic_transform'):
        #     elastic_transform_config = self.master_config.get('elastic_transform')
        #     if elastic_transform_config.get('apply', False):
        #         transforms.add(ElasticTransform(alpha=elastic_transform_config.get('alpha', 2000.),
        #                                         sigma=elastic_transform_config.get('sigma', 50.),
        #                                         order=elastic_transform_config.get('order', 0)))

        # random slide augmentation
        if self.master_config.get('random_slides', False):
            # TODO slide probability
            ouput_shape = self.master_config.get('shape_after_slide', None)
            max_misalign = self.master_config.get('max_misalign', None)
            transforms.add(
                RandomSlide(output_image_size=ouput_shape,
                            max_misalign=max_misalign))

        # affinity transforms for affinity targets
        # we apply the affinity target calculation only to the segmentation (1)
        assert self.affinity_config is not None
        transforms.add(
            affinity_config_to_transform(apply_to=[1], **self.affinity_config))

        # crop invalid affinity labels and elastic augment reflection padding assymetrically
        crop_config = self.master_config.get('crop_after_target', {})
        if crop_config:
            # One might need to crop after elastic transform to avoid edge artefacts of affinity
            # computation being warped into the FOV.
            transforms.add(VolumeAsymmetricCrop(**crop_config))

        from vaeAffs.transforms import PassGTBoundaries_HackyHackyReloaded
        transforms.add(PassGTBoundaries_HackyHackyReloaded())

        return transforms
    def get_additional_transforms(self, master_config):
        transforms = self.transforms if self.transforms is not None else Compose(
        )

        master_config = {} if master_config is None else master_config
        # TODO: somehow merge with the trainer loader...

        # Replicate and downscale batch:
        if master_config.get("downscale_and_crop") is not None:
            ds_config = master_config.get("downscale_and_crop")
            apply_to = [conf.pop('apply_to') for conf in ds_config]
            transforms.add(ReplicateBatchGeneralized(apply_to))
            for indx, conf in enumerate(ds_config):
                transforms.add(
                    DownsampleAndCrop3D(apply_to=[indx], order=None, **conf))

        # # # affinity transforms for affinity targets
        # # # we apply the affinity target calculation only to the segmentation (1)
        # if master_config.get("affinity_config") is not None:
        #     affs_config = master_config.get("affinity_config")
        #     global_kwargs = affs_config.pop("global", {})
        #     # TODO: define computed affs not in this way, but with a variable in config...
        #     nb_affs = len(affs_config)
        #     assert nb_affs == num_inputs
        #     # all_affs_kwargs = [deepcopy(global_kwargs) for _ in range(nb_affs)]
        #     for input_index in affs_config:
        #         affs_kwargs = deepcopy(global_kwargs)
        #         affs_kwargs.update(affs_config[input_index])
        #         transforms.add(affinity_config_to_transform(apply_to=[input_index+num_inputs], **affs_kwargs))

        # crop invalid affinity labels and elastic augment reflection padding assymetrically
        crop_config = master_config.get('crop_after_target', {})
        if crop_config:
            # One might need to crop after elastic transform to avoid edge artefacts of affinity
            # computation being warped into the FOV.
            transforms.add(VolumeAsymmetricCrop(**crop_config))

        transforms.add(AsTorchBatch(3, add_channel_axis_if_necessary=True))

        # transforms.add(CheckBatchAndChannelDim(3))

        return transforms
Beispiel #7
0
    def get_transforms(self):
        transforms = Compose(RandomFlip3D(), RandomRotate())

        # Elastic transforms can be skipped by setting elastic_transform to false in the
        # yaml config file.
        if self.master_config.get('elastic_transform'):
            elastic_transform_config = self.master_config.get(
                'elastic_transform')
            transforms.add(
                ElasticTransform(
                    alpha=elastic_transform_config.get('alpha', 2000.),
                    sigma=elastic_transform_config.get('sigma', 50.),
                    order=elastic_transform_config.get('order', 0)))

        # TODO doesn't look like we have misalignment, so should be fine
        # if we do not use random slides
        # random slide augmentation
        if self.master_config.get('random_slides', False):
            assert False, "No random slides for now"
            ouput_shape = self.master_config.get('shape_after_slide', None)
            max_misalign = self.master_config.get('max_misalign', None)
            transforms.add(
                RandomSlide(output_image_size=ouput_shape,
                            max_misalign=max_misalign))

        # if we compute the affinities on the gpu, or use the feeder for validation only,
        # we don't need to add the affinity transform here
        if self.affinity_config is not None:
            # we apply the affinity target calculation only to the segmentation (1)
            transforms.add(
                affinity_config_to_transform(apply_to=[1],
                                             **self.affinity_config))

        # Next: crop invalid affinity labels and elastic augment reflection padding assymetrically
        crop_config = self.master_config.get('crop_after_target', {})
        if crop_config:
            # One might need to crop after elastic transform to avoid edge artefacts of affinity
            # computation being warped into the FOV.
            transforms.add(VolumeAsymmetricCrop(**crop_config))

        return transforms
    def get_transforms(self):
        transforms = Compose()

        if self.master_config.get('random_flip', False):
            transforms.add(
                AdjustBatch(
                    defected_label=self.master_config.get('defects_label', 3)))
            transforms.add(RandomFlip3D())
            transforms.add(RandomRotate())

        transforms.add(
            DuplicateGtDefectedSlices(
                defected_label=self.master_config.get('defects_label', 3),
                ignore_label=self.master_config.get('ignore_label', 0)))

        # Elastic transforms can be skipped by
        # setting elastic_transform to false in the
        # yaml config file.
        if self.master_config.get('elastic_transform'):
            elastic_transform_config = self.master_config.get(
                'elastic_transform')
            if elastic_transform_config.get('apply', False):
                transforms.add(
                    ElasticTransform(
                        alpha=elastic_transform_config.get('alpha', 2000.),
                        sigma=elastic_transform_config.get('sigma', 50.),
                        order=elastic_transform_config.get('order', 0)))

        # random slide augmentation
        if self.master_config.get('random_slides') is not None:
            # TODO slide probability
            random_slides_config = deepcopy(
                self.master_config.get('random_slides'))
            ouput_shape = random_slides_config.pop('shape_after_slide', None)
            max_misalign = random_slides_config.pop('max_misalign', None)
            transforms.add(
                RandomSlide(
                    output_image_size=ouput_shape,
                    max_misalign=max_misalign,
                    # defects_label=self.master_config.get('defects_label', 2),
                    **random_slides_config))

        # Replicate and downscale batch:
        nb_inputs = 1
        if self.master_config.get("downscale_and_crop") is not None:
            ds_config = self.master_config.get("downscale_and_crop")
            apply_to = [conf.pop('apply_to') for conf in ds_config]
            nb_inputs = (np.array(apply_to) == 0).sum()
            transforms.add(ReplicateBatchGeneralized(apply_to))
            for indx, conf in enumerate(ds_config):
                transforms.add(
                    DownsampleAndCrop3D(apply_to=[indx], order=None, **conf))

        # # affinity transforms for affinity targets
        # # we apply the affinity target calculation only to the segmentation (1)
        if self.master_config.get("affinity_config") is not None:
            affs_config = deepcopy(self.master_config.get("affinity_config"))
            global_kwargs = affs_config.pop("global", {})

            use_dynamic_offsets = affs_config.pop("use_dynamic_offsets", False)
            if use_dynamic_offsets:
                raise ValueError(
                    "The class neurofire.transform.affinities.Segmentation2AffinitiesDynamicOffsets has been deprecated."
                )
            aff_transform = affinity_config_to_transform

            for input_index in affs_config:
                affs_kwargs = deepcopy(global_kwargs)
                affs_kwargs.update(affs_config[input_index])
                transforms.add(
                    aff_transform(apply_to=[input_index + nb_inputs],
                                  **affs_kwargs))

        # crop invalid affinity labels and elastic augment reflection padding assymetrically
        crop_config = self.master_config.get('crop_after_target', {})
        if crop_config:
            # One might need to crop after elastic transform to avoid edge artefacts of affinity
            # computation being warped into the FOV.
            transforms.add(VolumeAsymmetricCrop(**crop_config))

        return transforms