def test():
    left, right = -1, 1

    f1 = lambda t : sin(exp(2*t))
    # f1 = lambda t : exp(-5*(t-0.5)**2) - exp(-10*(t+0.1)**2) + exp(-t**2)
    f2 = lambda t : sin(1.0/(t**3)) if t != 0 else 0
    f3 = lambda t : (1 if t > 0 else -1) * exp(t**2)

    main_grid = generate_uniform_grid(left, right, 10000)
    small_grid = generate_uniform_grid(left, right, 10)
    large_grid = generate_uniform_grid(left, right, 100)
    # larger_grid = generate_uniform_grid(left, right, 1000)

    plt.rc('text', usetex=True)
    for (f, f_name, filename) in [(f1, r'$\sin(e^{2t})$', 'spline_plot1'),
            (f2, r'$\sin(t^{-3})$', 'spline_plot2'),
            (f3, r'$sign(t) e^{t^2}$', 'spline_plot3')]:
        main_f = tabulate(f, main_grid)
        small_f = tabulate(interpolate(tabulate(f, small_grid)), main_grid)
        large_f = tabulate(interpolate(tabulate(f, large_grid)), main_grid)
        # larger_f = tabulate(interpolate(tabulate(f, larger_grid)), main_grid)

        plt.title(f_name)
        plt.plot(main_grid, main_f.values)
        plt.plot(main_grid, small_f.values)
        plt.plot(main_grid, large_f.values, 'k')
        # plt.plot(main_grid, larger_f.values, 'm', label='sign(t)')
        # plt.legend()
        plt.savefig('img/' + filename + '.eps', bbox_inches='tight', dpi=300)
        plt.clf()

        plt.title(f_name)
        plt.plot(main_grid, np.array(main_f.values) - np.array(large_f.values))
        plt.savefig('img/' + filename + '_error.eps', bbox_inches='tight', dpi=300)
        plt.clf()
def test2():
    tabulated_rho = read_tabulated_function_from_file('txts/tabulated_rho.txt')
    tabulated_integral = integrate_tabulated(interpolate(tabulated_rho), 0, 1,
                                             1000)
    integral_interpolation = interpolate(tabulated_integral)
    save_interpolation_to_file(integral_interpolation,
                               'txts/U_interpolation.txt')
Beispiel #3
0
def lk_tracker(Ig, Jg, Jgdx, Jgdy, tracking_point):
    tx = tracking_point[0]
    ty = tracking_point[1]

    w_size = [100, 100]

    T = estimate_T.estimate_T(Jgdx, Jgdy, tx, ty, w_size)
    e = estimate_e.estimate_e(Ig, Jg, Jgdx, Jgdy, tx, ty, w_size)

    # Find an appropiate value, d
    d_tot = np.zeros((2, 1))
    #print(d_tot)

    # d = T^-1 * e
    d = np.linalg.solve(T, e)

    counter = 0

    interpolator_Jg = RectBivariateSpline(np.arange(Jg.shape[0]),
                                          np.arange(Jg.shape[1]), Jg)

    interpolator_Jgdx = RectBivariateSpline(np.arange(Jgdx.shape[0]),
                                            np.arange(Jgdx.shape[1]), Jgdx)

    interpolator_Jgdy = RectBivariateSpline(np.arange(Jgdy.shape[0]),
                                            np.arange(Jgdy.shape[1]), Jgdy)

    while np.linalg.norm(d) > 0.0001 and counter < 100:
        d_tot = d_tot + d

        dx = d_tot[0][0]
        dy = d_tot[1][0]

        Jg_interpolated = interpolate(interpolator_Jg, Jg, dx, dy)

        Jgdx_interpolated = interpolate(interpolator_Jgdx, Jgdx, dx, dy)

        Jgdy_interpolated = interpolate(interpolator_Jgdy, Jgdy, dx, dy)

        T = estimate_T.estimate_T(Jgdx_interpolated, Jgdy_interpolated, tx, ty,
                                  w_size)
        e = estimate_e.estimate_e(Ig, Jg_interpolated, Jgdx_interpolated,
                                  Jgdy_interpolated, tx, ty, w_size)

        d = np.linalg.solve(T, e)

        #print("COUNTER", counter)
        #print("D_TOT", d_tot)

        counter = counter + 1

    return (dx, dy)
Beispiel #4
0
def K(t, gamma):

    dE = deltaE(t, gamma)
    Q = [ip.interpolate(Td, Qd[i], 4, t) for i in range(len(Qd))]

    return \
    [2 * 2.415 * 10**-3 * (Q[i+1] / Q[i]) * t**(3/2) * math.exp(-(E[i] - dE[i]) * 11603 / t) for i in range(len(E))]
Beispiel #5
0
def render_video():
    file_name = time.strftime('%y_%m_%d_%H_%M_%S')
    video = CvVideo(tracer.screen_width, tracer.screen_height, file_name)

    # render.ray_tracer.c_
    positions = [frame.position for frame in frames]
    up = [frame.up for frame in frames]
    back = [frame.back for frame in frames]
    pos = interpolate(positions, range(len(positions)), 30)
    up = interpolate(up, range(len(positions)), 30)
    back = interpolate(back, range(len(positions)), 30)
    for index, (center, up, back) in enumerate(zip(pos, up, back)):
        print(index + 1) * 1.0 / len(pos) * 100, '%'
        print center, up, back
        render.ray_tracer.c_center = center
        render.ray_tracer.set_up_and_back(up, back)
        start_rendering(1)
        video.write(render.ray_tracer.get_current_mat())
Beispiel #6
0
def build_instances(filename, master_dir, instance_dir, italic=False):
    """Write and return UFOs from the instances defined in a .glyphs file."""

    from interpolation import interpolate

    designspace_path = filename.replace('.glyphs', '.designspace')
    master_ufos, instance_data = load_to_ufos(
        filename, italic, include_instances=True)
    return interpolate(
        master_ufos, master_dir, instance_dir, designspace_path, instance_data)
Beispiel #7
0
 def _generate_path(self, departure):
     self.path_segments = self.navigator.generate_path(
         departure,
         num_segments=10,
         novelty=self._get_slider_value("novelty"),
         extension=self._get_slider_value("extension"),
         location_preference=self._get_slider_value("location_preference"))
     self.path = interpolation.interpolate(
         self.path_segments,
         resolution=100)
     self.path_followers = [
         PathFollower(self.path, dynamics=dynamics.constant_dynamics()),
         PathFollower(self.path, dynamics=dynamics.sine_dynamics()),
         ]
def main(dir_path, output_dir):
    '''
        Run Pipeline of processes on file one by one.
    '''
    files = os.listdir(dir_path)

    for file_name in files:

        file_dataframe = pd.read_csv(os.path.join(dir_path, file_name))

        cols = ['high', 'open', 'low', 'close', 'volume', 'adj_close']

        file_dataframe = interpolate(file_dataframe, cols)

        file_dataframe = normalize(file_dataframe, cols)

        file_dataframe.to_csv(
            os.path.join(output_dir, file_name), encoding='utf-8')
Beispiel #9
0
def main(dir_path, output_dir):
    '''
        Run Pipeline of processes on file one by one.
    '''
    files = os.listdir(dir_path)

    for file_name in files:

        file_dataframe = pd.read_csv(os.path.join(dir_path, file_name))

        cols = ['high', 'open', 'low', 'close', 'volume', 'adj_close']

        file_dataframe = interpolate(file_dataframe, cols)

        file_dataframe = normalize(file_dataframe, cols)

        file_dataframe.to_csv(os.path.join(output_dir, file_name),
                              encoding='utf-8')
Beispiel #10
0
def moveLoop(req):
    global prev_p
    frq = 30
    rate = rospy.Rate(frq)
    cur_time = 0
    new_p = [req.x, req.y, req.z, req.qx, req.qy, req.qz, req.qw]

    for i in range(int(frq * req.time)):
        cur_p = []
        for j in range(0, 7):
            cur_p.append(
                interpolate(prev_p[j], new_p[j], cur_time, req.time, req.type))

        ps = createPoseStamped(cur_p)
        pose_pub.publish(ps)
        path_pub.publish(createPath(ps))

        cur_time += float(1) / frq
        rate.sleep()
    prev_p = new_p
Beispiel #11
0
interpolator_Jg = RectBivariateSpline(np.arange(Jg.shape[0]),
                                      np.arange(Jg.shape[1]), Jg)

interpolator_Jgdx = RectBivariateSpline(np.arange(Jgdx.shape[0]),
                                        np.arange(Jgdx.shape[1]), Jgdx)

interpolator_Jgdy = RectBivariateSpline(np.arange(Jgdy.shape[0]),
                                        np.arange(Jgdy.shape[1]), Jgdy)

while np.linalg.norm(d) > 0.0001 and counter < 10:
    d_tot = d_tot + d

    dx = d_tot[0][0]
    dy = d_tot[1][0]

    Jg_interpolated = interpolate(interpolator_Jg, Jg, dx, dy)

    Jgdx_interpolated = interpolate(interpolator_Jgdx, Jgdx, dx, dy)

    Jgdy_interpolated = interpolate(interpolator_Jgdy, Jgdy, dx, dy)

    T = estimate_T.estimate_T(Jgdx_interpolated, Jgdy_interpolated, 52, 114,
                              w_size)
    e = estimate_e.estimate_e(Ig, Jg_interpolated, Jgdx_interpolated,
                              Jgdy_interpolated, 52, 114, w_size)

    d = np.linalg.solve(T, e)
    d_diff = d_tot - np.asarray(d_true)

    #print("COUNTER", counter)
    #print("D_TOT", d_tot)
df2 = pd.read_csv(filenames[1])

#calculate PC_open and PC_close
df2['shift_close'] = df2['Close'].shift(-1)
df2['shift_open'] = df2['Open'].shift(-1)

df2['PC_open'] = (df2['shift_open'] - df2['Open']) / df2['Open']
df2['PC_close'] = (df2['Open'] - df2['Close']) / df2['Close']

#df2['PC_open']=(df2['shift_open']-df2['Open'])/df2['Open']
#df2['PC_close']=(df2['shift_close']-df2['Close'])/df2['Close']
#df2.drop(['shift_open'],1)
df2 = df2.set_index('Date')
#print(df2.head(1))

df2 = interpolate(df2, list(df2))
df2 = normalize(df2, list(df2))

df3 = df1.join(df2, how="inner")
#df3=pd.concat([df1,df2],axis='1',join='inner')
#print(df3.head(1),df3.columns,df3.describe())
#print(df3.index.values)
#print(df1.shape,df2.shape,df3.shape)

#splitter=filenames[0].split('/')
#filename=splitter[-1]

#print(filename[:-3])
#print(df3[[0]])

#fix first col
Beispiel #13
0
    array = vtk.vtkDoubleArray()
    array.SetNumberOfComponents(1)
    array.SetNumberOfTuples(grid.GetNumberOfPoints())
    idx = 0
    for i in range(0, len(gradient_map)):
        for j in range(0, len(gradient_map[i])):
            array.SetValue(idx, gradient_map[i][j])
            idx = idx + 1

    grid.GetPointData().AddArray(array)
    return grid


data = np.random.rand(20)
injter.interpolate(data, 1000)

file_name = 'face.jpg'
img = cv2.imread(file_name)
img2gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2.imshow('img', img)
cv2.waitKey()
img_laplace = cv2.Laplacian(img2gray, cv2.CV_64F)
cv2.imshow('img', img_laplace)
cv2.waitKey()

shifted = shift_laplace(img_laplace)
cv2.imshow('img', shifted)
cv2.waitKey()

##### VTK CRAP
Beispiel #14
0
x_vec = []
for i in range(Nx + 1):
    x_local = (la / 4) * ((1 - m.cos(i * m.pi / (Nx + 1))) + (1 - m.cos(
        (i + 1) * m.pi / (Nx + 1))))
    x_vec.append(x_local)

z_vec = []
for i in range(Nz + 1):
    z_local = -(Ca / 4) * ((1 - m.cos(i * m.pi / (Nz + 1))) + (1 - m.cos(
        (i + 1) * m.pi / (Nz + 1))))
    z_vec.append(z_local)
z_vec = z_vec[::-1]

## Creating some new arrays to test the interpolation with

abcd = interpolate(x_vec, z_vec, filename)

qx = FI.integrate_z1(x_vec, z_vec, abcd, len(x_vec) - 1)
qx2 = FI.integrate_z2(x_vec, z_vec, abcd, len(x_vec) - 1, zsc)
qsy = FI.integratefinal(x_vec, qx, x_vec[-1], 1)
qmz = FI.integratefinal(x_vec, qx, x_vec[-1], 2)
qt = FI.integratefinal(x_vec, qx2, x_vec[-1], 1)

qvy1 = FI.integratefinal(x_vec, qx, x1, 4)
qvy2 = FI.integratefinal(x_vec, qx, x2, 4)
qvyII = FI.integratefinal(x_vec, qx, xII, 4)
qvy3 = FI.integratefinal(x_vec, qx, x3, 4)

qtheta1 = FI.integratefinal(x_vec, qx2, x1, 2)
qtheta2 = FI.integratefinal(x_vec, qx2, x2, 2)
qthetaII = FI.integratefinal(x_vec, qx2, xII, 2)
def main(Args):
    '''
    Main function for stock price prediction
    :param args: arguments acquired from command lines(refer to ParseArgs() for list of args)
    '''

    stockFilePath = Args.stockfilepath
    newsFilePath = Args.newsfilepath
    nCpuCores = Args.ncpucores
    testStockFilePath = Args.teststockfilepath
    testNewsFilePath = Args.testnewsfilepath
    modelTimeSeries = Args.modeltimeseries
    modelNews = Args.modelnews

    Logger.debug(
        "StockDataPath: {}, NewsDataPath: {}, NCpuCores: {}, TestStockFilePath: {}, TestNewsFilePath: {}"
        .format(stockFilePath, newsFilePath, nCpuCores, testStockFilePath,
                testNewsFilePath))

    #Time Series Analysis
    dataFrame = pd.read_csv(stockFilePath, parse_dates=True, index_col="date")
    testDataFrame = pd.read_csv(testStockFilePath,
                                parse_dates=True,
                                index_col="date")

    colsToInterpolate = ['open', 'high', 'low', 'close', 'adj_close', 'volume']

    #Interpolate
    dataFrame = interpolate(dataFrame, colsToInterpolate)
    testDataFrame = interpolate(testDataFrame, colsToInterpolate)

    #Preprocessing
    dataFrame = preprocessing(dataFrame)
    attributes = dataFrame.drop('close', axis=1)
    target = dataFrame.loc[:, 'close']
    testDataFrame = preprocessing(testDataFrame)
    testAttributes = testDataFrame.drop('close', axis=1)
    testTarget = testDataFrame.loc[:, 'close']

    #Normalization - converting values to comparable range
    attributes['volume'] /= 100000
    testAttributes['volume'] /= 100000

    #Predictions and errors of different algorithms for news
    errorTimeSeries, predictionTimeSeries = predictFromTimeSeries(
        attributes, target, testAttributes, testTarget, nCpuCores)

    #News Analysis
    newsDataFrame = pd.read_csv(newsFilePath,
                                parse_dates=True,
                                index_col='date')
    testNewsDataFrame = pd.read_csv(testNewsFilePath,
                                    parse_dates=True,
                                    index_col='date')

    #Cleaning of textual data
    newsAttributes, newsTarget = clean(newsDataFrame)
    newsTestAttributes, newsTestTarget = clean(testNewsDataFrame)

    #Embeddings
    newsAttributes, newsTestAttributes = embeddings(newsAttributes,
                                                    newsTestAttributes)

    #Predictions and errors of different algorithms for news
    errorNews, predictionNews = predictFromNews(newsAttributes, newsTarget,
                                                newsTestAttributes,
                                                newsTestTarget, nCpuCores)

    combinePredictions(errorTimeSeries, errorNews, predictionTimeSeries,
                       predictionNews, testTarget)
import interpolation
RADAR_FILE1_path="/home/Radar/data/RAW/VAN/2010-08-08/201008081800_VAN.PPI1_A.raw"
RADAR_FILE2_path="/home/Radar/data/RAW/VAN/2010-08-08/201008081810_VAN.PPI3_A.raw"
timestep=11
#images='images/'
#morh='morph/'
filename='VAN10008081800-1810'
output='/home/Radar/Int_Data/'


#interpolation.interpolate(RADAR_FILE1_path,RADAR_FILE2_path,timestep,images,morh,filename,0,['DBZ2','HCLASS2','KDP2','VEL2','RHOHV2'],output)
interpolation.interpolate(RADAR_FILE1_path,RADAR_FILE2_path,timestep,filename,0,['DBZ2','HCLASS2','KDP2','VEL2','RHOHV2'],output)

def predictDay(timeSeriesDataFrame, newsDataFrame, modelTimeSeries, modelNews):
    '''
        Predicts the stock price of a certain day as per the given inputs
    :param timeSeriesDataFrame: data frame containing data of the time series inputs of the days for which prediction is desired
    :param newsDataFrame: data frame containing the news inputs of the days for which prediction is desired
    :param modelTimeSeries: trained model for prediction from time series if provided
    :param modelNews: trained model for prediction from news if provided
    :return: the final predicted value
    '''

    #loading the dictionaries of Mean Absolute Errors
    with open('..\errors.json', 'r') as errorFile:
        errors = json.load(errorFile)

    errorTimeSeries = errors['TimeSeries']
    errorNews = errors['News']

    with open(str('..\\features.json'), 'r') as featureFile:
        features = json.load(featureFile)

    #Selecting best time series model if not given by user
    if not modelTimeSeries:
        minKeyTimeSeries = min(errorTimeSeries, key=errorTimeSeries.get)
        modelName = getModelFromKey(minKeyTimeSeries)
        timeSeriesModel = joblib.load(
            str("..\\Models\\" + modelName + "TimeSeries.sav"))
        timeSeriesError = errorTimeSeries[minKeyTimeSeries]
        timeSeriesFeatures = features[minKeyTimeSeries]
    else:
        timeSeriesModel = joblib.load(modelTimeSeries)
        key = getKeyFromModel(modelTimeSeries)
        timeSeriesError = errorTimeSeries[key]
        timeSeriesFeatures = features[key]

    #Selecting best model predicting from news if not given by user
    if not modelNews:
        minKeyNews = min(errorNews, key=errorNews.get)
        modelName = getModelFromKey(minKeyNews)
        newsModel = joblib.load(str("..\\Models\\" + modelName + "News.sav"))
        newsError = errorNews[minKeyNews]
    else:
        newsModel = joblib.load(modelNews)
        newsError = errorNews[getKeyFromModel(modelNews)]

    #processing dataframe
    colsToInterpolate = ['open', 'high', 'low', 'close', 'adj_close', 'volume']
    timeSeriesDataFrame = interpolate(timeSeriesDataFrame, colsToInterpolate)
    timeSeriesDataFrame = preprocessing(timeSeriesDataFrame)

    timeSeriesDataFrame = timeSeriesDataFrame.drop('close', axis=1)
    timeSeriesDataFrame['volume'] /= 100000

    #prediction of stock price using time series model
    timeSeriesPrediction = timeSeriesModel.predict(
        timeSeriesDataFrame[timeSeriesFeatures])
    timeSeriesPrediction = pd.Series(timeSeriesPrediction,
                                     index=timeSeriesDataFrame.index)

    #newsDataFrame = newsDataFrame.drop('close',axis=1)

    #cleaning of textual data
    newsDataFrame = cleanForPrediction(newsDataFrame)

    #finding the word embeddings of textual data
    newsData = embeddings(newsDataFrame)
    newsData = newsData[0]
    newsDataFrame = pd.DataFrame(newsData, index=newsDataFrame.index)

    #prediction of stock price using news model
    newsPrediction = newsModel.predict(newsDataFrame)
    newsPrediction = pd.Series(newsPrediction, index=newsDataFrame.index)

    #combining the predictions
    value1 = timeSeriesPrediction * newsError
    value2 = newsPrediction * timeSeriesError
    value = value1.add(value2)
    value /= (timeSeriesError + newsError)

    print(value)

    return
    x.append(x_local)

z = []
for i in range(Nz + 1):
    z_local = (Ca / 4) * ((1 - m.cos(i * m.pi / (Nz + 1))) + (1 - m.cos(
        (i + 1) * m.pi / (Nz + 1))))
    z.append(z_local)

### Creating some new arrays to test the interpolation with
x_new = np.linspace(x[0], x[-1], 100)
z_new = np.linspace(z[0], z[-1], 100)

### Doing the actual interpolation with Scipy! ###
################################################
### Call the created interolation function
result = interpolate(x_new, z_new)[0][3]
### Plot it...
plt.subplot(131)
plt.title("Current model")
plt.imshow(result, cmap='gnuplot2')

### Check it by making scipy do the exact same kind of interpolation ###
##################################################
### First interpolate in x-direction, as we did
result_np = np.zeros((len(x_new), len(z)))
for j in range(len(z)):
    y = d_x[:, j]
    ### This specific interpolation is also 1d cubic interpolation!!
    tck = sc.interpolate.splrep(x, y, s=0)
    y_new = sc.interpolate.splev(x_new, tck, der=0)
    for i in range(len(y_new)):
Beispiel #19
0
	altitude = [0,0]
	velocity = 0
	host = None
	energy = 0
	
	def potential(self,alt):
		return -constants['G'] * self.host.mass / (alt + self.host.radius)
	
	# mission from alt_from to alt_to, attaining a velocity of vel or else orbital
	# launching from and orbiting round host, with extra energy E
	def __init__(self, alt_from, alt_to, vel=False, host=None, E=0):
		self.altitude = [alt_from, alt_to]
		if host: self.host = host
		self.velocity = constants['G'] * self.host.mass / (self.altitude[1] + self.host.radius)
		
		if vel: self.velocity = vel**2
		self.energy = .5*self.velocity
		self.energy += self.potential(self.altitude[1]) - self.potential(self.altitude[0])
		self.energy += E

# Defaults and Predefined Data
Sun = body(1.9891e30, 6.96342e8)
Earth = body(5.972e24, 6373319, 'earth.csv')
Moon = body(7.3477e22, 1.7371e6)

CD=interpolate([[0,0.3],[0.2,0.25],[0.5,0.2],[0.78,0.25],[0.84,0.30],[1.0,0.38],[1.2,0.5],
				[1.5,0.56],[2.0,0.52],[2.5,0.45],[3.0,0.43],[3.5,0.42],[4.0,0.42],[1e26,0.42]])

mission.host = Earth
LEO = mission(0, 1160000)
                        plt_cut_y[l][j].append(ncuts[l + 2].tolist())
        # Create 'len(plt_cut_y)' figures with cuts plotted in 'ncols' columns
        cuts.plot_cuts(len(plt_cut_y), ncols, plt_cut_x, plt_cut_y)

############################# COLORMAPS ########################################
    if prm.make_cm:
        print("Plotting colormaps...")
        # Interpolating and transposing i,j -> j,i
        z_old = [[None for j in range(len(values_local[0][0]) - 4)]
                 for i in range(num_plots)]
        for i in range(nrows):
            for j in range(ncols):
                # x[ij_to_arg[i,j]], y[ij_to_arg[i,j]], z_old[ij_to_arg[i,j]] = interpolation.interpolate(values_local[ij_to_arg[i,j]])
                x[ij_to_arg[j, i]], y[ij_to_arg[j, i]], z_old[ij_to_arg[
                    j,
                    i]] = interpolation.interpolate(values_local[ij_to_arg[i,
                                                                           j]])

        # Reshaping z[numplots][numfigs] -> z[numfigs][numplots]
        z = [[None for i in range(num_plots)]
             for j in range(0,
                            len(values_local[0][0]) - 4)]
        for i in range(nrows):
            for j in range(ncols):
                for fg in range(len(values_local[0][0]) - 4):
                    z[fg][ij_to_arg[i, j]] = z_old[ij_to_arg[i, j]][fg]

        # Getting minimum and maximum for each row
        zmin, zmax = ([None for i in range(len(values_local[0][0]) - 4)]
                      for _ in range(2))
        for k in range(len(values_local[0][0]) - 4):
            zmin[k] = [
                    metavar='PATH')
parser.add_argument('-plotdir',
                    type=str,
                    default='',
                    help='Folder to hold output plots',
                    metavar='DIRPATH')
parser.add_argument('-out', type=str, help='Name of vtk output file')
args = parser.parse_args()

if args.plotdir and not os.path.isdir(args.plotdir):
    print('plotdir doesn\'t exist or is not a directory')
    exit()

data = file_loading.load_data_from_file(args.file)

ans2 = interpolation.interpolate(data, args.grid, args.p)

ans = ans2['values']

x = np.array([i[0] for i in data['points']] +
             [i[0] for i in data['internal_points']] +
             [i[0] for i in ans2['points']])
y = np.array([i[1] for i in data['points']] +
             [i[1] for i in data['internal_points']] +
             [i[1] for i in ans2['points']])
Sxx = np.array(data['Sxx'] + data['inSxx'] + ans['Sxx'])
Syy = np.array(data['Syy'] + data['inSyy'] + ans['Syy'])
Sxy = np.array(data['Sxy'] + data['inSxy'] + ans['Sxy'])
Szz = np.array(data['Szz'] + data['inSzz'] + ans['Szz'])
SE = np.array(data['SE'] + data['inSE'] + ans['SE'])
UX = np.array(data['UX'] + data['inUX'] + ans['UX'])
				name=str(start)+"-"+str(end)

				filename=site+"_"+date+'_'+'hours'+str(start)+'-'+str(end)+'_TS_'+str(step)
				fo=open(filename+".log","w")
				
				print "starting interpolation:"
				print "site: "+site
				print "timestep: "+str(timesteps)
				print "name: "+name
				print "Sweep: "+str(sweep)
				print "RADAR_FILE1: "+RADAR_FILE1
				print "RADAR_FILE2: "+RADAR_FILE2
				print "filename: "+filename


				tmp = interpolation.interpolate(RADAR_FILE1,RADAR_FILE2,timesteps,filename,sweep,['DBZ2','HCLASS2','KDP2','RHOHV2','VEL2','ZDR2'],data_path,fo)
				if tmp is None:
					print "Error in interpolation"
					continue

				#write log
		
				fo.write("site: "+site+"\n")
				fo.write("timestep: "+str(timesteps)+"\n")
				fo.write("name: "+name+"\n")
				fo.write("Sweep: "+str(sweep)+"\n")
				fo.write("RADAR_FILE1: "+RADAR_FILE1+"\n")
				fo.write("RADAR_FILE2: "+RADAR_FILE2+"\n")
				fo.write("filename: "+filename)
				fo.close()
		
def _set_particles(self, locations):
    """
    ** Initializes particles location, velocity, and additional fields.**

    Inputs:
      - pyticleClass and an array of particle locations
    """

    particles = container()

    locations = np.atleast_2d(locations)

    if self.opt.useLL:
        particles.lon = locations[:, 0]
        particles.lat = locations[:, 1]
        x, y = self.grid.proj(particles.lon, particles.lat)
        particles.x = x
        particles.y = y
    else:
        particles.x = locations[:, 0]
        particles.y = locations[:, 1]

    particles.xpt = particles.x
    particles.ypt = particles.y

    particles.indomain = self.grid.finder.__call__(particles.x, particles.y)
    if np.sum(particles.indomain != -1) == 0:
        print('No particles are initially in the domain.')
        sys.exit()

    if '3D' in self.opt.gridDim:
        particles.z = locations[:,2]
        particles.zpt = particles.z

        #Find particle height
        particles.hpt = interpolate(self, self.grid.h, particles)
        particles.ept = interpolate(self, self.grid.zeta[self.time.starttime,], \
                                    particles)

        # If particles are above the water place them in the water
        particles.zpt = np.min([particles.zpt, particles.ept], axis=0)

        # If a particles is within cutoff (default - 1cm) of bottom stop movement
        particles.inwater = (particles.zpt + particles.hpt) > self.opt.cutoff
        # And if they are at the bottom put them at the bottom not below
        particles.zpt = np.max([particles.zpt, -particles.hpt], axis=0)

        # Finally update the sigma position of the particle
        # for layer interpolation of the velocity
        particles.sigpt = np.divide(particles.zpt, \
                                    -1*(particles.hpt + particles.ept))
    else:
        # If 2D then particles are always *vertically* in the water column
        particles.inwater = (particles.x * 0 + 1).astype(bool)

    particles.time = self.time.time
    particles.npts = len(particles.x)

    # Run interp code here to get particle velocities here
    particles.u = interpolate(self, self.grid.u[self.time.starttime,], particles)
    particles.v = interpolate(self, self.grid.v[self.time.starttime,], particles)

    if '3D' in self.opt.gridDim:
        particles.w = interpolate(self, self.grid.ww[self.time.starttime,], \
                                    particles)

    particles.loop = 0

    return particles
Beispiel #24
0
import quandl
import math
import numpy as np
from sklearn import preprocessing, cross_validation, svm
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestClassifier
import matplotlib.pyplot as plt

from interpolation import interpolate
from normalisation import normalize

df = quandl.get('WIKI/GOOGL',
                api_key='pYaKjEHyu4Tje_VTzHu6',
                start_date='2016-12-22',
                end_date='2018-03-23')

df = interpolate(df, list(df))
df = normalize(df, list(df))

result = df.corr(method='pearson', min_periods=1)

print(result)

result = df.cov()
print(result)
Beispiel #25
0
 def _interpolate_segment(self, segment):
     try:
         return interpolation.interpolate(segment, self._args.interpolation_resolution)
     except interpolation.InterpolationException as exception:
         print "WARNING: interpolation failed: %s" % exception
         return segment
Beispiel #26
0
def _set_particles(self, locations):
    """
    ** Initializes particles location, velocity, and additional fields.**

    Inputs:
      - pyticleClass and an array of particle locations
    """

    particles = container()

    locations = np.atleast_2d(locations)

    if self.opt.useLL:
        particles.lon = locations[:, 0]
        particles.lat = locations[:, 1]
        x, y = self.grid.proj(particles.lon, particles.lat)
        particles.x = x
        particles.y = y
    else:
        particles.x = locations[:, 0]
        particles.y = locations[:, 1]

    particles.xpt = particles.x
    particles.ypt = particles.y

    particles.indomain = self.grid.finder.__call__(particles.x, particles.y)
    if np.sum(particles.indomain != -1) == 0:
        print('No particles are initially in the domain.')
        sys.exit()

    if '3D' in self.opt.gridDim:
        particles.z = locations[:, 2]
        particles.zpt = particles.z

        #Find particle height
        particles.hpt = interpolate(self, self.grid.h, particles)
        particles.ept = interpolate(self, self.grid.zeta[self.time.starttime,], \
                                    particles)

        # If particles are above the water place them in the water
        particles.zpt = np.min([particles.zpt, particles.ept], axis=0)

        # If a particles is within cutoff (default - 1cm) of bottom stop movement
        particles.inwater = (particles.zpt + particles.hpt) > self.opt.cutoff
        # And if they are at the bottom put them at the bottom not below
        particles.zpt = np.max([particles.zpt, -particles.hpt], axis=0)

        # Finally update the sigma position of the particle
        # for layer interpolation of the velocity
        particles.sigpt = np.divide(particles.zpt, \
                                    -1*(particles.hpt + particles.ept))
    else:
        # If 2D then particles are always *vertically* in the water column
        particles.inwater = (particles.x * 0 + 1).astype(bool)

    particles.time = self.time.time
    particles.npts = len(particles.x)

    # Run interp code here to get particle velocities here
    particles.u = interpolate(self, self.grid.u[self.time.starttime, ],
                              particles)
    particles.v = interpolate(self, self.grid.v[self.time.starttime, ],
                              particles)

    if '3D' in self.opt.gridDim:
        particles.w = interpolate(self, self.grid.ww[self.time.starttime,], \
                                    particles)

    particles.loop = 0

    return particles