class TestDMEnd2End(IonIntegrationTestCase):
    def setUp(self): # Love the non pep-8 convention
        self._start_container()

        self.container.start_rel_from_url('res/deploy/r2deploy.yml')

        self.process_dispatcher   = ProcessDispatcherServiceClient()
        self.pubsub_management    = PubsubManagementServiceClient()
        self.resource_registry    = ResourceRegistryServiceClient()
        self.dataset_management   = DatasetManagementServiceClient()
        self.ingestion_management = IngestionManagementServiceClient()
        self.data_retriever       = DataRetrieverServiceClient()
        self.pids                 = []
        self.event                = Event()
        self.exchange_space_name  = 'test_granules'
        self.exchange_point_name  = 'science_data'       
        self.i                    = 0

        self.purge_queues()
        self.queue_buffer         = []
        self.streams = []
        self.addCleanup(self.stop_all_ingestion)

    def purge_queues(self):
        xn = self.container.ex_manager.create_xn_queue('science_granule_ingestion')
        xn.purge()
        

    def tearDown(self):
        self.purge_queues()
        for pid in self.pids:
            self.container.proc_manager.terminate_process(pid)
        IngestionManagementIntTest.clean_subscriptions()
        for queue in self.queue_buffer:
            if isinstance(queue, ExchangeNameQueue):
                queue.delete()
            elif isinstance(queue, str):
                xn = self.container.ex_manager.create_xn_queue(queue)
                xn.delete()

    #--------------------------------------------------------------------------------
    # Helper/Utility methods
    #--------------------------------------------------------------------------------
        
    def create_dataset(self, parameter_dict_id=''):
        '''
        Creates a time-series dataset
        '''
        tdom, sdom = time_series_domain()
        sdom = sdom.dump()
        tdom = tdom.dump()
        if not parameter_dict_id:
            parameter_dict_id = self.dataset_management.read_parameter_dictionary_by_name('ctd_parsed_param_dict', id_only=True)

        dataset_id = self.dataset_management.create_dataset('test_dataset_%i'%self.i, parameter_dictionary_id=parameter_dict_id, spatial_domain=sdom, temporal_domain=tdom)
        return dataset_id
    
    def get_datastore(self, dataset_id):
        '''
        Gets an instance of the datastore
            This method is primarily used to defeat a bug where integration tests in multiple containers may sometimes 
            delete a CouchDB datastore and the other containers are unaware of the new state of the datastore.
        '''
        dataset = self.dataset_management.read_dataset(dataset_id)
        datastore_name = dataset.datastore_name
        datastore = self.container.datastore_manager.get_datastore(datastore_name, DataStore.DS_PROFILE.SCIDATA)
        return datastore
    
    def get_ingestion_config(self):
        '''
        Grab the ingestion configuration from the resource registry
        '''
        # The ingestion configuration should have been created by the bootstrap service 
        # which is configured through r2deploy.yml

        ingest_configs, _  = self.resource_registry.find_resources(restype=RT.IngestionConfiguration,id_only=True)
        return ingest_configs[0]

    def launch_producer(self, stream_id=''):
        '''
        Launch the producer
        '''

        pid = self.container.spawn_process('better_data_producer', 'ion.processes.data.example_data_producer', 'BetterDataProducer', {'process':{'stream_id':stream_id}})

        self.pids.append(pid)

    def make_simple_dataset(self):
        '''
        Makes a stream, a stream definition and a dataset, the essentials for most of these tests
        '''
        pdict_id             = self.dataset_management.read_parameter_dictionary_by_name('ctd_parsed_param_dict', id_only=True)
        stream_def_id        = self.pubsub_management.create_stream_definition('ctd data', parameter_dictionary_id=pdict_id)
        stream_id, route     = self.pubsub_management.create_stream('ctd stream %i' % self.i, 'xp1', stream_definition_id=stream_def_id)

        dataset_id = self.create_dataset(pdict_id)

        self.get_datastore(dataset_id)
        self.i += 1
        return stream_id, route, stream_def_id, dataset_id

    def publish_hifi(self,stream_id,stream_route,offset=0):
        '''
        Publish deterministic data
        '''

        pub = StandaloneStreamPublisher(stream_id, stream_route)

        stream_def = self.pubsub_management.read_stream_definition(stream_id=stream_id)
        stream_def_id = stream_def._id
        rdt = RecordDictionaryTool(stream_definition_id=stream_def_id)
        rdt['time'] = np.arange(10) + (offset * 10)
        rdt['temp'] = np.arange(10) + (offset * 10)
        pub.publish(rdt.to_granule())

    def publish_fake_data(self,stream_id, route):
        '''
        Make four granules
        '''
        for i in xrange(4):
            self.publish_hifi(stream_id,route,i)

    def start_ingestion(self, stream_id, dataset_id):
        '''
        Starts ingestion/persistence for a given dataset
        '''
        ingest_config_id = self.get_ingestion_config()
        self.ingestion_management.persist_data_stream(stream_id=stream_id, ingestion_configuration_id=ingest_config_id, dataset_id=dataset_id)
    
    def stop_ingestion(self, stream_id):
        ingest_config_id = self.get_ingestion_config()
        self.ingestion_management.unpersist_data_stream(stream_id=stream_id, ingestion_configuration_id=ingest_config_id)
        
    def stop_all_ingestion(self):
        try:
            [self.stop_ingestion(sid) for sid in self.streams]
        except:
            pass

    def validate_granule_subscription(self, msg, route, stream_id):
        '''
        Validation for granule format
        '''
        if msg == {}:
            return
        rdt = RecordDictionaryTool.load_from_granule(msg)
        log.info('%s', rdt.pretty_print())
        self.assertIsInstance(msg,Granule,'Message is improperly formatted. (%s)' % type(msg))
        self.event.set()

    def wait_until_we_have_enough_granules(self, dataset_id='',data_size=40):
        '''
        Loops until there is a sufficient amount of data in the dataset
        '''
        done = False
        with gevent.Timeout(40):
            while not done:
                extents = self.dataset_management.dataset_extents(dataset_id, 'time')[0]
                granule = self.data_retriever.retrieve_last_data_points(dataset_id, 1)
                rdt     = RecordDictionaryTool.load_from_granule(granule)
                if rdt['time'] and rdt['time'][0] != rdt._pdict.get_context('time').fill_value and extents >= data_size:
                    done = True
                else:
                    gevent.sleep(0.2)




    #--------------------------------------------------------------------------------
    # Test Methods
    #--------------------------------------------------------------------------------

    @attr('SMOKE') 
    def test_dm_end_2_end(self):
        #--------------------------------------------------------------------------------
        # Set up a stream and have a mock instrument (producer) send data
        #--------------------------------------------------------------------------------
        self.event.clear()

        # Get a precompiled parameter dictionary with basic ctd fields
        pdict_id = self.dataset_management.read_parameter_dictionary_by_name('ctd_parsed_param_dict',id_only=True)
        context_ids = self.dataset_management.read_parameter_contexts(pdict_id, id_only=True)

        # Add a field that supports binary data input.
        bin_context = ParameterContext('binary',  param_type=ArrayType())
        context_ids.append(self.dataset_management.create_parameter_context('binary', bin_context.dump()))
        # Add another field that supports dictionary elements.
        rec_context = ParameterContext('records', param_type=RecordType())
        context_ids.append(self.dataset_management.create_parameter_context('records', rec_context.dump()))

        pdict_id = self.dataset_management.create_parameter_dictionary('replay_pdict', parameter_context_ids=context_ids, temporal_context='time')
        
        stream_definition = self.pubsub_management.create_stream_definition('ctd data', parameter_dictionary_id=pdict_id)


        stream_id, route = self.pubsub_management.create_stream('producer', exchange_point=self.exchange_point_name, stream_definition_id=stream_definition)




        #--------------------------------------------------------------------------------
        # Start persisting the data on the stream 
        # - Get the ingestion configuration from the resource registry
        # - Create the dataset
        # - call persist_data_stream to setup the subscription for the ingestion workers
        #   on the stream that you specify which causes the data to be persisted
        #--------------------------------------------------------------------------------

        ingest_config_id = self.get_ingestion_config()
        dataset_id = self.create_dataset(pdict_id)
        self.ingestion_management.persist_data_stream(stream_id=stream_id, ingestion_configuration_id=ingest_config_id, dataset_id=dataset_id)

        #--------------------------------------------------------------------------------
        # Now the granules are ingesting and persisted
        #--------------------------------------------------------------------------------

        self.launch_producer(stream_id)
        self.wait_until_we_have_enough_granules(dataset_id,40)
        
        #--------------------------------------------------------------------------------
        # Now get the data in one chunk using an RPC Call to start_retreive
        #--------------------------------------------------------------------------------
        
        replay_data = self.data_retriever.retrieve(dataset_id)
        self.assertIsInstance(replay_data, Granule)
        rdt = RecordDictionaryTool.load_from_granule(replay_data)
        self.assertTrue((rdt['time'][:10] == np.arange(10)).all(),'%s' % rdt['time'][:])
        self.assertTrue((rdt['binary'][:10] == np.array(['hi']*10, dtype='object')).all())

        
        #--------------------------------------------------------------------------------
        # Now to try the streamed approach
        #--------------------------------------------------------------------------------
        replay_stream_id, replay_route = self.pubsub_management.create_stream('replay_out', exchange_point=self.exchange_point_name, stream_definition_id=stream_definition)
        self.replay_id, process_id =  self.data_retriever.define_replay(dataset_id=dataset_id, stream_id=replay_stream_id)
        log.info('Process ID: %s', process_id)

        replay_client = ReplayClient(process_id)

    
        #--------------------------------------------------------------------------------
        # Create the listening endpoint for the the retriever to talk to 
        #--------------------------------------------------------------------------------
        xp = self.container.ex_manager.create_xp(self.exchange_point_name)
        subscriber = StandaloneStreamSubscriber(self.exchange_space_name, self.validate_granule_subscription)
        self.queue_buffer.append(self.exchange_space_name)
        subscriber.start()
        subscriber.xn.bind(replay_route.routing_key, xp)

        self.data_retriever.start_replay_agent(self.replay_id)

        self.assertTrue(replay_client.await_agent_ready(5), 'The process never launched')
        replay_client.start_replay()
        
        self.assertTrue(self.event.wait(10))
        subscriber.stop()

        self.data_retriever.cancel_replay_agent(self.replay_id)


        #--------------------------------------------------------------------------------
        # Test the slicing capabilities
        #--------------------------------------------------------------------------------

        granule = self.data_retriever.retrieve(dataset_id=dataset_id, query={'tdoa':slice(0,5)})
        rdt = RecordDictionaryTool.load_from_granule(granule)
        b = rdt['time'] == np.arange(5)
        self.assertTrue(b.all() if not isinstance(b,bool) else b)
        self.streams.append(stream_id)
        self.stop_ingestion(stream_id)


    def test_coverage_transform(self):
        ph = ParameterHelper(self.dataset_management, self.addCleanup)
        pdict_id = ph.create_parsed()
        stream_def_id = self.pubsub_management.create_stream_definition('ctd parsed', parameter_dictionary_id=pdict_id)
        self.addCleanup(self.pubsub_management.delete_stream_definition, stream_def_id)

        stream_id, route = self.pubsub_management.create_stream('example', exchange_point=self.exchange_point_name, stream_definition_id=stream_def_id)
        self.addCleanup(self.pubsub_management.delete_stream, stream_id)

        ingestion_config_id = self.get_ingestion_config()
        dataset_id = self.create_dataset(pdict_id)

        self.ingestion_management.persist_data_stream(stream_id=stream_id, ingestion_configuration_id=ingestion_config_id, dataset_id=dataset_id)
        self.addCleanup(self.ingestion_management.unpersist_data_stream, stream_id, ingestion_config_id)
        publisher = StandaloneStreamPublisher(stream_id, route)
        
        rdt = ph.get_rdt(stream_def_id)
        ph.fill_parsed_rdt(rdt)

        dataset_monitor = DatasetMonitor(dataset_id)
        self.addCleanup(dataset_monitor.stop)

        publisher.publish(rdt.to_granule())
        self.assertTrue(dataset_monitor.event.wait(30))

        replay_granule = self.data_retriever.retrieve(dataset_id)
        rdt_out = RecordDictionaryTool.load_from_granule(replay_granule)

        np.testing.assert_array_almost_equal(rdt_out['time'], rdt['time'])
        np.testing.assert_array_almost_equal(rdt_out['temp'], rdt['temp'])

        np.testing.assert_array_almost_equal(rdt_out['conductivity_L1'], np.array([42.914]))
        np.testing.assert_array_almost_equal(rdt_out['temp_L1'], np.array([20.]))
        np.testing.assert_array_almost_equal(rdt_out['pressure_L1'], np.array([3.068]))
        np.testing.assert_array_almost_equal(rdt_out['density'], np.array([1021.7144739593881]))
        np.testing.assert_array_almost_equal(rdt_out['salinity'], np.array([30.935132729668283]))


    def test_qc_events(self):
        ph = ParameterHelper(self.dataset_management, self.addCleanup)
        pdict_id = ph.create_qc_pdict()
        stream_def_id = self.pubsub_management.create_stream_definition('qc stream def', parameter_dictionary_id=pdict_id)
        self.addCleanup(self.pubsub_management.delete_stream_definition, stream_def_id)

        stream_id, route = self.pubsub_management.create_stream('qc stream', exchange_point=self.exchange_point_name, stream_definition_id=stream_def_id)
        self.addCleanup(self.pubsub_management.delete_stream, stream_id)

        ingestion_config_id = self.get_ingestion_config()
        dataset_id = self.create_dataset(pdict_id)
        config = DotDict()

        self.ingestion_management.persist_data_stream(stream_id=stream_id, ingestion_configuration_id=ingestion_config_id, dataset_id=dataset_id, config=config)
        self.addCleanup(self.ingestion_management.unpersist_data_stream, stream_id, ingestion_config_id)

        publisher = StandaloneStreamPublisher(stream_id, route)
        rdt = RecordDictionaryTool(stream_definition_id=stream_def_id)
        rdt['time'] = np.arange(10)
        rdt['temp'] = np.arange(10) * 3

        verified = Event()
        def verification(event, *args, **kwargs):
            self.assertEquals(event.qc_parameter, 'temp_qc')
            self.assertEquals(event.temporal_value, 7)
            verified.set()

        es = EventSubscriber(event_type=OT.ParameterQCEvent, origin=dataset_id, callback=verification, auto_delete=True)
        es.start()
        self.addCleanup(es.stop)

        publisher.publish(rdt.to_granule())
        self.assertTrue(verified.wait(10))



    def test_lookup_values_ingest_replay(self):
        ph = ParameterHelper(self.dataset_management, self.addCleanup)
        pdict_id = ph.create_lookups()
        stream_def_id = self.pubsub_management.create_stream_definition('lookups', parameter_dictionary_id=pdict_id)
        self.addCleanup(self.pubsub_management.delete_stream_definition, stream_def_id)

        stream_id, route = self.pubsub_management.create_stream('example', exchange_point=self.exchange_point_name, stream_definition_id=stream_def_id)
        self.addCleanup(self.pubsub_management.delete_stream, stream_id)

        ingestion_config_id = self.get_ingestion_config()
        dataset_id = self.create_dataset(pdict_id)
        config = DotDict()
        config.process.lookup_docs = ['test1', 'test2']
        self.ingestion_management.persist_data_stream(stream_id=stream_id, ingestion_configuration_id=ingestion_config_id, dataset_id=dataset_id, config=config)
        self.addCleanup(self.ingestion_management.unpersist_data_stream, stream_id, ingestion_config_id)

        stored_value_manager = StoredValueManager(self.container)
        stored_value_manager.stored_value_cas('test1',{'offset_a':10.0, 'offset_b':13.1})
        
        publisher = StandaloneStreamPublisher(stream_id, route)
        rdt = RecordDictionaryTool(stream_definition_id=stream_def_id)
        rdt['time'] = np.arange(20)
        rdt['temp'] = [20.0] * 20

        granule = rdt.to_granule()

        dataset_monitor = DatasetMonitor(dataset_id)
        self.addCleanup(dataset_monitor.stop)

        publisher.publish(granule)
        self.assertTrue(dataset_monitor.event.wait(30))
        
        replay_granule = self.data_retriever.retrieve(dataset_id)
        rdt_out = RecordDictionaryTool.load_from_granule(replay_granule)

        np.testing.assert_array_almost_equal(rdt_out['time'], np.arange(20))
        np.testing.assert_array_almost_equal(rdt_out['temp'], np.array([20.] * 20))
        np.testing.assert_array_almost_equal(rdt_out['calibrated'], np.array([30.]*20))
        np.testing.assert_array_equal(rdt_out['offset_b'], np.array([rdt_out.fill_value('offset_b')] * 20))

        rdt = RecordDictionaryTool(stream_definition_id=stream_def_id)
        rdt['time'] = np.arange(20,40)
        rdt['temp'] = [20.0] * 20
        granule = rdt.to_granule()

        dataset_monitor.event.clear()

        stored_value_manager.stored_value_cas('test1',{'offset_a':20.0})
        stored_value_manager.stored_value_cas('coefficient_document',{'offset_b':10.0})
        gevent.sleep(2)

        publisher.publish(granule)
        self.assertTrue(dataset_monitor.event.wait(30))

        replay_granule = self.data_retriever.retrieve(dataset_id)
        rdt_out = RecordDictionaryTool.load_from_granule(replay_granule)

        np.testing.assert_array_almost_equal(rdt_out['time'], np.arange(40))
        np.testing.assert_array_almost_equal(rdt_out['temp'], np.array([20.] * 20 + [20.] * 20))
        np.testing.assert_array_equal(rdt_out['offset_b'], np.array([10.] * 40))
        np.testing.assert_array_almost_equal(rdt_out['calibrated'], np.array([30.]*20 + [40.]*20))
        np.testing.assert_array_almost_equal(rdt_out['calibrated_b'], np.array([40.] * 20 + [50.] * 20))



    @unittest.skip('Doesnt work')
    @attr('LOCOINT')
    @unittest.skipIf(os.getenv('CEI_LAUNCH_TEST', False), 'Skip test while in CEI LAUNCH mode')
    def test_replay_pause(self):
        # Get a precompiled parameter dictionary with basic ctd fields
        pdict_id = self.dataset_management.read_parameter_dictionary_by_name('ctd_parsed_param_dict',id_only=True)
        context_ids = self.dataset_management.read_parameter_contexts(pdict_id, id_only=True)

        # Add a field that supports binary data input.
        bin_context = ParameterContext('binary',  param_type=ArrayType())
        context_ids.append(self.dataset_management.create_parameter_context('binary', bin_context.dump()))
        # Add another field that supports dictionary elements.
        rec_context = ParameterContext('records', param_type=RecordType())
        context_ids.append(self.dataset_management.create_parameter_context('records', rec_context.dump()))

        pdict_id = self.dataset_management.create_parameter_dictionary('replay_pdict', parameter_context_ids=context_ids, temporal_context='time')
        

        stream_def_id = self.pubsub_management.create_stream_definition('replay_stream', parameter_dictionary_id=pdict_id)
        replay_stream, replay_route = self.pubsub_management.create_stream('replay', 'xp1', stream_definition_id=stream_def_id)
        dataset_id = self.create_dataset(pdict_id)
        scov = DatasetManagementService._get_simplex_coverage(dataset_id)

        bb = CoverageCraft(scov)
        bb.rdt['time'] = np.arange(100)
        bb.rdt['temp'] = np.random.random(100) + 30
        bb.sync_with_granule()

        DatasetManagementService._persist_coverage(dataset_id, bb.coverage) # This invalidates it for multi-host configurations
        # Set up the subscriber to verify the data
        subscriber = StandaloneStreamSubscriber(self.exchange_space_name, self.validate_granule_subscription)
        xp = self.container.ex_manager.create_xp('xp1')
        self.queue_buffer.append(self.exchange_space_name)
        subscriber.start()
        subscriber.xn.bind(replay_route.routing_key, xp)

        # Set up the replay agent and the client wrapper

        # 1) Define the Replay (dataset and stream to publish on)
        self.replay_id, process_id = self.data_retriever.define_replay(dataset_id=dataset_id, stream_id=replay_stream)
        # 2) Make a client to the interact with the process (optionall provide it a process to bind with)
        replay_client = ReplayClient(process_id)
        # 3) Start the agent (launch the process)
        self.data_retriever.start_replay_agent(self.replay_id)
        # 4) Start replaying...
        replay_client.start_replay()
        
        # Wait till we get some granules
        self.assertTrue(self.event.wait(5))
        
        # We got granules, pause the replay, clear the queue and allow the process to finish consuming
        replay_client.pause_replay()
        gevent.sleep(1)
        subscriber.xn.purge()
        self.event.clear()
        
        # Make sure there's no remaining messages being consumed
        self.assertFalse(self.event.wait(1))

        # Resume the replay and wait until we start getting granules again
        replay_client.resume_replay()
        self.assertTrue(self.event.wait(5))
    
        # Stop the replay, clear the queues
        replay_client.stop_replay()
        gevent.sleep(1)
        subscriber.xn.purge()
        self.event.clear()

        # Make sure that it did indeed stop
        self.assertFalse(self.event.wait(1))

        subscriber.stop()


    def test_retrieve_and_transform(self):
        # Make a simple dataset and start ingestion, pretty standard stuff.
        ctd_stream_id, route, stream_def_id, dataset_id = self.make_simple_dataset()
        self.start_ingestion(ctd_stream_id, dataset_id)

        # Stream definition for the salinity data
        salinity_pdict_id = self.dataset_management.read_parameter_dictionary_by_name('ctd_parsed_param_dict', id_only=True)
        sal_stream_def_id = self.pubsub_management.create_stream_definition('sal data', parameter_dictionary_id=salinity_pdict_id)


        rdt = RecordDictionaryTool(stream_definition_id=stream_def_id)
        rdt['time'] = np.arange(10)
        rdt['temp'] = np.random.randn(10) * 10 + 30
        rdt['conductivity'] = np.random.randn(10) * 2 + 10
        rdt['pressure'] = np.random.randn(10) * 1 + 12

        publisher = StandaloneStreamPublisher(ctd_stream_id, route)
        publisher.publish(rdt.to_granule())

        rdt['time'] = np.arange(10,20)

        publisher.publish(rdt.to_granule())


        self.wait_until_we_have_enough_granules(dataset_id, 20)

        granule = self.data_retriever.retrieve(dataset_id, 
                                             None,
                                             None, 
                                             'ion.processes.data.transforms.ctd.ctd_L2_salinity',
                                             'CTDL2SalinityTransformAlgorithm', 
                                             kwargs=dict(params=sal_stream_def_id))
        rdt = RecordDictionaryTool.load_from_granule(granule)
        for i in rdt['salinity']:
            self.assertNotEquals(i,0)
        self.streams.append(ctd_stream_id)
        self.stop_ingestion(ctd_stream_id)

    def test_last_granule(self):
        stream_id, route, stream_def_id, dataset_id = self.make_simple_dataset()
        self.start_ingestion(stream_id, dataset_id)

        self.publish_hifi(stream_id,route, 0)
        self.publish_hifi(stream_id,route, 1)
        

        self.wait_until_we_have_enough_granules(dataset_id,20) # I just need two


        success = False
        def verifier():
                replay_granule = self.data_retriever.retrieve_last_data_points(dataset_id, 10)

                rdt = RecordDictionaryTool.load_from_granule(replay_granule)

                comp = rdt['time'] == np.arange(10) + 10
                if not isinstance(comp,bool):
                    return comp.all()
                return False
        success = poll(verifier)

        self.assertTrue(success)

        success = False
        def verify_points():
                replay_granule = self.data_retriever.retrieve_last_data_points(dataset_id,5)

                rdt = RecordDictionaryTool.load_from_granule(replay_granule)

                comp = rdt['time'] == np.arange(15,20)
                if not isinstance(comp,bool):
                    return comp.all()
                return False
        success = poll(verify_points)

        self.assertTrue(success)
        self.streams.append(stream_id)
        self.stop_ingestion(stream_id)

    def test_replay_with_parameters(self):
        #--------------------------------------------------------------------------------
        # Create the configurations and the dataset
        #--------------------------------------------------------------------------------
        # Get a precompiled parameter dictionary with basic ctd fields
        pdict_id = self.dataset_management.read_parameter_dictionary_by_name('ctd_parsed_param_dict',id_only=True)
        context_ids = self.dataset_management.read_parameter_contexts(pdict_id, id_only=True)

        # Add a field that supports binary data input.
        bin_context = ParameterContext('binary',  param_type=ArrayType())
        context_ids.append(self.dataset_management.create_parameter_context('binary', bin_context.dump()))
        # Add another field that supports dictionary elements.
        rec_context = ParameterContext('records', param_type=RecordType())
        context_ids.append(self.dataset_management.create_parameter_context('records', rec_context.dump()))

        pdict_id = self.dataset_management.create_parameter_dictionary('replay_pdict', parameter_context_ids=context_ids, temporal_context='time')
        

        stream_def_id = self.pubsub_management.create_stream_definition('replay_stream', parameter_dictionary_id=pdict_id)
        
        stream_id, route  = self.pubsub_management.create_stream('replay_with_params', exchange_point=self.exchange_point_name, stream_definition_id=stream_def_id)
        config_id  = self.get_ingestion_config()
        dataset_id = self.create_dataset(pdict_id)
        self.ingestion_management.persist_data_stream(stream_id=stream_id, ingestion_configuration_id=config_id, dataset_id=dataset_id)

        dataset_monitor = DatasetMonitor(dataset_id)

        self.addCleanup(dataset_monitor.stop)

        self.publish_fake_data(stream_id, route)

        self.assertTrue(dataset_monitor.event.wait(30))

        query = {
            'start_time': 0 - 2208988800,
            'end_time':   20 - 2208988800,
            'stride_time' : 2,
            'parameters': ['time','temp']
        }
        retrieved_data = self.data_retriever.retrieve(dataset_id=dataset_id,query=query)

        rdt = RecordDictionaryTool.load_from_granule(retrieved_data)
        comp = np.arange(0,20,2) == rdt['time']
        self.assertTrue(comp.all(),'%s' % rdt.pretty_print())
        self.assertEquals(set(rdt.iterkeys()), set(['time','temp']))

        extents = self.dataset_management.dataset_extents(dataset_id=dataset_id, parameters=['time','temp'])
        self.assertTrue(extents['time']>=20)
        self.assertTrue(extents['temp']>=20)

        self.streams.append(stream_id)
        self.stop_ingestion(stream_id)
        

    def test_repersist_data(self):
        stream_id, route, stream_def_id, dataset_id = self.make_simple_dataset()
        self.start_ingestion(stream_id, dataset_id)
        self.publish_hifi(stream_id,route,0)
        self.publish_hifi(stream_id,route,1)
        self.wait_until_we_have_enough_granules(dataset_id,20)
        config_id = self.get_ingestion_config()
        self.ingestion_management.unpersist_data_stream(stream_id=stream_id,ingestion_configuration_id=config_id)
        self.ingestion_management.persist_data_stream(stream_id=stream_id,ingestion_configuration_id=config_id,dataset_id=dataset_id)
        self.publish_hifi(stream_id,route,2)
        self.publish_hifi(stream_id,route,3)
        self.wait_until_we_have_enough_granules(dataset_id,40)
        success = False
        with gevent.timeout.Timeout(5):
            while not success:

                replay_granule = self.data_retriever.retrieve(dataset_id)

                rdt = RecordDictionaryTool.load_from_granule(replay_granule)

                comp = rdt['time'] == np.arange(0,40)
                if not isinstance(comp,bool):
                    success = comp.all()
                gevent.sleep(1)

        self.assertTrue(success)
        self.streams.append(stream_id)
        self.stop_ingestion(stream_id)


    @attr('LOCOINT')
    @unittest.skipIf(os.getenv('CEI_LAUNCH_TEST', False), 'Host requires file-system access to coverage files, CEI mode does not support.')
    def test_correct_time(self):

        # There are 2208988800 seconds between Jan 1 1900 and Jan 1 1970, i.e. 
        #  the conversion factor between unix and NTP time
        unix_now = np.floor(time.time())
        ntp_now  = unix_now + 2208988800 

        unix_ago = unix_now - 20
        ntp_ago  = unix_ago + 2208988800

        stream_id, route, stream_def_id, dataset_id = self.make_simple_dataset()
        coverage = DatasetManagementService._get_simplex_coverage(dataset_id)
        coverage.insert_timesteps(20)
        coverage.set_parameter_values('time', np.arange(ntp_ago,ntp_now))
        
        temporal_bounds = self.dataset_management.dataset_temporal_bounds(dataset_id)

        self.assertTrue( np.abs(temporal_bounds[0] - unix_ago) < 2)
        self.assertTrue( np.abs(temporal_bounds[1] - unix_now) < 2)


    @attr('LOCOINT')
    @unittest.skipIf(os.getenv('CEI_LAUNCH_TEST', False), 'Host requires file-system access to coverage files, CEI mode does not support.')
    def test_empty_coverage_time(self):

        stream_id, route, stream_def_id, dataset_id = self.make_simple_dataset()
        coverage = DatasetManagementService._get_coverage(dataset_id)
        temporal_bounds = self.dataset_management.dataset_temporal_bounds(dataset_id)
        self.assertEquals([coverage.get_parameter_context('time').fill_value] *2, temporal_bounds)


    @attr('LOCOINT')
    @unittest.skipIf(os.getenv('CEI_LAUNCH_TEST', False), 'Host requires file-system access to coverage files, CEI mode does not support.')
    def test_out_of_band_retrieve(self):
        # Setup the environemnt
        stream_id, route, stream_def_id, dataset_id = self.make_simple_dataset()
        self.start_ingestion(stream_id, dataset_id)
        
        # Fill the dataset
        self.publish_fake_data(stream_id, route)
        self.wait_until_we_have_enough_granules(dataset_id,40)

        # Retrieve the data
        granule = DataRetrieverService.retrieve_oob(dataset_id)
        rdt = RecordDictionaryTool.load_from_granule(granule)
        self.assertTrue((rdt['time'] == np.arange(40)).all())

    @attr('LOCOINT')
    @unittest.skipIf(os.getenv('CEI_LAUNCH_TEST', False), 'Host requires file-system access to coverage files, CEI mode does not support.')
    def test_retrieve_cache(self):
        DataRetrieverService._refresh_interval = 1
        datasets = [self.make_simple_dataset() for i in xrange(10)]
        for stream_id, route, stream_def_id, dataset_id in datasets:
            coverage = DatasetManagementService._get_simplex_coverage(dataset_id)
            coverage.insert_timesteps(10)
            coverage.set_parameter_values('time', np.arange(10))
            coverage.set_parameter_values('temp', np.arange(10))

        # Verify cache hit and refresh
        dataset_ids = [i[3] for i in datasets]
        self.assertTrue(dataset_ids[0] not in DataRetrieverService._retrieve_cache)
        DataRetrieverService._get_coverage(dataset_ids[0]) # Hit the chache
        cov, age = DataRetrieverService._retrieve_cache[dataset_ids[0]]
        # Verify that it was hit and it's now in there
        self.assertTrue(dataset_ids[0] in DataRetrieverService._retrieve_cache)

        gevent.sleep(DataRetrieverService._refresh_interval + 0.2)

        DataRetrieverService._get_coverage(dataset_ids[0]) # Hit the chache
        cov, age2 = DataRetrieverService._retrieve_cache[dataset_ids[0]]
        self.assertTrue(age2 != age)

        for dataset_id in dataset_ids:
            DataRetrieverService._get_coverage(dataset_id)
        
        self.assertTrue(dataset_ids[0] not in DataRetrieverService._retrieve_cache)

        stream_id, route, stream_def, dataset_id = datasets[0]
        self.start_ingestion(stream_id, dataset_id)
        DataRetrieverService._get_coverage(dataset_id)
        
        self.assertTrue(dataset_id in DataRetrieverService._retrieve_cache)

        DataRetrieverService._refresh_interval = 100
        self.publish_hifi(stream_id,route,1)
        self.wait_until_we_have_enough_granules(dataset_id, data_size=20)
            
 
        event = gevent.event.Event()
        with gevent.Timeout(20):
            while not event.wait(0.1):
                if dataset_id not in DataRetrieverService._retrieve_cache:
                    event.set()


        self.assertTrue(event.is_set())

        
    def publish_and_wait(self, dataset_id, granule):
        stream_ids, _ = self.resource_registry.find_objects(dataset_id, PRED.hasStream,id_only=True)
        stream_id=stream_ids[0]
        route = self.pubsub_management.read_stream_route(stream_id)
        publisher = StandaloneStreamPublisher(stream_id,route)
        dataset_monitor = DatasetMonitor(dataset_id)
        publisher.publish(granule)
        self.assertTrue(dataset_monitor.event.wait(10))

    @attr('LOCOINT')
    @unittest.skipIf(os.getenv('CEI_LAUNCH_TEST', False), 'Host requires file-system access to coverage files, CEI mode does not support.')
    def test_thorough_gap_analysis(self):
        dataset_id = self.test_ingestion_gap_analysis()
        vcov = DatasetManagementService._get_coverage(dataset_id)

        self.assertIsInstance(vcov,ViewCoverage)
        ccov = vcov.reference_coverage

        self.assertIsInstance(ccov, ComplexCoverage)
        self.assertEquals(len(ccov._reference_covs), 3)


    def test_ingestion_gap_analysis(self):
        stream_id, route, stream_def_id, dataset_id = self.make_simple_dataset()
        self.start_ingestion(stream_id, dataset_id)
        self.addCleanup(self.stop_ingestion, stream_id)

        connection1 = uuid4().hex
        connection2 = uuid4().hex

        rdt = RecordDictionaryTool(stream_definition_id=stream_def_id)
        rdt['time'] = [0]
        rdt['temp'] = [0]
        self.publish_and_wait(dataset_id, rdt.to_granule(connection_id=connection1,connection_index='0'))
        rdt['time'] = [1]
        rdt['temp'] = [1]
        self.publish_and_wait(dataset_id, rdt.to_granule(connection_id=connection1,connection_index=1))
        rdt['time'] = [2]
        rdt['temp'] = [2]
        self.publish_and_wait(dataset_id, rdt.to_granule(connection_id=connection1,connection_index='3')) # Gap, missed message
        rdt['time'] = [3]
        rdt['temp'] = [3]
        self.publish_and_wait(dataset_id, rdt.to_granule(connection_id=connection2,connection_index='3')) # Gap, new connection
        rdt['time'] = [4]
        rdt['temp'] = [4]
        self.publish_and_wait(dataset_id, rdt.to_granule(connection_id=connection2,connection_index='4'))
        rdt['time'] = [5]
        rdt['temp'] = [5]
        self.publish_and_wait(dataset_id, rdt.to_granule(connection_id=connection2,connection_index=5))

        granule = self.data_retriever.retrieve(dataset_id)
        rdt = RecordDictionaryTool.load_from_granule(granule)
        np.testing.assert_array_equal(rdt['time'], np.arange(6))
        np.testing.assert_array_equal(rdt['temp'], np.arange(6))
        return dataset_id


    @unittest.skip('Outdated due to ingestion retry')
    @attr('LOCOINT')
    @unittest.skipIf(os.getenv('CEI_LAUNCH_TEST', False), 'Host requires file-system access to coverage files, CEI mode does not support.')
    def test_ingestion_failover(self):
        stream_id, route, stream_def_id, dataset_id = self.make_simple_dataset()
        self.start_ingestion(stream_id, dataset_id)
        
        event = Event()

        def cb(*args, **kwargs):
            event.set()

        sub = EventSubscriber(event_type="ExceptionEvent", callback=cb, origin="stream_exception")
        sub.start()

        self.publish_fake_data(stream_id, route)
        self.wait_until_we_have_enough_granules(dataset_id, 40)
        
        file_path = DatasetManagementService._get_coverage_path(dataset_id)
        master_file = os.path.join(file_path, '%s_master.hdf5' % dataset_id)

        with open(master_file, 'w') as f:
            f.write('this will crash HDF')

        self.publish_hifi(stream_id, route, 5)


        self.assertTrue(event.wait(10))

        sub.stop()

    @attr('LOCOINT')
    @unittest.skipIf(os.getenv('CEI_LAUNCH_TEST', False), 'Host requires file-system access to coverage files, CEI mode does not support.')
    def test_coverage_types(self):
        # Make a simple dataset and start ingestion, pretty standard stuff.
        ctd_stream_id, route, stream_def_id, dataset_id = self.make_simple_dataset()
        cov = DatasetManagementService._get_coverage(dataset_id=dataset_id)
        self.assertIsInstance(cov, ViewCoverage)

        cov = DatasetManagementService._get_simplex_coverage(dataset_id=dataset_id)
        self.assertIsInstance(cov, SimplexCoverage)
class TestDMEnd2End(IonIntegrationTestCase):
    def setUp(self): # Love the non pep-8 convention
        self._start_container()

        self.container.start_rel_from_url('res/deploy/r2deploy.yml')

        self.process_dispatcher   = ProcessDispatcherServiceClient()
        self.pubsub_management    = PubsubManagementServiceClient()
        self.resource_registry    = ResourceRegistryServiceClient()
        self.dataset_management   = DatasetManagementServiceClient()
        self.ingestion_management = IngestionManagementServiceClient()
        self.data_retriever       = DataRetrieverServiceClient()
        self.event                = Event()
        self.exchange_space_name  = 'test_granules'
        self.exchange_point_name  = 'science_data'       
        self.i                    = 0
        self.cci                  = 0

    #--------------------------------------------------------------------------------
    # Helper/Utility methods
    #--------------------------------------------------------------------------------
        
    def create_dataset(self, parameter_dict_id=''):
        '''
        Creates a time-series dataset
        '''
        if not parameter_dict_id:
            parameter_dict_id = self.dataset_management.read_parameter_dictionary_by_name('ctd_parsed_param_dict', id_only=True)

        dataset = Dataset('test_dataset_%i'%self.i)
        dataset_id = self.dataset_management.create_dataset(dataset, parameter_dictionary_id=parameter_dict_id)
        self.addCleanup(self.dataset_management.delete_dataset, dataset_id)
        return dataset_id
    
    def get_datastore(self, dataset_id):
        '''
        Gets an instance of the datastore
            This method is primarily used to defeat a bug where integration tests in multiple containers may sometimes 
            delete a CouchDB datastore and the other containers are unaware of the new state of the datastore.
        '''
        dataset = self.dataset_management.read_dataset(dataset_id)
        datastore_name = dataset.datastore_name
        datastore = self.container.datastore_manager.get_datastore(datastore_name, DataStore.DS_PROFILE.SCIDATA)
        return datastore
    
    def get_ingestion_config(self):
        '''
        Grab the ingestion configuration from the resource registry
        '''
        # The ingestion configuration should have been created by the bootstrap service 
        # which is configured through r2deploy.yml

        ingest_configs, _  = self.resource_registry.find_resources(restype=RT.IngestionConfiguration,id_only=True)
        return ingest_configs[0]

    def launch_producer(self, stream_id=''):
        '''
        Launch the producer
        '''
        pid = self.container.spawn_process('better_data_producer', 'ion.processes.data.example_data_producer', 'BetterDataProducer', {'process':{'stream_id':stream_id}})
        self.addCleanup(self.container.terminate_process, pid)

    def make_simple_dataset(self):
        '''
        Makes a stream, a stream definition and a dataset, the essentials for most of these tests
        '''
        pdict_id             = self.dataset_management.read_parameter_dictionary_by_name('ctd_parsed_param_dict', id_only=True)
        stream_def_id        = self.pubsub_management.create_stream_definition('ctd data %i' % self.i, parameter_dictionary_id=pdict_id)
        self.addCleanup(self.pubsub_management.delete_stream_definition, stream_def_id)
        stream_id, route     = self.pubsub_management.create_stream('ctd stream %i' % self.i, 'xp1', stream_definition_id=stream_def_id)
        self.addCleanup(self.pubsub_management.delete_stream, stream_id)

        dataset_id = self.create_dataset(pdict_id)

        # self.get_datastore(dataset_id)
        self.i += 1
        return stream_id, route, stream_def_id, dataset_id

    def publish_hifi(self,stream_id,stream_route,offset=0):
        '''
        Publish deterministic data
        '''

        pub = StandaloneStreamPublisher(stream_id, stream_route)

        stream_def = self.pubsub_management.read_stream_definition(stream_id=stream_id)
        stream_def_id = stream_def._id
        rdt = RecordDictionaryTool(stream_definition_id=stream_def_id)
        rdt['time'] = np.arange(10) + (offset * 10)
        rdt['temp'] = np.arange(10) + (offset * 10)
        pub.publish(rdt.to_granule())

    def publish_fake_data(self,stream_id, route):
        '''
        Make four granules
        '''
        for i in xrange(4):
            self.publish_hifi(stream_id,route,i)

    def start_ingestion(self, stream_id, dataset_id):
        '''
        Starts ingestion/persistence for a given dataset
        '''
        ingest_config_id = self.get_ingestion_config()
        self.ingestion_management.persist_data_stream(stream_id=stream_id, ingestion_configuration_id=ingest_config_id, dataset_id=dataset_id)
    
    def stop_ingestion(self, stream_id):
        ingest_config_id = self.get_ingestion_config()
        self.ingestion_management.unpersist_data_stream(stream_id=stream_id, ingestion_configuration_id=ingest_config_id)

    def validate_granule_subscription(self, msg, route, stream_id):
        '''
        Validation for granule format
        '''
        if msg == {}:
            return
        rdt = RecordDictionaryTool.load_from_granule(msg)
        log.info('%s', rdt.pretty_print())
        self.assertIsInstance(msg,Granule,'Message is improperly formatted. (%s)' % type(msg))
        self.event.set()

    def wait_until_we_have_enough_granules(self, dataset_id='',data_size=40):
        '''
        Loops until there is a sufficient amount of data in the dataset
        '''
        done = False
        with gevent.Timeout(40):
            while not done:
                extents = self.dataset_management.dataset_extents(dataset_id, 'time')
                granule = self.data_retriever.retrieve_last_data_points(dataset_id, 1)
                rdt     = RecordDictionaryTool.load_from_granule(granule)
                if rdt['time'] and rdt['time'][0] != rdt._pdict.get_context('time').fill_value and extents >= data_size:
                    done = True
                else:
                    gevent.sleep(0.2)


    #--------------------------------------------------------------------------------
    # Test Methods
    #--------------------------------------------------------------------------------

    def test_dm_end_2_end(self):
        #--------------------------------------------------------------------------------
        # Set up a stream and have a mock instrument (producer) send data
        #--------------------------------------------------------------------------------
        self.event.clear()

        # Get a precompiled parameter dictionary with basic ctd fields
        pdict_id = self.dataset_management.read_parameter_dictionary_by_name('ctd_parsed_param_dict',id_only=True)
        context_ids = self.dataset_management.read_parameter_contexts(pdict_id, id_only=True)

        # Add a field that supports binary data input.
        bin_context = ParameterContext('binary',  param_type=ArrayType())
        context_ids.append(self.dataset_management.create_parameter_context('binary', bin_context.dump()))
        # Add another field that supports dictionary elements.
        rec_context = ParameterContext('records', param_type=RecordType())
        context_ids.append(self.dataset_management.create_parameter_context('records', rec_context.dump()))

        pdict_id = self.dataset_management.create_parameter_dictionary('replay_pdict', parameter_context_ids=context_ids, temporal_context='time')
        
        stream_definition = self.pubsub_management.create_stream_definition('ctd data', parameter_dictionary_id=pdict_id)


        stream_id, route = self.pubsub_management.create_stream('producer', exchange_point=self.exchange_point_name, stream_definition_id=stream_definition)

        #--------------------------------------------------------------------------------
        # Start persisting the data on the stream 
        # - Get the ingestion configuration from the resource registry
        # - Create the dataset
        # - call persist_data_stream to setup the subscription for the ingestion workers
        #   on the stream that you specify which causes the data to be persisted
        #--------------------------------------------------------------------------------

        ingest_config_id = self.get_ingestion_config()
        dataset_id = self.create_dataset(pdict_id)
        self.ingestion_management.persist_data_stream(stream_id=stream_id, ingestion_configuration_id=ingest_config_id, dataset_id=dataset_id)
        self.addCleanup(self.stop_ingestion, stream_id)

        #--------------------------------------------------------------------------------
        # Now the granules are ingesting and persisted
        #--------------------------------------------------------------------------------

        self.launch_producer(stream_id)
        self.wait_until_we_have_enough_granules(dataset_id,40)
        
        #--------------------------------------------------------------------------------
        # Now get the data in one chunk using an RPC Call to start_retreive
        #--------------------------------------------------------------------------------
        
        replay_data = self.data_retriever.retrieve(dataset_id)
        self.assertIsInstance(replay_data, Granule)
        rdt = RecordDictionaryTool.load_from_granule(replay_data)
        self.assertTrue((rdt['time'][:10] == np.arange(10)).all(),'%s' % rdt['time'][:])
        self.assertTrue((rdt['binary'][:10] == np.array(['hi']*10, dtype='object')).all())

        
        #--------------------------------------------------------------------------------
        # Now to try the streamed approach
        #--------------------------------------------------------------------------------
        replay_stream_id, replay_route = self.pubsub_management.create_stream('replay_out', exchange_point=self.exchange_point_name, stream_definition_id=stream_definition)
        self.replay_id, process_id =  self.data_retriever.define_replay(dataset_id=dataset_id, stream_id=replay_stream_id)
        log.info('Process ID: %s', process_id)

        replay_client = ReplayClient(process_id)

    
        #--------------------------------------------------------------------------------
        # Create the listening endpoint for the the retriever to talk to 
        #--------------------------------------------------------------------------------
        sub_id = self.pubsub_management.create_subscription(self.exchange_space_name,stream_ids=[replay_stream_id])
        self.addCleanup(self.pubsub_management.delete_subscription, sub_id)
        self.pubsub_management.activate_subscription(sub_id)
        self.addCleanup(self.pubsub_management.deactivate_subscription, sub_id)
        subscriber = StandaloneStreamSubscriber(self.exchange_space_name, self.validate_granule_subscription)
        subscriber.start()
        self.addCleanup(subscriber.stop)

        self.data_retriever.start_replay_agent(self.replay_id)

        self.assertTrue(replay_client.await_agent_ready(5), 'The process never launched')
        replay_client.start_replay()
        
        self.assertTrue(self.event.wait(10))

        self.data_retriever.cancel_replay_agent(self.replay_id)


        #--------------------------------------------------------------------------------
        # Test the slicing capabilities
        #--------------------------------------------------------------------------------

        granule = self.data_retriever.retrieve(dataset_id=dataset_id, query={'tdoa':slice(0,5)})
        rdt = RecordDictionaryTool.load_from_granule(granule)
        b = rdt['time'] == np.arange(5)
        self.assertTrue(b.all() if not isinstance(b,bool) else b)


    def test_coverage_transform(self):
        ph = ParameterHelper(self.dataset_management, self.addCleanup)
        pdict_id = ph.create_parsed()
        stream_def_id = self.pubsub_management.create_stream_definition('ctd parsed', parameter_dictionary_id=pdict_id)
        self.addCleanup(self.pubsub_management.delete_stream_definition, stream_def_id)

        stream_id, route = self.pubsub_management.create_stream('example', exchange_point=self.exchange_point_name, stream_definition_id=stream_def_id)
        self.addCleanup(self.pubsub_management.delete_stream, stream_id)

        ingestion_config_id = self.get_ingestion_config()
        dataset_id = self.create_dataset(pdict_id)

        self.ingestion_management.persist_data_stream(stream_id=stream_id, ingestion_configuration_id=ingestion_config_id, dataset_id=dataset_id)
        self.addCleanup(self.ingestion_management.unpersist_data_stream, stream_id, ingestion_config_id)
        publisher = StandaloneStreamPublisher(stream_id, route)
        
        rdt = ph.get_rdt(stream_def_id)
        ph.fill_parsed_rdt(rdt)

        dataset_monitor = DatasetMonitor(dataset_id)
        self.addCleanup(dataset_monitor.stop)

        publisher.publish(rdt.to_granule())
        self.assertTrue(dataset_monitor.wait())

        replay_granule = self.data_retriever.retrieve(dataset_id)
        rdt_out = RecordDictionaryTool.load_from_granule(replay_granule)

        np.testing.assert_array_almost_equal(rdt_out['time'], rdt['time'])
        np.testing.assert_array_almost_equal(rdt_out['temp'], rdt['temp'])

        np.testing.assert_allclose(rdt_out['conductivity_L1'], np.array([42.914]))
        np.testing.assert_allclose(rdt_out['temp_L1'], np.array([20.]))
        np.testing.assert_allclose(rdt_out['pressure_L1'], np.array([3.068]))
        np.testing.assert_allclose(rdt_out['density'], np.array([1021.7144739593881], dtype='float32'))
        np.testing.assert_allclose(rdt_out['salinity'], np.array([30.935132729668283], dtype='float32'))


    def test_ingestion_pause(self):
        ctd_stream_id, route, stream_def_id, dataset_id = self.make_simple_dataset()
        ingestion_config_id = self.get_ingestion_config()
        self.start_ingestion(ctd_stream_id, dataset_id)
        self.addCleanup(self.stop_ingestion, ctd_stream_id)

        rdt = RecordDictionaryTool(stream_definition_id=stream_def_id)
        rdt['time'] = np.arange(10)

        publisher = StandaloneStreamPublisher(ctd_stream_id, route)
        monitor = DatasetMonitor(dataset_id)
        self.addCleanup(monitor.stop)
        publisher.publish(rdt.to_granule())
        self.assertTrue(monitor.wait())
        granule = self.data_retriever.retrieve(dataset_id)


        self.ingestion_management.pause_data_stream(ctd_stream_id, ingestion_config_id)

        monitor.event.clear()
        rdt['time'] = np.arange(10,20)
        publisher.publish(rdt.to_granule())
        self.assertFalse(monitor.event.wait(1))

        self.ingestion_management.resume_data_stream(ctd_stream_id, ingestion_config_id)

        self.assertTrue(monitor.wait())

        granule = self.data_retriever.retrieve(dataset_id)
        rdt2 = RecordDictionaryTool.load_from_granule(granule)
        np.testing.assert_array_almost_equal(rdt2['time'], np.arange(20))

    def test_last_granule(self):
        stream_id, route, stream_def_id, dataset_id = self.make_simple_dataset()
        self.start_ingestion(stream_id, dataset_id)
        self.addCleanup(self.stop_ingestion, stream_id)

        self.publish_hifi(stream_id,route, 0)
        self.publish_hifi(stream_id,route, 1)
        

        self.wait_until_we_have_enough_granules(dataset_id,20) # I just need two


        success = False
        def verifier():
                replay_granule = self.data_retriever.retrieve_last_data_points(dataset_id, 10)

                rdt = RecordDictionaryTool.load_from_granule(replay_granule)

                comp = rdt['time'] == np.arange(10) + 10
                if not isinstance(comp,bool):
                    return comp.all()
                return False
        success = poll(verifier)

        self.assertTrue(success)

        success = False
        def verify_points():
                replay_granule = self.data_retriever.retrieve_last_data_points(dataset_id,5)

                rdt = RecordDictionaryTool.load_from_granule(replay_granule)

                comp = rdt['time'] == np.arange(15,20)
                if not isinstance(comp,bool):
                    return comp.all()
                return False
        success = poll(verify_points)

        self.assertTrue(success)

    def test_replay_with_parameters(self):
        #--------------------------------------------------------------------------------
        # Create the configurations and the dataset
        #--------------------------------------------------------------------------------
        # Get a precompiled parameter dictionary with basic ctd fields
        pdict_id = self.dataset_management.read_parameter_dictionary_by_name('ctd_parsed_param_dict',id_only=True)
        context_ids = self.dataset_management.read_parameter_contexts(pdict_id, id_only=True)

        # Add a field that supports binary data input.
        bin_context = ParameterContext('binary',  param_type=ArrayType())
        context_ids.append(self.dataset_management.create_parameter_context('binary', bin_context.dump()))
        # Add another field that supports dictionary elements.
        rec_context = ParameterContext('records', param_type=RecordType())
        context_ids.append(self.dataset_management.create_parameter_context('records', rec_context.dump()))

        pdict_id = self.dataset_management.create_parameter_dictionary('replay_pdict', parameter_context_ids=context_ids, temporal_context='time')
        

        stream_def_id = self.pubsub_management.create_stream_definition('replay_stream', parameter_dictionary_id=pdict_id)
        
        stream_id, route  = self.pubsub_management.create_stream('replay_with_params', exchange_point=self.exchange_point_name, stream_definition_id=stream_def_id)
        config_id  = self.get_ingestion_config()
        dataset_id = self.create_dataset(pdict_id)
        self.ingestion_management.persist_data_stream(stream_id=stream_id, ingestion_configuration_id=config_id, dataset_id=dataset_id)
        self.addCleanup(self.stop_ingestion, stream_id)

        dataset_monitor = DatasetMonitor(dataset_id)
        self.addCleanup(dataset_monitor.stop)

        self.publish_fake_data(stream_id, route)

        self.assertTrue(dataset_monitor.wait())

        query = {
            'start_time': 0 - 2208988800,
            'end_time':   19 - 2208988800,
            'stride_time' : 2,
            'parameters': ['time','temp']
        }
        retrieved_data = self.data_retriever.retrieve(dataset_id=dataset_id,query=query)

        rdt = RecordDictionaryTool.load_from_granule(retrieved_data)
        np.testing.assert_array_equal(rdt['time'], np.arange(0,20,2))
        self.assertEquals(set(rdt.iterkeys()), set(['time','temp']))

        extents = self.dataset_management.dataset_extents(dataset_id=dataset_id, parameters=['time','temp'])
        self.assertTrue(extents['time']>=20)
        self.assertTrue(extents['temp']>=20)

    def test_repersist_data(self):
        stream_id, route, stream_def_id, dataset_id = self.make_simple_dataset()
        self.start_ingestion(stream_id, dataset_id)
        self.publish_hifi(stream_id,route,0)
        self.publish_hifi(stream_id,route,1)
        self.wait_until_we_have_enough_granules(dataset_id,20)
        config_id = self.get_ingestion_config()
        self.ingestion_management.unpersist_data_stream(stream_id=stream_id,ingestion_configuration_id=config_id)
        self.ingestion_management.persist_data_stream(stream_id=stream_id,ingestion_configuration_id=config_id,dataset_id=dataset_id)
        self.addCleanup(self.stop_ingestion, stream_id)
        self.publish_hifi(stream_id,route,2)
        self.publish_hifi(stream_id,route,3)
        self.wait_until_we_have_enough_granules(dataset_id,40)
        success = False
        with gevent.timeout.Timeout(5):
            while not success:

                replay_granule = self.data_retriever.retrieve(dataset_id)

                rdt = RecordDictionaryTool.load_from_granule(replay_granule)

                comp = rdt['time'] == np.arange(0,40)
                if not isinstance(comp,bool):
                    success = comp.all()
                gevent.sleep(1)

        self.assertTrue(success)


    @unittest.skip('deprecated')
    def test_correct_time(self):

        # There are 2208988800 seconds between Jan 1 1900 and Jan 1 1970, i.e. 
        #  the conversion factor between unix and NTP time
        unix_now = np.floor(time.time())
        ntp_now  = unix_now + 2208988800 

        unix_ago = unix_now - 20
        ntp_ago  = unix_ago + 2208988800

        stream_id, route, stream_def_id, dataset_id = self.make_simple_dataset()
        coverage = DatasetManagementService._get_simplex_coverage(dataset_id, mode='a')
        coverage.insert_timesteps(20)
        coverage.set_parameter_values('time', np.arange(ntp_ago,ntp_now))
        
        temporal_bounds = self.dataset_management.dataset_temporal_bounds(dataset_id)

        self.assertTrue( np.abs(temporal_bounds[0] - unix_ago) < 2)
        self.assertTrue( np.abs(temporal_bounds[1] - unix_now) < 2)


    @attr('LOCOINT')
    @unittest.skipIf(os.getenv('CEI_LAUNCH_TEST', False), 'Host requires file-system access to coverage files, CEI mode does not support.')
    def test_out_of_band_retrieve(self):
        # Setup the environemnt
        stream_id, route, stream_def_id, dataset_id = self.make_simple_dataset()
        self.start_ingestion(stream_id, dataset_id)
        
        # Fill the dataset
        self.publish_fake_data(stream_id, route)
        self.wait_until_we_have_enough_granules(dataset_id,40)

        # Retrieve the data
        granule = DataRetrieverService.retrieve_oob(dataset_id)
        rdt = RecordDictionaryTool.load_from_granule(granule)
        self.assertTrue((rdt['time'] == np.arange(40)).all())

    def publish_and_wait(self, dataset_id, granule):
        stream_ids, _ = self.resource_registry.find_objects(dataset_id, PRED.hasStream,id_only=True)
        stream_id=stream_ids[0]
        route = self.pubsub_management.read_stream_route(stream_id)
        publisher = StandaloneStreamPublisher(stream_id,route)
        dataset_monitor = DatasetMonitor(dataset_id)
        self.addCleanup(dataset_monitor.stop)
        publisher.publish(granule)
        self.assertTrue(dataset_monitor.wait())


    def test_sparse_values(self):
        ph = ParameterHelper(self.dataset_management, self.addCleanup)
        pdict_id = ph.create_sparse()
        stream_def_id = self.pubsub_management.create_stream_definition('sparse', parameter_dictionary_id=pdict_id)
        self.addCleanup(self.pubsub_management.delete_stream_definition, stream_def_id)
        stream_id, route = self.pubsub_management.create_stream('example', exchange_point=self.exchange_point_name, stream_definition_id=stream_def_id)
        self.addCleanup(self.pubsub_management.delete_stream, stream_id)
        dataset_id = self.create_dataset(pdict_id)
        self.start_ingestion(stream_id,dataset_id)
        self.addCleanup(self.stop_ingestion, stream_id)

        # Publish initial granule
        # the first one has the sparse value set inside it, sets lat to 45 and lon to -71
        ntp_now = time.time() + 2208988800
        rdt = ph.get_rdt(stream_def_id)
        rdt['time'] = [ntp_now]
        rdt['internal_timestamp'] = [ntp_now]
        rdt['temp'] = [300000]
        rdt['preferred_timestamp'] = ['driver_timestamp']
        rdt['port_timestamp'] = [ntp_now]
        rdt['quality_flag'] = ['']
        rdt['lat'] = [45]
        rdt['conductivity'] = [4341400]
        rdt['driver_timestamp'] = [ntp_now]
        rdt['lon'] = [-71]
        rdt['pressure'] = [256.8]

        publisher = StandaloneStreamPublisher(stream_id, route)
        dataset_monitor = DatasetMonitor(dataset_id)
        self.addCleanup(dataset_monitor.stop)
        publisher.publish(rdt.to_granule())
        self.assertTrue(dataset_monitor.wait())
        dataset_monitor.reset()

        replay_granule = self.data_retriever.retrieve(dataset_id)
        rdt_out = RecordDictionaryTool.load_from_granule(replay_granule)

        # Check the values and make sure they're correct
        np.testing.assert_allclose(rdt_out['time'], rdt['time'])
        np.testing.assert_allclose(rdt_out['temp'], rdt['temp'])
        np.testing.assert_allclose(rdt_out['lat'], np.array([45]))
        np.testing.assert_allclose(rdt_out['lon'], np.array([-71]))

        np.testing.assert_allclose(rdt_out['conductivity_L1'], np.array([42.914]))
        np.testing.assert_allclose(rdt_out['temp_L1'], np.array([20.]))
        np.testing.assert_allclose(rdt_out['pressure_L1'], np.array([3.068]))
        np.testing.assert_allclose(rdt_out['density'], np.array([1021.7144739593881], dtype='float32'))
        np.testing.assert_allclose(rdt_out['salinity'], np.array([30.935132729668283], dtype='float32'))


        # We're going to change the lat/lon
        rdt = ph.get_rdt(stream_def_id)
        rdt['time'] = time.time() + 2208988800
        rdt['lat'] = [46]
        rdt['lon'] = [-73]
        
        publisher.publish(rdt.to_granule())
        self.assertTrue(dataset_monitor.wait())
        dataset_monitor.reset()


        replay_granule = self.data_retriever.retrieve(dataset_id)
        rdt_out = RecordDictionaryTool.load_from_granule(replay_granule)

        np.testing.assert_allclose(rdt_out['time'], rdt['time'])
        
        for i in xrange(9):
            ntp_now = time.time() + 2208988800
            rdt['time'] = [ntp_now]
            rdt['internal_timestamp'] = [ntp_now]
            rdt['temp'] = [300000]
            rdt['preferred_timestamp'] = ['driver_timestamp']
            rdt['port_timestamp'] = [ntp_now]
            rdt['quality_flag'] = [None]
            rdt['conductivity'] = [4341400]
            rdt['driver_timestamp'] = [ntp_now]
            rdt['pressure'] = [256.8]

            publisher.publish(rdt.to_granule())
            self.assertTrue(dataset_monitor.wait())
            dataset_monitor.reset()

        replay_granule = self.data_retriever.retrieve(dataset_id)
        rdt_out = RecordDictionaryTool.load_from_granule(replay_granule)

        np.testing.assert_allclose(rdt_out['pressure'], np.array([256.8] * 10))
        np.testing.assert_allclose(rdt_out['lat'], np.array([45] + [46] * 9))
        np.testing.assert_allclose(rdt_out['lon'], np.array([-71] + [-73] * 9))
class TestDMEnd2End(IonIntegrationTestCase):
    def setUp(self):  # Love the non pep-8 convention
        self._start_container()

        self.container.start_rel_from_url("res/deploy/r2deploy.yml")

        self.process_dispatcher = ProcessDispatcherServiceClient()
        self.pubsub_management = PubsubManagementServiceClient()
        self.resource_registry = ResourceRegistryServiceClient()
        self.dataset_management = DatasetManagementServiceClient()
        self.ingestion_management = IngestionManagementServiceClient()
        self.data_retriever = DataRetrieverServiceClient()
        self.pids = []
        self.event = Event()
        self.exchange_space_name = "test_granules"
        self.exchange_point_name = "science_data"
        self.i = 0

        self.purge_queues()
        self.queue_buffer = []
        self.streams = []
        self.addCleanup(self.stop_all_ingestion)

    def purge_queues(self):
        xn = self.container.ex_manager.create_xn_queue("science_granule_ingestion")
        xn.purge()

    def tearDown(self):
        self.purge_queues()
        for pid in self.pids:
            self.container.proc_manager.terminate_process(pid)
        IngestionManagementIntTest.clean_subscriptions()
        for queue in self.queue_buffer:
            if isinstance(queue, ExchangeNameQueue):
                queue.delete()
            elif isinstance(queue, str):
                xn = self.container.ex_manager.create_xn_queue(queue)
                xn.delete()

    # --------------------------------------------------------------------------------
    # Helper/Utility methods
    # --------------------------------------------------------------------------------

    def create_dataset(self, parameter_dict_id=""):
        """
        Creates a time-series dataset
        """
        tdom, sdom = time_series_domain()
        sdom = sdom.dump()
        tdom = tdom.dump()
        if not parameter_dict_id:
            parameter_dict_id = self.dataset_management.read_parameter_dictionary_by_name(
                "ctd_parsed_param_dict", id_only=True
            )

        dataset_id = self.dataset_management.create_dataset(
            "test_dataset_%i" % self.i,
            parameter_dictionary_id=parameter_dict_id,
            spatial_domain=sdom,
            temporal_domain=tdom,
        )
        return dataset_id

    def get_datastore(self, dataset_id):
        """
        Gets an instance of the datastore
            This method is primarily used to defeat a bug where integration tests in multiple containers may sometimes 
            delete a CouchDB datastore and the other containers are unaware of the new state of the datastore.
        """
        dataset = self.dataset_management.read_dataset(dataset_id)
        datastore_name = dataset.datastore_name
        datastore = self.container.datastore_manager.get_datastore(datastore_name, DataStore.DS_PROFILE.SCIDATA)
        return datastore

    def get_ingestion_config(self):
        """
        Grab the ingestion configuration from the resource registry
        """
        # The ingestion configuration should have been created by the bootstrap service
        # which is configured through r2deploy.yml

        ingest_configs, _ = self.resource_registry.find_resources(restype=RT.IngestionConfiguration, id_only=True)
        return ingest_configs[0]

    def launch_producer(self, stream_id=""):
        """
        Launch the producer
        """

        pid = self.container.spawn_process(
            "better_data_producer",
            "ion.processes.data.example_data_producer",
            "BetterDataProducer",
            {"process": {"stream_id": stream_id}},
        )

        self.pids.append(pid)

    def make_simple_dataset(self):
        """
        Makes a stream, a stream definition and a dataset, the essentials for most of these tests
        """
        pdict_id = self.dataset_management.read_parameter_dictionary_by_name("ctd_parsed_param_dict", id_only=True)
        stream_def_id = self.pubsub_management.create_stream_definition("ctd data", parameter_dictionary_id=pdict_id)
        stream_id, route = self.pubsub_management.create_stream(
            "ctd stream %i" % self.i, "xp1", stream_definition_id=stream_def_id
        )

        dataset_id = self.create_dataset(pdict_id)

        self.get_datastore(dataset_id)
        self.i += 1
        return stream_id, route, stream_def_id, dataset_id

    def publish_hifi(self, stream_id, stream_route, offset=0):
        """
        Publish deterministic data
        """

        pub = StandaloneStreamPublisher(stream_id, stream_route)

        stream_def = self.pubsub_management.read_stream_definition(stream_id=stream_id)
        stream_def_id = stream_def._id
        rdt = RecordDictionaryTool(stream_definition_id=stream_def_id)
        rdt["time"] = np.arange(10) + (offset * 10)
        rdt["temp"] = np.arange(10) + (offset * 10)
        pub.publish(rdt.to_granule())

    def publish_fake_data(self, stream_id, route):
        """
        Make four granules
        """
        for i in xrange(4):
            self.publish_hifi(stream_id, route, i)

    def start_ingestion(self, stream_id, dataset_id):
        """
        Starts ingestion/persistence for a given dataset
        """
        ingest_config_id = self.get_ingestion_config()
        self.ingestion_management.persist_data_stream(
            stream_id=stream_id, ingestion_configuration_id=ingest_config_id, dataset_id=dataset_id
        )

    def stop_ingestion(self, stream_id):
        ingest_config_id = self.get_ingestion_config()
        self.ingestion_management.unpersist_data_stream(
            stream_id=stream_id, ingestion_configuration_id=ingest_config_id
        )

    def stop_all_ingestion(self):
        try:
            [self.stop_ingestion(sid) for sid in self.streams]
        except:
            pass

    def validate_granule_subscription(self, msg, route, stream_id):
        """
        Validation for granule format
        """
        if msg == {}:
            return
        rdt = RecordDictionaryTool.load_from_granule(msg)
        log.info("%s", rdt.pretty_print())
        self.assertIsInstance(msg, Granule, "Message is improperly formatted. (%s)" % type(msg))
        self.event.set()

    def wait_until_we_have_enough_granules(self, dataset_id="", data_size=40):
        """
        Loops until there is a sufficient amount of data in the dataset
        """
        done = False
        with gevent.Timeout(40):
            while not done:
                extents = self.dataset_management.dataset_extents(dataset_id, "time")[0]
                granule = self.data_retriever.retrieve_last_data_points(dataset_id, 1)
                rdt = RecordDictionaryTool.load_from_granule(granule)
                if rdt["time"] and rdt["time"][0] != rdt._pdict.get_context("time").fill_value and extents >= data_size:
                    done = True
                else:
                    gevent.sleep(0.2)

    # --------------------------------------------------------------------------------
    # Test Methods
    # --------------------------------------------------------------------------------

    @attr("SMOKE")
    def test_dm_end_2_end(self):
        # --------------------------------------------------------------------------------
        # Set up a stream and have a mock instrument (producer) send data
        # --------------------------------------------------------------------------------
        self.event.clear()

        # Get a precompiled parameter dictionary with basic ctd fields
        pdict_id = self.dataset_management.read_parameter_dictionary_by_name("ctd_parsed_param_dict", id_only=True)
        context_ids = self.dataset_management.read_parameter_contexts(pdict_id, id_only=True)

        # Add a field that supports binary data input.
        bin_context = ParameterContext("binary", param_type=ArrayType())
        context_ids.append(self.dataset_management.create_parameter_context("binary", bin_context.dump()))
        # Add another field that supports dictionary elements.
        rec_context = ParameterContext("records", param_type=RecordType())
        context_ids.append(self.dataset_management.create_parameter_context("records", rec_context.dump()))

        pdict_id = self.dataset_management.create_parameter_dictionary(
            "replay_pdict", parameter_context_ids=context_ids, temporal_context="time"
        )

        stream_definition = self.pubsub_management.create_stream_definition(
            "ctd data", parameter_dictionary_id=pdict_id
        )

        stream_id, route = self.pubsub_management.create_stream(
            "producer", exchange_point=self.exchange_point_name, stream_definition_id=stream_definition
        )

        # --------------------------------------------------------------------------------
        # Start persisting the data on the stream
        # - Get the ingestion configuration from the resource registry
        # - Create the dataset
        # - call persist_data_stream to setup the subscription for the ingestion workers
        #   on the stream that you specify which causes the data to be persisted
        # --------------------------------------------------------------------------------

        ingest_config_id = self.get_ingestion_config()
        dataset_id = self.create_dataset(pdict_id)
        self.ingestion_management.persist_data_stream(
            stream_id=stream_id, ingestion_configuration_id=ingest_config_id, dataset_id=dataset_id
        )

        # --------------------------------------------------------------------------------
        # Now the granules are ingesting and persisted
        # --------------------------------------------------------------------------------

        self.launch_producer(stream_id)
        self.wait_until_we_have_enough_granules(dataset_id, 40)

        # --------------------------------------------------------------------------------
        # Now get the data in one chunk using an RPC Call to start_retreive
        # --------------------------------------------------------------------------------

        replay_data = self.data_retriever.retrieve(dataset_id)
        self.assertIsInstance(replay_data, Granule)
        rdt = RecordDictionaryTool.load_from_granule(replay_data)
        self.assertTrue((rdt["time"][:10] == np.arange(10)).all(), "%s" % rdt["time"][:])
        self.assertTrue((rdt["binary"][:10] == np.array(["hi"] * 10, dtype="object")).all())

        # --------------------------------------------------------------------------------
        # Now to try the streamed approach
        # --------------------------------------------------------------------------------
        replay_stream_id, replay_route = self.pubsub_management.create_stream(
            "replay_out", exchange_point=self.exchange_point_name, stream_definition_id=stream_definition
        )
        self.replay_id, process_id = self.data_retriever.define_replay(
            dataset_id=dataset_id, stream_id=replay_stream_id
        )
        log.info("Process ID: %s", process_id)

        replay_client = ReplayClient(process_id)

        # --------------------------------------------------------------------------------
        # Create the listening endpoint for the the retriever to talk to
        # --------------------------------------------------------------------------------
        xp = self.container.ex_manager.create_xp(self.exchange_point_name)
        subscriber = StandaloneStreamSubscriber(self.exchange_space_name, self.validate_granule_subscription)
        self.queue_buffer.append(self.exchange_space_name)
        subscriber.start()
        subscriber.xn.bind(replay_route.routing_key, xp)

        self.data_retriever.start_replay_agent(self.replay_id)

        self.assertTrue(replay_client.await_agent_ready(5), "The process never launched")
        replay_client.start_replay()

        self.assertTrue(self.event.wait(10))
        subscriber.stop()

        self.data_retriever.cancel_replay_agent(self.replay_id)

        # --------------------------------------------------------------------------------
        # Test the slicing capabilities
        # --------------------------------------------------------------------------------

        granule = self.data_retriever.retrieve(dataset_id=dataset_id, query={"tdoa": slice(0, 5)})
        rdt = RecordDictionaryTool.load_from_granule(granule)
        b = rdt["time"] == np.arange(5)
        self.assertTrue(b.all() if not isinstance(b, bool) else b)
        self.streams.append(stream_id)
        self.stop_ingestion(stream_id)

    @unittest.skip("Doesnt work")
    @attr("LOCOINT")
    @unittest.skipIf(os.getenv("CEI_LAUNCH_TEST", False), "Skip test while in CEI LAUNCH mode")
    def test_replay_pause(self):
        # Get a precompiled parameter dictionary with basic ctd fields
        pdict_id = self.dataset_management.read_parameter_dictionary_by_name("ctd_parsed_param_dict", id_only=True)
        context_ids = self.dataset_management.read_parameter_contexts(pdict_id, id_only=True)

        # Add a field that supports binary data input.
        bin_context = ParameterContext("binary", param_type=ArrayType())
        context_ids.append(self.dataset_management.create_parameter_context("binary", bin_context.dump()))
        # Add another field that supports dictionary elements.
        rec_context = ParameterContext("records", param_type=RecordType())
        context_ids.append(self.dataset_management.create_parameter_context("records", rec_context.dump()))

        pdict_id = self.dataset_management.create_parameter_dictionary(
            "replay_pdict", parameter_context_ids=context_ids, temporal_context="time"
        )

        stream_def_id = self.pubsub_management.create_stream_definition(
            "replay_stream", parameter_dictionary_id=pdict_id
        )
        replay_stream, replay_route = self.pubsub_management.create_stream(
            "replay", "xp1", stream_definition_id=stream_def_id
        )
        dataset_id = self.create_dataset(pdict_id)
        scov = DatasetManagementService._get_coverage(dataset_id)

        bb = CoverageCraft(scov)
        bb.rdt["time"] = np.arange(100)
        bb.rdt["temp"] = np.random.random(100) + 30
        bb.sync_with_granule()

        DatasetManagementService._persist_coverage(
            dataset_id, bb.coverage
        )  # This invalidates it for multi-host configurations
        # Set up the subscriber to verify the data
        subscriber = StandaloneStreamSubscriber(self.exchange_space_name, self.validate_granule_subscription)
        xp = self.container.ex_manager.create_xp("xp1")
        self.queue_buffer.append(self.exchange_space_name)
        subscriber.start()
        subscriber.xn.bind(replay_route.routing_key, xp)

        # Set up the replay agent and the client wrapper

        # 1) Define the Replay (dataset and stream to publish on)
        self.replay_id, process_id = self.data_retriever.define_replay(dataset_id=dataset_id, stream_id=replay_stream)
        # 2) Make a client to the interact with the process (optionall provide it a process to bind with)
        replay_client = ReplayClient(process_id)
        # 3) Start the agent (launch the process)
        self.data_retriever.start_replay_agent(self.replay_id)
        # 4) Start replaying...
        replay_client.start_replay()

        # Wait till we get some granules
        self.assertTrue(self.event.wait(5))

        # We got granules, pause the replay, clear the queue and allow the process to finish consuming
        replay_client.pause_replay()
        gevent.sleep(1)
        subscriber.xn.purge()
        self.event.clear()

        # Make sure there's no remaining messages being consumed
        self.assertFalse(self.event.wait(1))

        # Resume the replay and wait until we start getting granules again
        replay_client.resume_replay()
        self.assertTrue(self.event.wait(5))

        # Stop the replay, clear the queues
        replay_client.stop_replay()
        gevent.sleep(1)
        subscriber.xn.purge()
        self.event.clear()

        # Make sure that it did indeed stop
        self.assertFalse(self.event.wait(1))

        subscriber.stop()

    def test_retrieve_and_transform(self):
        # Make a simple dataset and start ingestion, pretty standard stuff.
        ctd_stream_id, route, stream_def_id, dataset_id = self.make_simple_dataset()
        self.start_ingestion(ctd_stream_id, dataset_id)

        # Stream definition for the salinity data
        salinity_pdict_id = self.dataset_management.read_parameter_dictionary_by_name(
            "ctd_parsed_param_dict", id_only=True
        )
        sal_stream_def_id = self.pubsub_management.create_stream_definition(
            "sal data", parameter_dictionary_id=salinity_pdict_id
        )

        rdt = RecordDictionaryTool(stream_definition_id=stream_def_id)
        rdt["time"] = np.arange(10)
        rdt["temp"] = np.random.randn(10) * 10 + 30
        rdt["conductivity"] = np.random.randn(10) * 2 + 10
        rdt["pressure"] = np.random.randn(10) * 1 + 12

        publisher = StandaloneStreamPublisher(ctd_stream_id, route)
        publisher.publish(rdt.to_granule())

        rdt["time"] = np.arange(10, 20)

        publisher.publish(rdt.to_granule())

        self.wait_until_we_have_enough_granules(dataset_id, 20)

        granule = self.data_retriever.retrieve(
            dataset_id,
            None,
            None,
            "ion.processes.data.transforms.ctd.ctd_L2_salinity",
            "CTDL2SalinityTransformAlgorithm",
            kwargs=dict(params=sal_stream_def_id),
        )
        rdt = RecordDictionaryTool.load_from_granule(granule)
        for i in rdt["salinity"]:
            self.assertNotEquals(i, 0)
        self.streams.append(ctd_stream_id)
        self.stop_ingestion(ctd_stream_id)

    def test_last_granule(self):
        stream_id, route, stream_def_id, dataset_id = self.make_simple_dataset()
        self.start_ingestion(stream_id, dataset_id)

        self.publish_hifi(stream_id, route, 0)
        self.publish_hifi(stream_id, route, 1)

        self.wait_until_we_have_enough_granules(dataset_id, 20)  # I just need two

        success = False

        def verifier():
            replay_granule = self.data_retriever.retrieve_last_data_points(dataset_id, 10)

            rdt = RecordDictionaryTool.load_from_granule(replay_granule)

            comp = rdt["time"] == np.arange(10) + 10
            if not isinstance(comp, bool):
                return comp.all()
            return False

        success = poll(verifier)

        self.assertTrue(success)

        success = False

        def verify_points():
            replay_granule = self.data_retriever.retrieve_last_data_points(dataset_id, 5)

            rdt = RecordDictionaryTool.load_from_granule(replay_granule)

            comp = rdt["time"] == np.arange(15, 20)
            if not isinstance(comp, bool):
                return comp.all()
            return False

        success = poll(verify_points)

        self.assertTrue(success)
        self.streams.append(stream_id)
        self.stop_ingestion(stream_id)

    def test_replay_with_parameters(self):
        # --------------------------------------------------------------------------------
        # Create the configurations and the dataset
        # --------------------------------------------------------------------------------
        # Get a precompiled parameter dictionary with basic ctd fields
        pdict_id = self.dataset_management.read_parameter_dictionary_by_name("ctd_parsed_param_dict", id_only=True)
        context_ids = self.dataset_management.read_parameter_contexts(pdict_id, id_only=True)

        # Add a field that supports binary data input.
        bin_context = ParameterContext("binary", param_type=ArrayType())
        context_ids.append(self.dataset_management.create_parameter_context("binary", bin_context.dump()))
        # Add another field that supports dictionary elements.
        rec_context = ParameterContext("records", param_type=RecordType())
        context_ids.append(self.dataset_management.create_parameter_context("records", rec_context.dump()))

        pdict_id = self.dataset_management.create_parameter_dictionary(
            "replay_pdict", parameter_context_ids=context_ids, temporal_context="time"
        )

        stream_def_id = self.pubsub_management.create_stream_definition(
            "replay_stream", parameter_dictionary_id=pdict_id
        )

        stream_id, route = self.pubsub_management.create_stream(
            "replay_with_params", exchange_point=self.exchange_point_name, stream_definition_id=stream_def_id
        )
        config_id = self.get_ingestion_config()
        dataset_id = self.create_dataset(pdict_id)
        self.ingestion_management.persist_data_stream(
            stream_id=stream_id, ingestion_configuration_id=config_id, dataset_id=dataset_id
        )

        # --------------------------------------------------------------------------------
        # Coerce the datastore into existence (beats race condition)
        # --------------------------------------------------------------------------------
        self.get_datastore(dataset_id)

        self.launch_producer(stream_id)

        self.wait_until_we_have_enough_granules(dataset_id, 40)

        query = {
            "start_time": 0 - 2208988800,
            "end_time": 20 - 2208988800,
            "stride_time": 2,
            "parameters": ["time", "temp"],
        }
        retrieved_data = self.data_retriever.retrieve(dataset_id=dataset_id, query=query)

        rdt = RecordDictionaryTool.load_from_granule(retrieved_data)
        comp = np.arange(0, 20, 2) == rdt["time"]
        self.assertTrue(comp.all(), "%s" % rdt.pretty_print())
        self.assertEquals(set(rdt.iterkeys()), set(["time", "temp"]))

        extents = self.dataset_management.dataset_extents(dataset_id=dataset_id, parameters=["time", "temp"])
        self.assertTrue(extents["time"] >= 20)
        self.assertTrue(extents["temp"] >= 20)

        self.streams.append(stream_id)
        self.stop_ingestion(stream_id)

    def test_repersist_data(self):
        stream_id, route, stream_def_id, dataset_id = self.make_simple_dataset()
        self.start_ingestion(stream_id, dataset_id)
        self.publish_hifi(stream_id, route, 0)
        self.publish_hifi(stream_id, route, 1)
        self.wait_until_we_have_enough_granules(dataset_id, 20)
        config_id = self.get_ingestion_config()
        self.ingestion_management.unpersist_data_stream(stream_id=stream_id, ingestion_configuration_id=config_id)
        self.ingestion_management.persist_data_stream(
            stream_id=stream_id, ingestion_configuration_id=config_id, dataset_id=dataset_id
        )
        self.publish_hifi(stream_id, route, 2)
        self.publish_hifi(stream_id, route, 3)
        self.wait_until_we_have_enough_granules(dataset_id, 40)
        success = False
        with gevent.timeout.Timeout(5):
            while not success:

                replay_granule = self.data_retriever.retrieve(dataset_id)

                rdt = RecordDictionaryTool.load_from_granule(replay_granule)

                comp = rdt["time"] == np.arange(0, 40)
                if not isinstance(comp, bool):
                    success = comp.all()
                gevent.sleep(1)

        self.assertTrue(success)
        self.streams.append(stream_id)
        self.stop_ingestion(stream_id)

    @attr("LOCOINT")
    @unittest.skipIf(
        os.getenv("CEI_LAUNCH_TEST", False),
        "Host requires file-system access to coverage files, CEI mode does not support.",
    )
    def test_correct_time(self):

        # There are 2208988800 seconds between Jan 1 1900 and Jan 1 1970, i.e.
        #  the conversion factor between unix and NTP time
        unix_now = np.floor(time.time())
        ntp_now = unix_now + 2208988800

        unix_ago = unix_now - 20
        ntp_ago = unix_ago + 2208988800

        stream_id, route, stream_def_id, dataset_id = self.make_simple_dataset()
        coverage = DatasetManagementService._get_coverage(dataset_id)
        coverage.insert_timesteps(20)
        coverage.set_parameter_values("time", np.arange(ntp_ago, ntp_now))

        temporal_bounds = self.dataset_management.dataset_temporal_bounds(dataset_id)

        self.assertTrue(np.abs(temporal_bounds[0] - unix_ago) < 2)
        self.assertTrue(np.abs(temporal_bounds[1] - unix_now) < 2)

    @attr("LOCOINT")
    @unittest.skipIf(
        os.getenv("CEI_LAUNCH_TEST", False),
        "Host requires file-system access to coverage files, CEI mode does not support.",
    )
    def test_empty_coverage_time(self):

        stream_id, route, stream_def_id, dataset_id = self.make_simple_dataset()
        coverage = DatasetManagementService._get_coverage(dataset_id)
        temporal_bounds = self.dataset_management.dataset_temporal_bounds(dataset_id)
        self.assertEquals([coverage.get_parameter_context("time").fill_value] * 2, temporal_bounds)

    @attr("LOCOINT")
    @unittest.skipIf(
        os.getenv("CEI_LAUNCH_TEST", False),
        "Host requires file-system access to coverage files, CEI mode does not support.",
    )
    def test_out_of_band_retrieve(self):
        # Setup the environemnt
        stream_id, route, stream_def_id, dataset_id = self.make_simple_dataset()
        self.start_ingestion(stream_id, dataset_id)

        # Fill the dataset
        self.publish_fake_data(stream_id, route)
        self.wait_until_we_have_enough_granules(dataset_id, 40)

        # Retrieve the data
        granule = DataRetrieverService.retrieve_oob(dataset_id)
        rdt = RecordDictionaryTool.load_from_granule(granule)
        self.assertTrue((rdt["time"] == np.arange(40)).all())

    @attr("LOCOINT")
    @unittest.skipIf(
        os.getenv("CEI_LAUNCH_TEST", False),
        "Host requires file-system access to coverage files, CEI mode does not support.",
    )
    def test_retrieve_cache(self):
        DataRetrieverService._refresh_interval = 1
        datasets = [self.make_simple_dataset() for i in xrange(10)]
        for stream_id, route, stream_def_id, dataset_id in datasets:
            coverage = DatasetManagementService._get_coverage(dataset_id)
            coverage.insert_timesteps(10)
            coverage.set_parameter_values("time", np.arange(10))
            coverage.set_parameter_values("temp", np.arange(10))

        # Verify cache hit and refresh
        dataset_ids = [i[3] for i in datasets]
        self.assertTrue(dataset_ids[0] not in DataRetrieverService._retrieve_cache)
        DataRetrieverService._get_coverage(dataset_ids[0])  # Hit the chache
        cov, age = DataRetrieverService._retrieve_cache[dataset_ids[0]]
        # Verify that it was hit and it's now in there
        self.assertTrue(dataset_ids[0] in DataRetrieverService._retrieve_cache)

        gevent.sleep(DataRetrieverService._refresh_interval + 0.2)

        DataRetrieverService._get_coverage(dataset_ids[0])  # Hit the chache
        cov, age2 = DataRetrieverService._retrieve_cache[dataset_ids[0]]
        self.assertTrue(age2 != age)

        for dataset_id in dataset_ids:
            DataRetrieverService._get_coverage(dataset_id)

        self.assertTrue(dataset_ids[0] not in DataRetrieverService._retrieve_cache)

        stream_id, route, stream_def, dataset_id = datasets[0]
        self.start_ingestion(stream_id, dataset_id)
        DataRetrieverService._get_coverage(dataset_id)

        self.assertTrue(dataset_id in DataRetrieverService._retrieve_cache)

        DataRetrieverService._refresh_interval = 100
        self.publish_hifi(stream_id, route, 1)
        self.wait_until_we_have_enough_granules(dataset_id, data_size=20)

        event = gevent.event.Event()
        with gevent.Timeout(20):
            while not event.wait(0.1):
                if dataset_id not in DataRetrieverService._retrieve_cache:
                    event.set()

        self.assertTrue(event.is_set())

    @unittest.skip("Outdated due to ingestion retry")
    @attr("LOCOINT")
    @unittest.skipIf(
        os.getenv("CEI_LAUNCH_TEST", False),
        "Host requires file-system access to coverage files, CEI mode does not support.",
    )
    def test_ingestion_failover(self):
        stream_id, route, stream_def_id, dataset_id = self.make_simple_dataset()
        self.start_ingestion(stream_id, dataset_id)

        event = Event()

        def cb(*args, **kwargs):
            event.set()

        sub = EventSubscriber(event_type="ExceptionEvent", callback=cb, origin="stream_exception")
        sub.start()

        self.publish_fake_data(stream_id, route)
        self.wait_until_we_have_enough_granules(dataset_id, 40)

        file_path = DatasetManagementService._get_coverage_path(dataset_id)
        master_file = os.path.join(file_path, "%s_master.hdf5" % dataset_id)

        with open(master_file, "w") as f:
            f.write("this will crash HDF")

        self.publish_hifi(stream_id, route, 5)

        self.assertTrue(event.wait(10))

        sub.stop()
Beispiel #4
0
class ExhaustiveParameterTest(IonIntegrationTestCase):
    def setUp(self):
        self.i=0
        self._start_container()
        self.container.start_rel_from_url('res/deploy/r2params.yml')

        self.dataset_management      = DatasetManagementServiceClient()
        self.pubsub_management       = PubsubManagementServiceClient()
        self.data_product_management = DataProductManagementServiceClient()
        self.resource_registry       = self.container.resource_registry
        self.data_retriever          = DataRetrieverServiceClient()

        pdicts, _ = self.resource_registry.find_resources(restype='ParameterDictionary', id_only=False)
        self.dp_ids = []
        for pdict in pdicts:
            stream_def_id = self.pubsub_management.create_stream_definition(pdict.name, parameter_dictionary_id=pdict._id)
            dp_id = self.make_dp(stream_def_id)
            if dp_id: self.dp_ids.append(dp_id)

    def make_dp(self, stream_def_id):
        stream_def = self.resource_registry.read(stream_def_id)
        dp_obj = DataProduct(
                name=stream_def.name,
                description=stream_def.name,
                processing_level_code='Parsed_Canonical')


        data_product_id = self.data_product_management.create_data_product(dp_obj, stream_definition_id=stream_def_id)
        self.data_product_management.activate_data_product_persistence(data_product_id)
        return data_product_id

    def fill_values(self, ptype, size):
        if isinstance(ptype, ArrayType):
            return ['blah'] * size
        elif isinstance(ptype, QuantityType):
            return np.sin(np.arange(size, dtype=ptype.value_encoding) * 2 * np.pi / 3)
        elif isinstance(ptype, RecordType):
            return [{'record': 'ok'}] * size
        elif isinstance(ptype, ConstantRangeType):
            return (1,1000)
        elif isinstance(ptype, ConstantType):
            return np.dtype(ptype.value_encoding).type(1)
        elif isinstance(ptype, CategoryType):
            return ptype.categories.keys()[0]
        else:
            return


    def wait_until_we_have_enough_granules(self, dataset_id='',data_size=40):
        '''
        Loops until there is a sufficient amount of data in the dataset
        '''
        done = False
        with gevent.Timeout(40):
            while not done:
                granule = self.data_retriever.retrieve_last_data_points(dataset_id, 1)
                rdt     = RecordDictionaryTool.load_from_granule(granule)
                extents = self.dataset_management.dataset_extents(dataset_id, rdt._pdict.temporal_parameter_name)[0]
                if rdt[rdt._pdict.temporal_parameter_name] and rdt[rdt._pdict.temporal_parameter_name][0] != rdt._pdict.get_context(rdt._pdict.temporal_parameter_name).fill_value and extents >= data_size:
                    done = True
                else:
                    gevent.sleep(0.2)

    def write_to_data_product(self,data_product_id):

        dataset_ids, _ = self.resource_registry.find_objects(data_product_id, 'hasDataset', id_only=True)
        dataset_id = dataset_ids.pop()

        stream_ids , _ = self.resource_registry.find_objects(data_product_id, 'hasStream', id_only=True)
        stream_id = stream_ids.pop()
        stream_def_ids, _ = self.resource_registry.find_objects(stream_id, 'hasStreamDefinition', id_only=True)
        stream_def_id = stream_def_ids.pop()

        route = self.pubsub_management.read_stream_route(stream_id)

        rdt = RecordDictionaryTool(stream_definition_id=stream_def_id)

        time_param = rdt._pdict.temporal_parameter_name
        if time_param is None:
            print '%s has no temporal parameter' % self.resource_registry.read(data_product_id).name 
            return
        rdt[time_param] = np.arange(40)


        for field in rdt.fields:
            if field == rdt._pdict.temporal_parameter_name:
                continue
            rdt[field] = self.fill_values(rdt._pdict.get_context(field).param_type,40)

        publisher = StandaloneStreamPublisher(stream_id, route)
        publisher.publish(rdt.to_granule())

        self.wait_until_we_have_enough_granules(dataset_id,40)


        granule = self.data_retriever.retrieve(dataset_id)
        rdt_out = RecordDictionaryTool.load_from_granule(granule)

        bad = []

        for field in rdt.fields:
            if not np.array_equal(rdt[field], rdt_out[field]):
                print '%s' % field
                print '%s != %s' % (rdt[field], rdt_out[field])
                bad.append(field)

        return bad

        
    def test_data_products(self):
        bad_data_products = {}
        for dp_id in self.dp_ids:
            try:
                bad_fields = self.write_to_data_product(dp_id)
                if bad_fields:
                    bad_data_products[dp_id] = "Couldn't write and retrieve %s." % bad_fields
            except:
                import traceback
                bad_data_products[dp_id] = traceback.format_exc()


        for dp_id, tb in bad_data_products.iteritems():
            print '----------'
            print 'Problem with %s' % self.resource_registry.read(dp_id).name
            print tb
            print '----------'


        if bad_data_products:
            raise AssertionError('There are bad parameter dictionaries.')
Beispiel #5
0
class ExhaustiveParameterTest(IonIntegrationTestCase):
    def setUp(self):
        self.i = 0
        self._start_container()
        self.container.start_rel_from_url('res/deploy/r2params.yml')

        self.dataset_management = DatasetManagementServiceClient()
        self.pubsub_management = PubsubManagementServiceClient()
        self.data_product_management = DataProductManagementServiceClient()
        self.resource_registry = self.container.resource_registry
        self.data_retriever = DataRetrieverServiceClient()

        pdicts, _ = self.resource_registry.find_resources(
            restype='ParameterDictionary', id_only=False)
        self.dp_ids = []
        for pdict in pdicts:
            stream_def_id = self.pubsub_management.create_stream_definition(
                pdict.name, parameter_dictionary_id=pdict._id)
            dp_id = self.make_dp(stream_def_id)
            if dp_id: self.dp_ids.append(dp_id)

    def make_dp(self, stream_def_id):
        tdom, sdom = time_series_domain()
        tdom = tdom.dump()
        sdom = sdom.dump()
        stream_def = self.resource_registry.read(stream_def_id)
        dp_obj = DataProduct(name=stream_def.name,
                             description=stream_def.name,
                             processing_level_code='Parsed_Canonical',
                             temporal_domain=tdom,
                             spatial_domain=sdom)

        data_product_id = self.data_product_management.create_data_product(
            dp_obj, stream_definition_id=stream_def_id)
        self.data_product_management.activate_data_product_persistence(
            data_product_id)
        return data_product_id

    def fill_values(self, ptype, size):
        if isinstance(ptype, ArrayType):
            return ['blah'] * size
        elif isinstance(ptype, QuantityType):
            return np.sin(
                np.arange(size, dtype=ptype.value_encoding) * 2 * np.pi / 3)
        elif isinstance(ptype, RecordType):
            return [{'record': 'ok'}] * size
        elif isinstance(ptype, ConstantRangeType):
            return (1, 1000)
        elif isinstance(ptype, ConstantType):
            return np.dtype(ptype.value_encoding).type(1)
        elif isinstance(ptype, CategoryType):
            return ptype.categories.keys()[0]
        else:
            return

    def wait_until_we_have_enough_granules(self, dataset_id='', data_size=40):
        '''
        Loops until there is a sufficient amount of data in the dataset
        '''
        done = False
        with gevent.Timeout(40):
            while not done:
                granule = self.data_retriever.retrieve_last_data_points(
                    dataset_id, 1)
                rdt = RecordDictionaryTool.load_from_granule(granule)
                extents = self.dataset_management.dataset_extents(
                    dataset_id, rdt._pdict.temporal_parameter_name)[0]
                if rdt[rdt._pdict.temporal_parameter_name] and rdt[
                        rdt._pdict.
                        temporal_parameter_name][0] != rdt._pdict.get_context(
                            rdt._pdict.temporal_parameter_name
                        ).fill_value and extents >= data_size:
                    done = True
                else:
                    gevent.sleep(0.2)

    def write_to_data_product(self, data_product_id):

        dataset_ids, _ = self.resource_registry.find_objects(data_product_id,
                                                             'hasDataset',
                                                             id_only=True)
        dataset_id = dataset_ids.pop()

        stream_ids, _ = self.resource_registry.find_objects(data_product_id,
                                                            'hasStream',
                                                            id_only=True)
        stream_id = stream_ids.pop()
        stream_def_ids, _ = self.resource_registry.find_objects(
            stream_id, 'hasStreamDefinition', id_only=True)
        stream_def_id = stream_def_ids.pop()

        route = self.pubsub_management.read_stream_route(stream_id)

        rdt = RecordDictionaryTool(stream_definition_id=stream_def_id)

        time_param = rdt._pdict.temporal_parameter_name
        if time_param is None:
            print '%s has no temporal parameter' % self.resource_registry.read(
                data_product_id).name
            return
        rdt[time_param] = np.arange(40)

        for field in rdt.fields:
            if field == rdt._pdict.temporal_parameter_name:
                continue
            rdt[field] = self.fill_values(
                rdt._pdict.get_context(field).param_type, 40)

        publisher = StandaloneStreamPublisher(stream_id, route)
        publisher.publish(rdt.to_granule())

        self.wait_until_we_have_enough_granules(dataset_id, 40)

        granule = self.data_retriever.retrieve(dataset_id)
        rdt_out = RecordDictionaryTool.load_from_granule(granule)

        bad = []

        for field in rdt.fields:
            if not np.array_equal(rdt[field], rdt_out[field]):
                print '%s' % field
                print '%s != %s' % (rdt[field], rdt_out[field])
                bad.append(field)

        return bad

    def test_data_products(self):
        bad_data_products = {}
        for dp_id in self.dp_ids:
            try:
                bad_fields = self.write_to_data_product(dp_id)
                if bad_fields:
                    bad_data_products[
                        dp_id] = "Couldn't write and retrieve %s." % bad_fields
            except:
                import traceback
                bad_data_products[dp_id] = traceback.format_exc()

        for dp_id, tb in bad_data_products.iteritems():
            print '----------'
            print 'Problem with %s' % self.resource_registry.read(dp_id).name
            print tb
            print '----------'

        if bad_data_products:
            raise AssertionError('There are bad parameter dictionaries.')
class TestDMEnd2End(IonIntegrationTestCase):
    def setUp(self):  # Love the non pep-8 convention
        self._start_container()

        self.container.start_rel_from_url('res/deploy/r2deploy.yml')

        self.process_dispatcher = ProcessDispatcherServiceClient()
        self.pubsub_management = PubsubManagementServiceClient()
        self.resource_registry = ResourceRegistryServiceClient()
        self.dataset_management = DatasetManagementServiceClient()
        self.ingestion_management = IngestionManagementServiceClient()
        self.data_retriever = DataRetrieverServiceClient()
        self.pids = []
        self.event = Event()
        self.exchange_space_name = 'test_granules'
        self.exchange_point_name = 'science_data'
        self.i = 0

        self.purge_queues()
        self.queue_buffer = []
        self.streams = []
        self.addCleanup(self.stop_all_ingestion)

    def purge_queues(self):
        xn = self.container.ex_manager.create_xn_queue(
            'science_granule_ingestion')
        xn.purge()

    def tearDown(self):
        self.purge_queues()
        for pid in self.pids:
            self.container.proc_manager.terminate_process(pid)
        IngestionManagementIntTest.clean_subscriptions()
        for queue in self.queue_buffer:
            if isinstance(queue, ExchangeNameQueue):
                queue.delete()
            elif isinstance(queue, str):
                xn = self.container.ex_manager.create_xn_queue(queue)
                xn.delete()

    #--------------------------------------------------------------------------------
    # Helper/Utility methods
    #--------------------------------------------------------------------------------

    def create_dataset(self, parameter_dict_id=''):
        '''
        Creates a time-series dataset
        '''
        tdom, sdom = time_series_domain()
        sdom = sdom.dump()
        tdom = tdom.dump()
        if not parameter_dict_id:
            parameter_dict_id = self.dataset_management.read_parameter_dictionary_by_name(
                'ctd_parsed_param_dict', id_only=True)

        dataset_id = self.dataset_management.create_dataset(
            'test_dataset_%i' % self.i,
            parameter_dictionary_id=parameter_dict_id,
            spatial_domain=sdom,
            temporal_domain=tdom)
        return dataset_id

    def get_datastore(self, dataset_id):
        '''
        Gets an instance of the datastore
            This method is primarily used to defeat a bug where integration tests in multiple containers may sometimes 
            delete a CouchDB datastore and the other containers are unaware of the new state of the datastore.
        '''
        dataset = self.dataset_management.read_dataset(dataset_id)
        datastore_name = dataset.datastore_name
        datastore = self.container.datastore_manager.get_datastore(
            datastore_name, DataStore.DS_PROFILE.SCIDATA)
        return datastore

    def get_ingestion_config(self):
        '''
        Grab the ingestion configuration from the resource registry
        '''
        # The ingestion configuration should have been created by the bootstrap service
        # which is configured through r2deploy.yml

        ingest_configs, _ = self.resource_registry.find_resources(
            restype=RT.IngestionConfiguration, id_only=True)
        return ingest_configs[0]

    def launch_producer(self, stream_id=''):
        '''
        Launch the producer
        '''

        pid = self.container.spawn_process(
            'better_data_producer', 'ion.processes.data.example_data_producer',
            'BetterDataProducer', {'process': {
                'stream_id': stream_id
            }})

        self.pids.append(pid)

    def make_simple_dataset(self):
        '''
        Makes a stream, a stream definition and a dataset, the essentials for most of these tests
        '''
        pdict_id = self.dataset_management.read_parameter_dictionary_by_name(
            'ctd_parsed_param_dict', id_only=True)
        stream_def_id = self.pubsub_management.create_stream_definition(
            'ctd data', parameter_dictionary_id=pdict_id)
        stream_id, route = self.pubsub_management.create_stream(
            'ctd stream %i' % self.i,
            'xp1',
            stream_definition_id=stream_def_id)

        dataset_id = self.create_dataset(pdict_id)

        self.get_datastore(dataset_id)
        self.i += 1
        return stream_id, route, stream_def_id, dataset_id

    def publish_hifi(self, stream_id, stream_route, offset=0):
        '''
        Publish deterministic data
        '''

        pub = StandaloneStreamPublisher(stream_id, stream_route)

        stream_def = self.pubsub_management.read_stream_definition(
            stream_id=stream_id)
        stream_def_id = stream_def._id
        rdt = RecordDictionaryTool(stream_definition_id=stream_def_id)
        rdt['time'] = np.arange(10) + (offset * 10)
        rdt['temp'] = np.arange(10) + (offset * 10)
        pub.publish(rdt.to_granule())

    def publish_fake_data(self, stream_id, route):
        '''
        Make four granules
        '''
        for i in xrange(4):
            self.publish_hifi(stream_id, route, i)

    def start_ingestion(self, stream_id, dataset_id):
        '''
        Starts ingestion/persistence for a given dataset
        '''
        ingest_config_id = self.get_ingestion_config()
        self.ingestion_management.persist_data_stream(
            stream_id=stream_id,
            ingestion_configuration_id=ingest_config_id,
            dataset_id=dataset_id)

    def stop_ingestion(self, stream_id):
        ingest_config_id = self.get_ingestion_config()
        self.ingestion_management.unpersist_data_stream(
            stream_id=stream_id, ingestion_configuration_id=ingest_config_id)

    def stop_all_ingestion(self):
        try:
            [self.stop_ingestion(sid) for sid in self.streams]
        except:
            pass

    def validate_granule_subscription(self, msg, route, stream_id):
        '''
        Validation for granule format
        '''
        if msg == {}:
            return
        rdt = RecordDictionaryTool.load_from_granule(msg)
        log.info('%s', rdt.pretty_print())
        self.assertIsInstance(
            msg, Granule, 'Message is improperly formatted. (%s)' % type(msg))
        self.event.set()

    def wait_until_we_have_enough_granules(self, dataset_id='', data_size=40):
        '''
        Loops until there is a sufficient amount of data in the dataset
        '''
        done = False
        with gevent.Timeout(40):
            while not done:
                extents = self.dataset_management.dataset_extents(
                    dataset_id, 'time')[0]
                granule = self.data_retriever.retrieve_last_data_points(
                    dataset_id, 1)
                rdt = RecordDictionaryTool.load_from_granule(granule)
                if rdt['time'] and rdt['time'][0] != rdt._pdict.get_context(
                        'time').fill_value and extents >= data_size:
                    done = True
                else:
                    gevent.sleep(0.2)

    #--------------------------------------------------------------------------------
    # Test Methods
    #--------------------------------------------------------------------------------

    @attr('SMOKE')
    def test_dm_end_2_end(self):
        #--------------------------------------------------------------------------------
        # Set up a stream and have a mock instrument (producer) send data
        #--------------------------------------------------------------------------------
        self.event.clear()

        # Get a precompiled parameter dictionary with basic ctd fields
        pdict_id = self.dataset_management.read_parameter_dictionary_by_name(
            'ctd_parsed_param_dict', id_only=True)
        context_ids = self.dataset_management.read_parameter_contexts(
            pdict_id, id_only=True)

        # Add a field that supports binary data input.
        bin_context = ParameterContext('binary', param_type=ArrayType())
        context_ids.append(
            self.dataset_management.create_parameter_context(
                'binary', bin_context.dump()))
        # Add another field that supports dictionary elements.
        rec_context = ParameterContext('records', param_type=RecordType())
        context_ids.append(
            self.dataset_management.create_parameter_context(
                'records', rec_context.dump()))

        pdict_id = self.dataset_management.create_parameter_dictionary(
            'replay_pdict',
            parameter_context_ids=context_ids,
            temporal_context='time')

        stream_definition = self.pubsub_management.create_stream_definition(
            'ctd data', parameter_dictionary_id=pdict_id)

        stream_id, route = self.pubsub_management.create_stream(
            'producer',
            exchange_point=self.exchange_point_name,
            stream_definition_id=stream_definition)

        #--------------------------------------------------------------------------------
        # Start persisting the data on the stream
        # - Get the ingestion configuration from the resource registry
        # - Create the dataset
        # - call persist_data_stream to setup the subscription for the ingestion workers
        #   on the stream that you specify which causes the data to be persisted
        #--------------------------------------------------------------------------------

        ingest_config_id = self.get_ingestion_config()
        dataset_id = self.create_dataset(pdict_id)
        self.ingestion_management.persist_data_stream(
            stream_id=stream_id,
            ingestion_configuration_id=ingest_config_id,
            dataset_id=dataset_id)

        #--------------------------------------------------------------------------------
        # Now the granules are ingesting and persisted
        #--------------------------------------------------------------------------------

        self.launch_producer(stream_id)
        self.wait_until_we_have_enough_granules(dataset_id, 40)

        #--------------------------------------------------------------------------------
        # Now get the data in one chunk using an RPC Call to start_retreive
        #--------------------------------------------------------------------------------

        replay_data = self.data_retriever.retrieve(dataset_id)
        self.assertIsInstance(replay_data, Granule)
        rdt = RecordDictionaryTool.load_from_granule(replay_data)
        self.assertTrue((rdt['time'][:10] == np.arange(10)).all(),
                        '%s' % rdt['time'][:])
        self.assertTrue((rdt['binary'][:10] == np.array(['hi'] * 10,
                                                        dtype='object')).all())

        #--------------------------------------------------------------------------------
        # Now to try the streamed approach
        #--------------------------------------------------------------------------------
        replay_stream_id, replay_route = self.pubsub_management.create_stream(
            'replay_out',
            exchange_point=self.exchange_point_name,
            stream_definition_id=stream_definition)
        self.replay_id, process_id = self.data_retriever.define_replay(
            dataset_id=dataset_id, stream_id=replay_stream_id)
        log.info('Process ID: %s', process_id)

        replay_client = ReplayClient(process_id)

        #--------------------------------------------------------------------------------
        # Create the listening endpoint for the the retriever to talk to
        #--------------------------------------------------------------------------------
        xp = self.container.ex_manager.create_xp(self.exchange_point_name)
        subscriber = StandaloneStreamSubscriber(
            self.exchange_space_name, self.validate_granule_subscription)
        self.queue_buffer.append(self.exchange_space_name)
        subscriber.start()
        subscriber.xn.bind(replay_route.routing_key, xp)

        self.data_retriever.start_replay_agent(self.replay_id)

        self.assertTrue(replay_client.await_agent_ready(5),
                        'The process never launched')
        replay_client.start_replay()

        self.assertTrue(self.event.wait(10))
        subscriber.stop()

        self.data_retriever.cancel_replay_agent(self.replay_id)

        #--------------------------------------------------------------------------------
        # Test the slicing capabilities
        #--------------------------------------------------------------------------------

        granule = self.data_retriever.retrieve(dataset_id=dataset_id,
                                               query={'tdoa': slice(0, 5)})
        rdt = RecordDictionaryTool.load_from_granule(granule)
        b = rdt['time'] == np.arange(5)
        self.assertTrue(b.all() if not isinstance(b, bool) else b)
        self.streams.append(stream_id)
        self.stop_ingestion(stream_id)

    @unittest.skip('Doesnt work')
    @attr('LOCOINT')
    @unittest.skipIf(os.getenv('CEI_LAUNCH_TEST', False),
                     'Skip test while in CEI LAUNCH mode')
    def test_replay_pause(self):
        # Get a precompiled parameter dictionary with basic ctd fields
        pdict_id = self.dataset_management.read_parameter_dictionary_by_name(
            'ctd_parsed_param_dict', id_only=True)
        context_ids = self.dataset_management.read_parameter_contexts(
            pdict_id, id_only=True)

        # Add a field that supports binary data input.
        bin_context = ParameterContext('binary', param_type=ArrayType())
        context_ids.append(
            self.dataset_management.create_parameter_context(
                'binary', bin_context.dump()))
        # Add another field that supports dictionary elements.
        rec_context = ParameterContext('records', param_type=RecordType())
        context_ids.append(
            self.dataset_management.create_parameter_context(
                'records', rec_context.dump()))

        pdict_id = self.dataset_management.create_parameter_dictionary(
            'replay_pdict',
            parameter_context_ids=context_ids,
            temporal_context='time')

        stream_def_id = self.pubsub_management.create_stream_definition(
            'replay_stream', parameter_dictionary_id=pdict_id)
        replay_stream, replay_route = self.pubsub_management.create_stream(
            'replay', 'xp1', stream_definition_id=stream_def_id)
        dataset_id = self.create_dataset(pdict_id)
        scov = DatasetManagementService._get_coverage(dataset_id)

        bb = CoverageCraft(scov)
        bb.rdt['time'] = np.arange(100)
        bb.rdt['temp'] = np.random.random(100) + 30
        bb.sync_with_granule()

        DatasetManagementService._persist_coverage(
            dataset_id,
            bb.coverage)  # This invalidates it for multi-host configurations
        # Set up the subscriber to verify the data
        subscriber = StandaloneStreamSubscriber(
            self.exchange_space_name, self.validate_granule_subscription)
        xp = self.container.ex_manager.create_xp('xp1')
        self.queue_buffer.append(self.exchange_space_name)
        subscriber.start()
        subscriber.xn.bind(replay_route.routing_key, xp)

        # Set up the replay agent and the client wrapper

        # 1) Define the Replay (dataset and stream to publish on)
        self.replay_id, process_id = self.data_retriever.define_replay(
            dataset_id=dataset_id, stream_id=replay_stream)
        # 2) Make a client to the interact with the process (optionall provide it a process to bind with)
        replay_client = ReplayClient(process_id)
        # 3) Start the agent (launch the process)
        self.data_retriever.start_replay_agent(self.replay_id)
        # 4) Start replaying...
        replay_client.start_replay()

        # Wait till we get some granules
        self.assertTrue(self.event.wait(5))

        # We got granules, pause the replay, clear the queue and allow the process to finish consuming
        replay_client.pause_replay()
        gevent.sleep(1)
        subscriber.xn.purge()
        self.event.clear()

        # Make sure there's no remaining messages being consumed
        self.assertFalse(self.event.wait(1))

        # Resume the replay and wait until we start getting granules again
        replay_client.resume_replay()
        self.assertTrue(self.event.wait(5))

        # Stop the replay, clear the queues
        replay_client.stop_replay()
        gevent.sleep(1)
        subscriber.xn.purge()
        self.event.clear()

        # Make sure that it did indeed stop
        self.assertFalse(self.event.wait(1))

        subscriber.stop()

    def test_retrieve_and_transform(self):
        # Make a simple dataset and start ingestion, pretty standard stuff.
        ctd_stream_id, route, stream_def_id, dataset_id = self.make_simple_dataset(
        )
        self.start_ingestion(ctd_stream_id, dataset_id)

        # Stream definition for the salinity data
        salinity_pdict_id = self.dataset_management.read_parameter_dictionary_by_name(
            'ctd_parsed_param_dict', id_only=True)
        sal_stream_def_id = self.pubsub_management.create_stream_definition(
            'sal data', parameter_dictionary_id=salinity_pdict_id)

        rdt = RecordDictionaryTool(stream_definition_id=stream_def_id)
        rdt['time'] = np.arange(10)
        rdt['temp'] = np.random.randn(10) * 10 + 30
        rdt['conductivity'] = np.random.randn(10) * 2 + 10
        rdt['pressure'] = np.random.randn(10) * 1 + 12

        publisher = StandaloneStreamPublisher(ctd_stream_id, route)
        publisher.publish(rdt.to_granule())

        rdt['time'] = np.arange(10, 20)

        publisher.publish(rdt.to_granule())

        self.wait_until_we_have_enough_granules(dataset_id, 20)

        granule = self.data_retriever.retrieve(
            dataset_id,
            None,
            None,
            'ion.processes.data.transforms.ctd.ctd_L2_salinity',
            'CTDL2SalinityTransformAlgorithm',
            kwargs=dict(params=sal_stream_def_id))
        rdt = RecordDictionaryTool.load_from_granule(granule)
        for i in rdt['salinity']:
            self.assertNotEquals(i, 0)
        self.streams.append(ctd_stream_id)
        self.stop_ingestion(ctd_stream_id)

    def test_last_granule(self):
        stream_id, route, stream_def_id, dataset_id = self.make_simple_dataset(
        )
        self.start_ingestion(stream_id, dataset_id)

        self.publish_hifi(stream_id, route, 0)
        self.publish_hifi(stream_id, route, 1)

        self.wait_until_we_have_enough_granules(dataset_id,
                                                20)  # I just need two

        success = False

        def verifier():
            replay_granule = self.data_retriever.retrieve_last_data_points(
                dataset_id, 10)

            rdt = RecordDictionaryTool.load_from_granule(replay_granule)

            comp = rdt['time'] == np.arange(10) + 10
            if not isinstance(comp, bool):
                return comp.all()
            return False

        success = poll(verifier)

        self.assertTrue(success)

        success = False

        def verify_points():
            replay_granule = self.data_retriever.retrieve_last_data_points(
                dataset_id, 5)

            rdt = RecordDictionaryTool.load_from_granule(replay_granule)

            comp = rdt['time'] == np.arange(15, 20)
            if not isinstance(comp, bool):
                return comp.all()
            return False

        success = poll(verify_points)

        self.assertTrue(success)
        self.streams.append(stream_id)
        self.stop_ingestion(stream_id)

    def test_replay_with_parameters(self):
        #--------------------------------------------------------------------------------
        # Create the configurations and the dataset
        #--------------------------------------------------------------------------------
        # Get a precompiled parameter dictionary with basic ctd fields
        pdict_id = self.dataset_management.read_parameter_dictionary_by_name(
            'ctd_parsed_param_dict', id_only=True)
        context_ids = self.dataset_management.read_parameter_contexts(
            pdict_id, id_only=True)

        # Add a field that supports binary data input.
        bin_context = ParameterContext('binary', param_type=ArrayType())
        context_ids.append(
            self.dataset_management.create_parameter_context(
                'binary', bin_context.dump()))
        # Add another field that supports dictionary elements.
        rec_context = ParameterContext('records', param_type=RecordType())
        context_ids.append(
            self.dataset_management.create_parameter_context(
                'records', rec_context.dump()))

        pdict_id = self.dataset_management.create_parameter_dictionary(
            'replay_pdict',
            parameter_context_ids=context_ids,
            temporal_context='time')

        stream_def_id = self.pubsub_management.create_stream_definition(
            'replay_stream', parameter_dictionary_id=pdict_id)

        stream_id, route = self.pubsub_management.create_stream(
            'replay_with_params',
            exchange_point=self.exchange_point_name,
            stream_definition_id=stream_def_id)
        config_id = self.get_ingestion_config()
        dataset_id = self.create_dataset(pdict_id)
        self.ingestion_management.persist_data_stream(
            stream_id=stream_id,
            ingestion_configuration_id=config_id,
            dataset_id=dataset_id)

        dataset_modified = Event()

        def cb(*args, **kwargs):
            dataset_modified.set()

        es = EventSubscriber(event_type=OT.DatasetModified,
                             callback=cb,
                             origin=dataset_id)
        es.start()

        self.addCleanup(es.stop)

        self.publish_fake_data(stream_id, route)

        self.assertTrue(dataset_modified.wait(30))

        query = {
            'start_time': 0 - 2208988800,
            'end_time': 20 - 2208988800,
            'stride_time': 2,
            'parameters': ['time', 'temp']
        }
        retrieved_data = self.data_retriever.retrieve(dataset_id=dataset_id,
                                                      query=query)

        rdt = RecordDictionaryTool.load_from_granule(retrieved_data)
        comp = np.arange(0, 20, 2) == rdt['time']
        self.assertTrue(comp.all(), '%s' % rdt.pretty_print())
        self.assertEquals(set(rdt.iterkeys()), set(['time', 'temp']))

        extents = self.dataset_management.dataset_extents(
            dataset_id=dataset_id, parameters=['time', 'temp'])
        self.assertTrue(extents['time'] >= 20)
        self.assertTrue(extents['temp'] >= 20)

        self.streams.append(stream_id)
        self.stop_ingestion(stream_id)

    def test_repersist_data(self):
        stream_id, route, stream_def_id, dataset_id = self.make_simple_dataset(
        )
        self.start_ingestion(stream_id, dataset_id)
        self.publish_hifi(stream_id, route, 0)
        self.publish_hifi(stream_id, route, 1)
        self.wait_until_we_have_enough_granules(dataset_id, 20)
        config_id = self.get_ingestion_config()
        self.ingestion_management.unpersist_data_stream(
            stream_id=stream_id, ingestion_configuration_id=config_id)
        self.ingestion_management.persist_data_stream(
            stream_id=stream_id,
            ingestion_configuration_id=config_id,
            dataset_id=dataset_id)
        self.publish_hifi(stream_id, route, 2)
        self.publish_hifi(stream_id, route, 3)
        self.wait_until_we_have_enough_granules(dataset_id, 40)
        success = False
        with gevent.timeout.Timeout(5):
            while not success:

                replay_granule = self.data_retriever.retrieve(dataset_id)

                rdt = RecordDictionaryTool.load_from_granule(replay_granule)

                comp = rdt['time'] == np.arange(0, 40)
                if not isinstance(comp, bool):
                    success = comp.all()
                gevent.sleep(1)

        self.assertTrue(success)
        self.streams.append(stream_id)
        self.stop_ingestion(stream_id)

    @attr('LOCOINT')
    @unittest.skipIf(os.getenv(
        'CEI_LAUNCH_TEST', False
    ), 'Host requires file-system access to coverage files, CEI mode does not support.'
                     )
    def test_correct_time(self):

        # There are 2208988800 seconds between Jan 1 1900 and Jan 1 1970, i.e.
        #  the conversion factor between unix and NTP time
        unix_now = np.floor(time.time())
        ntp_now = unix_now + 2208988800

        unix_ago = unix_now - 20
        ntp_ago = unix_ago + 2208988800

        stream_id, route, stream_def_id, dataset_id = self.make_simple_dataset(
        )
        coverage = DatasetManagementService._get_coverage(dataset_id)
        coverage.insert_timesteps(20)
        coverage.set_parameter_values('time', np.arange(ntp_ago, ntp_now))

        temporal_bounds = self.dataset_management.dataset_temporal_bounds(
            dataset_id)

        self.assertTrue(np.abs(temporal_bounds[0] - unix_ago) < 2)
        self.assertTrue(np.abs(temporal_bounds[1] - unix_now) < 2)

    @attr('LOCOINT')
    @unittest.skipIf(os.getenv(
        'CEI_LAUNCH_TEST', False
    ), 'Host requires file-system access to coverage files, CEI mode does not support.'
                     )
    def test_empty_coverage_time(self):

        stream_id, route, stream_def_id, dataset_id = self.make_simple_dataset(
        )
        coverage = DatasetManagementService._get_coverage(dataset_id)
        temporal_bounds = self.dataset_management.dataset_temporal_bounds(
            dataset_id)
        self.assertEquals([coverage.get_parameter_context('time').fill_value] *
                          2, temporal_bounds)

    @attr('LOCOINT')
    @unittest.skipIf(os.getenv(
        'CEI_LAUNCH_TEST', False
    ), 'Host requires file-system access to coverage files, CEI mode does not support.'
                     )
    def test_out_of_band_retrieve(self):
        # Setup the environemnt
        stream_id, route, stream_def_id, dataset_id = self.make_simple_dataset(
        )
        self.start_ingestion(stream_id, dataset_id)

        # Fill the dataset
        self.publish_fake_data(stream_id, route)
        self.wait_until_we_have_enough_granules(dataset_id, 40)

        # Retrieve the data
        granule = DataRetrieverService.retrieve_oob(dataset_id)
        rdt = RecordDictionaryTool.load_from_granule(granule)
        self.assertTrue((rdt['time'] == np.arange(40)).all())

    @attr('LOCOINT')
    @unittest.skipIf(os.getenv(
        'CEI_LAUNCH_TEST', False
    ), 'Host requires file-system access to coverage files, CEI mode does not support.'
                     )
    def test_retrieve_cache(self):
        DataRetrieverService._refresh_interval = 1
        datasets = [self.make_simple_dataset() for i in xrange(10)]
        for stream_id, route, stream_def_id, dataset_id in datasets:
            coverage = DatasetManagementService._get_coverage(dataset_id)
            coverage.insert_timesteps(10)
            coverage.set_parameter_values('time', np.arange(10))
            coverage.set_parameter_values('temp', np.arange(10))

        # Verify cache hit and refresh
        dataset_ids = [i[3] for i in datasets]
        self.assertTrue(
            dataset_ids[0] not in DataRetrieverService._retrieve_cache)
        DataRetrieverService._get_coverage(dataset_ids[0])  # Hit the chache
        cov, age = DataRetrieverService._retrieve_cache[dataset_ids[0]]
        # Verify that it was hit and it's now in there
        self.assertTrue(dataset_ids[0] in DataRetrieverService._retrieve_cache)

        gevent.sleep(DataRetrieverService._refresh_interval + 0.2)

        DataRetrieverService._get_coverage(dataset_ids[0])  # Hit the chache
        cov, age2 = DataRetrieverService._retrieve_cache[dataset_ids[0]]
        self.assertTrue(age2 != age)

        for dataset_id in dataset_ids:
            DataRetrieverService._get_coverage(dataset_id)

        self.assertTrue(
            dataset_ids[0] not in DataRetrieverService._retrieve_cache)

        stream_id, route, stream_def, dataset_id = datasets[0]
        self.start_ingestion(stream_id, dataset_id)
        DataRetrieverService._get_coverage(dataset_id)

        self.assertTrue(dataset_id in DataRetrieverService._retrieve_cache)

        DataRetrieverService._refresh_interval = 100
        self.publish_hifi(stream_id, route, 1)
        self.wait_until_we_have_enough_granules(dataset_id, data_size=20)

        event = gevent.event.Event()
        with gevent.Timeout(20):
            while not event.wait(0.1):
                if dataset_id not in DataRetrieverService._retrieve_cache:
                    event.set()

        self.assertTrue(event.is_set())

    @unittest.skip('Outdated due to ingestion retry')
    @attr('LOCOINT')
    @unittest.skipIf(os.getenv(
        'CEI_LAUNCH_TEST', False
    ), 'Host requires file-system access to coverage files, CEI mode does not support.'
                     )
    def test_ingestion_failover(self):
        stream_id, route, stream_def_id, dataset_id = self.make_simple_dataset(
        )
        self.start_ingestion(stream_id, dataset_id)

        event = Event()

        def cb(*args, **kwargs):
            event.set()

        sub = EventSubscriber(event_type="ExceptionEvent",
                              callback=cb,
                              origin="stream_exception")
        sub.start()

        self.publish_fake_data(stream_id, route)
        self.wait_until_we_have_enough_granules(dataset_id, 40)

        file_path = DatasetManagementService._get_coverage_path(dataset_id)
        master_file = os.path.join(file_path, '%s_master.hdf5' % dataset_id)

        with open(master_file, 'w') as f:
            f.write('this will crash HDF')

        self.publish_hifi(stream_id, route, 5)

        self.assertTrue(event.wait(10))

        sub.stop()
class TestDMEnd2End(IonIntegrationTestCase):
    def setUp(self): # Love the non pep-8 convention
        self._start_container()

        self.container.start_rel_from_url('res/deploy/r2deploy.yml')

        self.process_dispatcher   = ProcessDispatcherServiceClient()
        self.pubsub_management    = PubsubManagementServiceClient()
        self.resource_registry    = ResourceRegistryServiceClient()
        self.dataset_management   = DatasetManagementServiceClient()
        self.ingestion_management = IngestionManagementServiceClient()
        self.data_retriever       = DataRetrieverServiceClient()
        self.pids                 = []
        self.event                = Event()
        self.exchange_space_name  = 'test_granules'
        self.exchange_point_name  = 'science_data'       

        self.purge_queues()
        self.queue_buffer         = []

    def purge_queues(self):
        xn = self.container.ex_manager.create_xn_queue('science_granule_ingestion')
        xn.purge()
        

    def tearDown(self):
        self.purge_queues()
        for pid in self.pids:
            self.container.proc_manager.terminate_process(pid)
        IngestionManagementIntTest.clean_subscriptions()
        for queue in self.queue_buffer:
            if isinstance(queue, ExchangeNameQueue):
                queue.delete()
            elif isinstance(queue, str):
                xn = self.container.ex_manager.create_xn_queue(queue)
                xn.delete()

        

    def launch_producer(self, stream_id=''):
        #--------------------------------------------------------------------------------
        # Launch the producer
        #--------------------------------------------------------------------------------

        pid = self.container.spawn_process('better_data_producer', 'ion.processes.data.example_data_producer', 'BetterDataProducer', {'process':{'stream_id':stream_id}})

        self.pids.append(pid)

    def get_ingestion_config(self):
        #--------------------------------------------------------------------------------
        # Grab the ingestion configuration from the resource registry
        #--------------------------------------------------------------------------------
        # The ingestion configuration should have been created by the bootstrap service 
        # which is configured through r2deploy.yml

        ingest_configs, _  = self.resource_registry.find_resources(restype=RT.IngestionConfiguration,id_only=True)
        return ingest_configs[0]


    def publish_hifi(self,stream_id,stream_route,offset=0):
        pub = StandaloneStreamPublisher(stream_id, stream_route)

        stream_def = self.pubsub_management.read_stream_definition(stream_id=stream_id)
        stream_def_id = stream_def._id
        rdt = RecordDictionaryTool(stream_definition_id=stream_def_id)
        rdt['time'] = np.arange(10) + (offset * 10)
        rdt['temp'] = np.arange(10) + (offset * 10)
        pub.publish(rdt.to_granule())

    def publish_fake_data(self,stream_id, route):

        for i in xrange(4):
            self.publish_hifi(stream_id,route,i)
        

    def get_datastore(self, dataset_id):
        dataset = self.dataset_management.read_dataset(dataset_id)
        datastore_name = dataset.datastore_name
        datastore = self.container.datastore_manager.get_datastore(datastore_name, DataStore.DS_PROFILE.SCIDATA)
        return datastore

    def validate_granule_subscription(self, msg, route, stream_id):
        if msg == {}:
            return
        rdt = RecordDictionaryTool.load_from_granule(msg)
        log.info('%s', rdt.pretty_print())
        self.assertIsInstance(msg,Granule,'Message is improperly formatted. (%s)' % type(msg))
        self.event.set()

    def make_file_data(self):
        from interface.objects import File
        import uuid
        data = 'hello world\n'
        rand = str(uuid.uuid4())[:8]
        meta = File(name='/examples/' + rand + '.txt', group_id='example1')
        return {'body': data, 'meta':meta}

    def publish_file(self, stream_id, stream_route):
        publisher = StandaloneStreamPublisher(stream_id,stream_route)
        publisher.publish(self.make_file_data())
        
    def wait_until_we_have_enough_granules(self, dataset_id='',granules=4):
        datastore = self.get_datastore(dataset_id)
        dataset = self.dataset_management.read_dataset(dataset_id)
        
        with gevent.timeout.Timeout(40):
            success = False
            while not success:
                success = len(datastore.query_view(dataset.view_name)) >= granules
                gevent.sleep(0.1)

        log.info(datastore.query_view(dataset.view_name))




    def wait_until_we_have_enough_files(self):
        datastore = self.container.datastore_manager.get_datastore('filesystem', DataStore.DS_PROFILE.FILESYSTEM)

        now = time.time()
        timeout = now + 10
        done = False
        while not done:
            if now >= timeout:
                raise Timeout('Files are not populating in time.')
            if len(datastore.query_view('catalog/file_by_owner')) >= 1:
                done = True
            now = time.time()


    def create_dataset(self, parameter_dict_id=''):
        tdom, sdom = time_series_domain()
        sdom = sdom.dump()
        tdom = tdom.dump()
        if not parameter_dict_id:
            parameter_dict_id = self.dataset_management.read_parameter_dictionary_by_name('ctd_parsed_param_dict', id_only=True)

        dataset_id = self.dataset_management.create_dataset('test_dataset', parameter_dictionary_id=parameter_dict_id, spatial_domain=sdom, temporal_domain=tdom)
        return dataset_id

    @unittest.skip('Doesnt work')
    @attr('LOCOINT')
    @unittest.skipIf(os.getenv('CEI_LAUNCH_TEST', False), 'Skip test while in CEI LAUNCH mode')
    def test_replay_pause(self):
        # Get a precompiled parameter dictionary with basic ctd fields
        pdict_id = self.dataset_management.read_parameter_dictionary_by_name('ctd_parsed_param_dict',id_only=True)
        context_ids = self.dataset_management.read_parameter_contexts(pdict_id, id_only=True)

        # Add a field that supports binary data input.
        bin_context = ParameterContext('binary',  param_type=ArrayType())
        context_ids.append(self.dataset_management.create_parameter_context('binary', bin_context.dump()))
        # Add another field that supports dictionary elements.
        rec_context = ParameterContext('records', param_type=RecordType())
        context_ids.append(self.dataset_management.create_parameter_context('records', rec_context.dump()))

        pdict_id = self.dataset_management.create_parameter_dictionary('replay_pdict', parameter_context_ids=context_ids, temporal_context='time')
        

        stream_def_id = self.pubsub_management.create_stream_definition('replay_stream', parameter_dictionary_id=pdict_id)
        replay_stream, replay_route = self.pubsub_management.create_stream('replay', 'xp1', stream_definition_id=stream_def_id)
        dataset_id = self.create_dataset(pdict_id)
        scov = DatasetManagementService._get_coverage(dataset_id)

        bb = CoverageCraft(scov)
        bb.rdt['time'] = np.arange(100)
        bb.rdt['temp'] = np.random.random(100) + 30
        bb.sync_with_granule()

        DatasetManagementService._persist_coverage(dataset_id, bb.coverage) # This invalidates it for multi-host configurations
        # Set up the subscriber to verify the data
        subscriber = StandaloneStreamSubscriber(self.exchange_space_name, self.validate_granule_subscription)
        xp = self.container.ex_manager.create_xp('xp1')
        self.queue_buffer.append(self.exchange_space_name)
        subscriber.start()
        subscriber.xn.bind(replay_route.routing_key, xp)

        # Set up the replay agent and the client wrapper

        # 1) Define the Replay (dataset and stream to publish on)
        self.replay_id, process_id = self.data_retriever.define_replay(dataset_id=dataset_id, stream_id=replay_stream)
        # 2) Make a client to the interact with the process (optionall provide it a process to bind with)
        replay_client = ReplayClient(process_id)
        # 3) Start the agent (launch the process)
        self.data_retriever.start_replay_agent(self.replay_id)
        # 4) Start replaying...
        replay_client.start_replay()
        
        # Wait till we get some granules
        self.assertTrue(self.event.wait(5))
        
        # We got granules, pause the replay, clear the queue and allow the process to finish consuming
        replay_client.pause_replay()
        gevent.sleep(1)
        subscriber.xn.purge()
        self.event.clear()
        
        # Make sure there's no remaining messages being consumed
        self.assertFalse(self.event.wait(1))

        # Resume the replay and wait until we start getting granules again
        replay_client.resume_replay()
        self.assertTrue(self.event.wait(5))
    
        # Stop the replay, clear the queues
        replay_client.stop_replay()
        gevent.sleep(1)
        subscriber.xn.purge()
        self.event.clear()

        # Make sure that it did indeed stop
        self.assertFalse(self.event.wait(1))

        subscriber.stop()


    @attr('SMOKE') 
    def test_dm_end_2_end(self):
        #--------------------------------------------------------------------------------
        # Set up a stream and have a mock instrument (producer) send data
        #--------------------------------------------------------------------------------
        self.event.clear()

        # Get a precompiled parameter dictionary with basic ctd fields
        pdict_id = self.dataset_management.read_parameter_dictionary_by_name('ctd_parsed_param_dict',id_only=True)
        context_ids = self.dataset_management.read_parameter_contexts(pdict_id, id_only=True)

        # Add a field that supports binary data input.
        bin_context = ParameterContext('binary',  param_type=ArrayType())
        context_ids.append(self.dataset_management.create_parameter_context('binary', bin_context.dump()))
        # Add another field that supports dictionary elements.
        rec_context = ParameterContext('records', param_type=RecordType())
        context_ids.append(self.dataset_management.create_parameter_context('records', rec_context.dump()))

        pdict_id = self.dataset_management.create_parameter_dictionary('replay_pdict', parameter_context_ids=context_ids, temporal_context='time')
        
        stream_definition = self.pubsub_management.create_stream_definition('ctd data', parameter_dictionary_id=pdict_id)


        stream_id, route = self.pubsub_management.create_stream('producer', exchange_point=self.exchange_point_name, stream_definition_id=stream_definition)




        #--------------------------------------------------------------------------------
        # Start persisting the data on the stream 
        # - Get the ingestion configuration from the resource registry
        # - Create the dataset
        # - call persist_data_stream to setup the subscription for the ingestion workers
        #   on the stream that you specify which causes the data to be persisted
        #--------------------------------------------------------------------------------

        ingest_config_id = self.get_ingestion_config()
        dataset_id = self.create_dataset(pdict_id)
        self.ingestion_management.persist_data_stream(stream_id=stream_id, ingestion_configuration_id=ingest_config_id, dataset_id=dataset_id)

        #--------------------------------------------------------------------------------
        # Now the granules are ingesting and persisted
        #--------------------------------------------------------------------------------

        self.launch_producer(stream_id)
        self.wait_until_we_have_enough_granules(dataset_id,4)
        
        #--------------------------------------------------------------------------------
        # Now get the data in one chunk using an RPC Call to start_retreive
        #--------------------------------------------------------------------------------
        
        replay_data = self.data_retriever.retrieve(dataset_id)
        self.assertIsInstance(replay_data, Granule)
        rdt = RecordDictionaryTool.load_from_granule(replay_data)
        self.assertTrue((rdt['time'][:10] == np.arange(10)).all(),'%s' % rdt['time'][:])
        self.assertTrue((rdt['binary'][:10] == np.array(['hi']*10, dtype='object')).all())

        
        #--------------------------------------------------------------------------------
        # Now to try the streamed approach
        #--------------------------------------------------------------------------------
        replay_stream_id, replay_route = self.pubsub_management.create_stream('replay_out', exchange_point=self.exchange_point_name, stream_definition_id=stream_definition)
        self.replay_id, process_id =  self.data_retriever.define_replay(dataset_id=dataset_id, stream_id=replay_stream_id)
        log.info('Process ID: %s', process_id)

        replay_client = ReplayClient(process_id)

    
        #--------------------------------------------------------------------------------
        # Create the listening endpoint for the the retriever to talk to 
        #--------------------------------------------------------------------------------
        xp = self.container.ex_manager.create_xp(self.exchange_point_name)
        subscriber = StandaloneStreamSubscriber(self.exchange_space_name, self.validate_granule_subscription)
        self.queue_buffer.append(self.exchange_space_name)
        subscriber.start()
        subscriber.xn.bind(replay_route.routing_key, xp)

        self.data_retriever.start_replay_agent(self.replay_id)

        self.assertTrue(replay_client.await_agent_ready(5), 'The process never launched')
        replay_client.start_replay()
        
        self.assertTrue(self.event.wait(10))
        subscriber.stop()

        self.data_retriever.cancel_replay_agent(self.replay_id)


        #--------------------------------------------------------------------------------
        # Test the slicing capabilities
        #--------------------------------------------------------------------------------

        granule = self.data_retriever.retrieve(dataset_id=dataset_id, query={'tdoa':slice(0,5)})
        rdt = RecordDictionaryTool.load_from_granule(granule)
        b = rdt['time'] == np.arange(5)
        self.assertTrue(b.all() if not isinstance(b,bool) else b)



    def test_retrieve_and_transform(self):

        # Stream definition for the CTD data
        pdict_id             = self.dataset_management.read_parameter_dictionary_by_name('ctd_parsed_param_dict', id_only=True)
        stream_def_id        = self.pubsub_management.create_stream_definition('ctd data', parameter_dictionary_id=pdict_id)
        ctd_stream_id, route = self.pubsub_management.create_stream('ctd stream', 'xp1', stream_definition_id=stream_def_id)


        # Stream definition for the salinity data
        salinity_pdict_id = self.dataset_management.read_parameter_dictionary_by_name('ctd_parsed_param_dict', id_only=True)
        sal_stream_def_id = self.pubsub_management.create_stream_definition('sal data', parameter_dictionary_id=salinity_pdict_id)

        ingest_config_id = self.get_ingestion_config()
        dataset_id = self.create_dataset(pdict_id)
        #--------------------------------------------------------------------------------
        # Again with this ridiculous problem
        #--------------------------------------------------------------------------------
        self.get_datastore(dataset_id)
        self.ingestion_management.persist_data_stream(stream_id=ctd_stream_id, ingestion_configuration_id=ingest_config_id, dataset_id=dataset_id)

        rdt = RecordDictionaryTool(stream_definition_id=stream_def_id)
        rdt['time'] = np.arange(10)
        rdt['temp'] = np.random.randn(10) * 10 + 30
        rdt['conductivity'] = np.random.randn(10) * 2 + 10

        publisher = StandaloneStreamPublisher(ctd_stream_id, route)
        publisher.publish(rdt.to_granule())

        rdt['time'] = np.arange(10,20)

        publisher.publish(rdt.to_granule())


        self.wait_until_we_have_enough_granules(dataset_id, 2)

        granule = self.data_retriever.retrieve(dataset_id, 
                                             None,
                                             None, 
                                             'ion.processes.data.transforms.ctd.ctd_L2_salinity',
                                             'CTDL2SalinityTransformAlgorithm', 
                                             kwargs=dict(params=sal_stream_def_id))
        rdt = RecordDictionaryTool.load_from_granule(granule)
        for i in rdt['salinity']:
            self.assertNotEquals(i,0)



    def test_last_granule(self):
        #--------------------------------------------------------------------------------
        # Create the necessary configurations for the test
        #--------------------------------------------------------------------------------
        pdict_id          = self.dataset_management.read_parameter_dictionary_by_name('ctd_parsed_param_dict', id_only=True)
        stream_def_id     = self.pubsub_management.create_stream_definition('ctd parsed', parameter_dictionary_id=pdict_id)
        stream_id, route  = self.pubsub_management.create_stream('last_granule', exchange_point=self.exchange_point_name, stream_definition_id=stream_def_id)
        config_id         = self.get_ingestion_config()
        dataset_id        = self.create_dataset(pdict_id)

        self.ingestion_management.persist_data_stream(stream_id=stream_id, ingestion_configuration_id=config_id, dataset_id=dataset_id)
        #--------------------------------------------------------------------------------
        # Create the datastore first,
        #--------------------------------------------------------------------------------
        self.get_datastore(dataset_id)

        self.publish_hifi(stream_id,route, 0)
        self.publish_hifi(stream_id,route, 1)
        

        self.wait_until_we_have_enough_granules(dataset_id,2) # I just need two


        success = False
        def verifier():
                replay_granule = self.data_retriever.retrieve_last_granule(dataset_id)

                rdt = RecordDictionaryTool.load_from_granule(replay_granule)

                comp = rdt['time'] == np.arange(10) + 10
                if not isinstance(comp,bool):
                    return comp.all()
                return False
        success = poll(verifier)

        self.assertTrue(success)

        success = False
        def verify_points():
                replay_granule = self.data_retriever.retrieve_last_data_points(dataset_id,5)

                rdt = RecordDictionaryTool.load_from_granule(replay_granule)

                comp = rdt['time'] == np.arange(15,20)
                if not isinstance(comp,bool):
                    return comp.all()
                return False
        success = poll(verify_points)

        self.assertTrue(success)



    def test_replay_with_parameters(self):
        #--------------------------------------------------------------------------------
        # Create the configurations and the dataset
        #--------------------------------------------------------------------------------
        # Get a precompiled parameter dictionary with basic ctd fields
        pdict_id = self.dataset_management.read_parameter_dictionary_by_name('ctd_parsed_param_dict',id_only=True)
        context_ids = self.dataset_management.read_parameter_contexts(pdict_id, id_only=True)

        # Add a field that supports binary data input.
        bin_context = ParameterContext('binary',  param_type=ArrayType())
        context_ids.append(self.dataset_management.create_parameter_context('binary', bin_context.dump()))
        # Add another field that supports dictionary elements.
        rec_context = ParameterContext('records', param_type=RecordType())
        context_ids.append(self.dataset_management.create_parameter_context('records', rec_context.dump()))

        pdict_id = self.dataset_management.create_parameter_dictionary('replay_pdict', parameter_context_ids=context_ids, temporal_context='time')
        

        stream_def_id = self.pubsub_management.create_stream_definition('replay_stream', parameter_dictionary_id=pdict_id)
        
        stream_id, route  = self.pubsub_management.create_stream('replay_with_params', exchange_point=self.exchange_point_name, stream_definition_id=stream_def_id)
        config_id  = self.get_ingestion_config()
        dataset_id = self.create_dataset(pdict_id)
        self.ingestion_management.persist_data_stream(stream_id=stream_id, ingestion_configuration_id=config_id, dataset_id=dataset_id)


        #--------------------------------------------------------------------------------
        # Coerce the datastore into existence (beats race condition)
        #--------------------------------------------------------------------------------
        self.get_datastore(dataset_id)

        self.launch_producer(stream_id)

        self.wait_until_we_have_enough_granules(dataset_id,4)

        query = {
            'start_time': 0,
            'end_time':   20,
            'stride_time' : 2,
            'parameters': ['time','temp']
        }
        retrieved_data = self.data_retriever.retrieve(dataset_id=dataset_id,query=query)

        rdt = RecordDictionaryTool.load_from_granule(retrieved_data)
        comp = np.arange(0,20,2) == rdt['time']
        self.assertTrue(comp.all(),'%s' % rdt.pretty_print())
        self.assertEquals(set(rdt.iterkeys()), set(['time','temp']))

        extents = self.dataset_management.dataset_extents(dataset_id=dataset_id, parameters=['time','temp'])
        self.assertTrue(extents['time']>=20)
        self.assertTrue(extents['temp']>=20)



    def test_repersist_data(self):
        pdict_id = self.dataset_management.read_parameter_dictionary_by_name('ctd_parsed_param_dict',id_only=True)
        stream_def_id = self.pubsub_management.create_stream_definition(name='ctd', parameter_dictionary_id=pdict_id)
        stream_id, route = self.pubsub_management.create_stream(name='repersist', exchange_point=self.exchange_point_name, stream_definition_id=stream_def_id)
        config_id = self.get_ingestion_config()
        dataset_id = self.create_dataset(pdict_id)
        self.ingestion_management.persist_data_stream(stream_id=stream_id, ingestion_configuration_id=config_id, dataset_id=dataset_id)
        self.get_datastore(dataset_id)
        self.publish_hifi(stream_id,route,0)
        self.publish_hifi(stream_id,route,1)
        self.wait_until_we_have_enough_granules(dataset_id,2)
        self.ingestion_management.unpersist_data_stream(stream_id=stream_id,ingestion_configuration_id=config_id)
        self.ingestion_management.persist_data_stream(stream_id=stream_id,ingestion_configuration_id=config_id,dataset_id=dataset_id)
        self.publish_hifi(stream_id,route,2)
        self.publish_hifi(stream_id,route,3)
        self.wait_until_we_have_enough_granules(dataset_id,4)
        success = False
        with gevent.timeout.Timeout(5):
            while not success:

                replay_granule = self.data_retriever.retrieve(dataset_id)

                rdt = RecordDictionaryTool.load_from_granule(replay_granule)

                comp = rdt['time'] == np.arange(0,40)
                if not isinstance(comp,bool):
                    success = comp.all()
                gevent.sleep(1)

        self.assertTrue(success)