def create_kth_fold(k):
    logger.info('Generating %d-th data for training...' % k)
    config = my_utils.load_config()
    ic = my_utils.load_config('image_config.json')

    dermis = inputs.load_raw_data('dermis', config)
    dermquest = inputs.load_raw_data('dermquest', config)

    train_data = inputs.get_kth_fold(dermquest,
                                     k,
                                     ic['n_folds'],
                                     seed=ic['split_seed'])
    if ic['use_dermis']:
        train_data = train_data + dermis
    train_df = to_csv(train_data)
    train_df.to_csv(ic['train_csv_file'], index=None)
    logger.info('Successfully convert %d examples to %s' %
                (len(train_df), ic['train_csv_file']))

    test_data = inputs.get_kth_fold(dermquest,
                                    k,
                                    ic['n_folds'],
                                    seed=ic['split_seed'],
                                    type_='test')
    test_df = to_csv(test_data)
    test_df.to_csv(ic['test_csv_file'], index=None)
    logger.info('Successfully convert %d examples to %s' %
                (len(test_df), ic['test_csv_file']))
Beispiel #2
0
def main():
    logger.info('Creating csv file...')
    config = my_utils.load_config()
    image_config = my_utils.load_config('./image_config.json')
    k = image_config['k']
    n_folds = image_config['n_folds']
    split_seed = image_config['split_seed']
    use_dermis = image_config['use_dermis']
    train_csv_file = image_config['train_csv_file']
    test_csv_file = image_config['test_csv_file']

    dermquest = inputs.load_raw_data('dermquest', config)
    dermis = inputs.load_raw_data('dermis', config)

    train_data = inputs.get_kth_fold(dermquest, k, n_folds, seed=split_seed)
    if use_dermis:
        train_data = train_data + dermis
    train_df = to_csv(train_data)
    train_df.to_csv(train_csv_file, index=None)
    logger.info('Successfully convert %d examples to %s' %
                (len(train_data), train_csv_file))

    test_data = inputs.get_kth_fold(dermquest,
                                    k,
                                    n_folds,
                                    seed=split_seed,
                                    type_='test')
    test_df = to_csv(test_data)
    test_df.to_csv(test_csv_file, index=None)
    logger.info('Successfully convert %d examples to %s' %
                (len(test_data), test_csv_file))
    logger.info('CSV file created!')
Beispiel #3
0
def create_dermis_for_train_dermquest_for_test():
    logger.info('Creating dermis for training and dermquest for testing...')
    config = my_utils.load_config()
    image_config = my_utils.load_config('image_config.json')
    dermis = inputs.load_raw_data('dermis', config)
    dermquest = inputs.load_raw_data('dermquest', config)

    train_df = to_csv(dermis)
    train_df.to_csv(image_config['train_csv_file'], index=None)
    logger.info('Successfully convert %d examples to %s' %
                (len(train_df), image_config['train_csv_file']))

    test_df = to_csv(dermquest)
    test_df.to_csv(image_config['test_csv_file'], index=None)
    logger.info('Successfully convert %d examples to %s' %
                (len(test_df), image_config['test_csv_file']))
Beispiel #4
0
def eval_seg_model(eval_one_func):
    logger.info('K-fold evaluation process...')
    config = my_utils.load_config()
    dermquest = inputs.load_raw_data(FLAGS.db, config)

    mm = evaluation.SegRestoredModel(
        tf.train.latest_checkpoint(config['train_dir']))
    result = test_one_model(mm, dermquest.listing, config, eval_one_func)
    logger.info('Done evaluation')
    return result
Beispiel #5
0
def kfold_training():
    logger.info('K-fold training...')
    config = my_utils.load_config()
    dermis = inputs.load_raw_data('dermis', config)
    dermquest = inputs.load_raw_data('dermquest', config)
    n_folds = config['n_folds']

    for i in range(n_folds):
        kfold_data = inputs.get_kth_fold(dermquest,
                                         i,
                                         n_folds,
                                         seed=config['split_seed'])
        train_data = dermis + kfold_data

        kfold_config = my_utils.get_config_for_kfold(
            config,
            train_dir=os.path.join(config['train_dir'], str(i)),
            n_examples_for_train=len(train_data))
        logger.info('Training for %i-th fold data...' % i)
        train_one_fold(train_data, kfold_config)
    logger.info('Done training')
def eval_one_fold(fold, ckpt_path, out_path, ignore_iou=None):
    if ignore_iou:
        logger.warning('Will ignore images with IoU small than %.3f' % ignore_iou)
    config = my_utils.load_config()
    net = RestoredModel(ckpt_path)
    dermquest = inputs.load_raw_data('dermquest', config)
    # train_data = inputs.get_kth_fold(dermquest, fold, config['n_folds'], seed=config['split_seed'])
    test_data = inputs.get_kth_fold(dermquest, fold, config['n_folds'], seed=config['split_seed'], type_='test')
    with net.graph.as_default() as g:
        result = {
            'TP': 0,
            'TN': 0,
            'FP': 0,
            'FN': 0
        }

        def update_dict(target, to_update):
            for key in to_update:
                target[key] += to_update[key]
        with tf.Session(graph=g, config=tf.ConfigProto(device_count={'GPU': 0})):
            counter = 0
            for i, base in enumerate(test_data.listing):
                image, label, bbox_gt = inputs.load_one_example(base, highest_to=800)
                result_i, _ = evaluation.inference_with_restored_model(net, image, label,
                                                                       bbox_gt=bbox_gt,
                                                                       verbose=False,
                                                                       times=3,
                                                                       gt_prob=0.51)
                if ignore_iou and _['IoU'] < ignore_iou:
                    counter += 1
                    print(i, base, '---->')
                    continue
                update_dict(result, result_i)
                result_i.update(my_utils.metric_many_from_counter(result_i))
            result.update(my_utils.metric_many_from_counter(result))
            logger.warning('%d of the images are ignored' % counter)
            logger.info(result)
    my_utils.dump_obj(out_path, result)
    logger.info('Result saved at %s' % out_path)
Beispiel #7
0
def train_from_scratch():
    logger.info('Training from scratch...')
    config = my_utils.load_config()
    # data = inputs.load_raw_data(config['database'], config)
    # dermis_data = inputs.load_raw_data('dermis', config)
    # data = data + dermis_data
    dermis = inputs.load_raw_data('dermis', config)
    dermquest = inputs.load_raw_data('dermquest', config)
    kfold_train_data = inputs.get_kth_fold(dermquest,
                                           0,
                                           config['n_folds'],
                                           seed=config['split_seed'])
    data = dermis + kfold_train_data

    n_examples_for_train = len(data)
    n_steps_for_train = my_utils.calc_training_steps(
        config['n_epochs_for_train'], config['batch_size'],
        n_examples_for_train)

    config['n_examples_for_train'] = n_examples_for_train
    with tf.Graph().as_default() as g:
        image_ph, label_ph, bbox_ph = bbox_model.model_placeholder(config)

        def build_feed_dict(image_, label_, bbox_):
            return {image_ph: image_, label_ph: label_, bbox_ph: bbox_}

        global_step = tf.train.get_or_create_global_step()
        mm = bbox_model.Model(image_ph, config['input_size'])
        train_op, summary_op, debug = build_train(mm, label_ph, bbox_ph,
                                                  config)

        logger.info('Done loading data set `%s`, %i examples in total' %
                    (config['database'], len(data)))

        my_utils.create_and_delete_if_exists(config['train_dir'])
        saver = tf.train.Saver()
        writer = tf.summary.FileWriter(config['train_dir'], graph=g)
        with tf.Session() as sess:
            tf.global_variables_initializer().run()
            for i, (images, labels,
                    bboxes) in enumerate(data.aug_train_batch(config)):
                # image, label, bbox = data[0]
                feed_dict = build_feed_dict(images, labels, bboxes)
                ops = [debug['bbox_loss'], debug['total_loss'], train_op]
                bbox_loss_val, total_loss_val, _ = sess.run(
                    ops, feed_dict=feed_dict)
                if i % config['log_every'] == 0:
                    fmt = 'step {:>5}/{} bbox_loss {:.5f}, total_loss {:.5f}'
                    logger.info(
                        fmt.format(i, n_steps_for_train, bbox_loss_val,
                                   total_loss_val))

                if i % config['checkpoint_every'] == 0:
                    my_utils.save_model(saver, config)
                    logger.info('Model saved at step-%i' %
                                sess.run(global_step))

                if config['save_summary_every'] and i % config[
                        'save_summary_every'] == 0:
                    my_utils.add_summary(writer, summary_op, feed_dict)
                    logger.info('Summary saved at step-%i' %
                                sess.run(global_step))

            save_path = my_utils.save_model(saver, config)
            logger.info('Done training, model saved at %s' % (save_path, ))