def test_temp_ssh_files(): with filetext('name,balance\nAlice,100\nBob,200', extension='csv') as fn: csv = CSV(fn) scsv = into(Temp(SSH(CSV)), csv, hostname='localhost') assert discover(csv) == discover(scsv) assert isinstance(scsv, _Temp)
def test_pandas_read_supports_read_csv_kwargs(): with filetext('Alice,1\nBob,2') as fn: ds = datashape.dshape('var * {name: string, amount: int}') csv = CSV(fn) df = csv_to_DataFrame(csv, dshape=ds, usecols=['name']) assert isinstance(df, pd.DataFrame) assert convert(list, df) == [('Alice',), ('Bob',)]
def test_pandas_discover_on_gzipped_files(): with filetext('name,when\nAlice,2014-01-01\nBob,2014-02-02', open=gzip.open, extension='.csv.gz') as fn: csv = CSV(fn, has_header=True) ds = datashape.dshape('var * {name: string, when: datetime}') assert discover(csv) == ds
def test_pandas_read_supports_read_csv_kwargs(): with filetext('Alice,1\nBob,2') as fn: ds = datashape.dshape('var * {name: string, amount: int}') csv = CSV(fn) df = csv_to_DataFrame(csv, dshape=ds, usecols=['name']) assert isinstance(df, pd.DataFrame) assert convert(list, df) == [('Alice', ), ('Bob', )]
def test_pandas_loads_in_datetimes_naively(): with filetext('name,when\nAlice,2014-01-01\nBob,2014-02-02') as fn: csv = CSV(fn, has_header=True) ds = datashape.dshape('var * {name: string, when: datetime}') assert discover(csv) == ds df = convert(pd.DataFrame, csv) assert df.dtypes['when'] == 'M8[ns]'
def test_pandas_read_supports_gzip(): with filetext('Alice,1\nBob,2', open=gzip.open, extension='.csv.gz') as fn: ds = datashape.dshape('var * {name: string, amount: int}') csv = CSV(fn) df = csv_to_DataFrame(csv, dshape=ds) assert isinstance(df, pd.DataFrame) assert convert(list, df) == [('Alice', 1), ('Bob', 2)] assert list(df.columns) == ['name', 'amount']
def test_pandas_loads_in_datetimes_naively(): with filetext('name,when\nAlice,2014-01-01\nBob,2014-02-02') as fn: csv = CSV(fn, has_header=True) ds = datashape.dshape('var * {name: ?string, when: ?datetime}') assert discover(csv) == ds df = convert(pd.DataFrame, csv) assert df.dtypes['when'] == 'M8[ns]'
def test_pandas_read_supports_datetimes(): with filetext('Alice,2014-01-02\nBob,2014-01-03') as fn: ds = datashape.dshape('var * {name: string, when: date}') csv = CSV(fn) df = csv_to_DataFrame(csv, dshape=ds) assert isinstance(df, pd.DataFrame) assert list(df.columns) == ['name', 'when'] assert df.dtypes['when'] == 'M8[ns]'
def test_pandas_read_supports_missing_integers(): with filetext('Alice,1\nBob,') as fn: ds = datashape.dshape('var * {name: string, val: ?int32}') csv = CSV(fn) df = csv_to_DataFrame(csv, dshape=ds) assert isinstance(df, pd.DataFrame) assert list(df.columns) == ['name', 'val'] assert df.dtypes['val'] == 'f4'
def test_unused_datetime_columns(): ds = datashape.dshape('var * {val: string, when: datetime}') with filetext("val,when\na,2000-01-01\nb,2000-02-02") as fn: csv = CSV(fn, has_header=True) assert convert( list, csv_to_DataFrame(csv, usecols=['val'], squeeze=True, dshape=ds)) == ['a', 'b']
def test_pandas_read(): with filetext('Alice,1\nBob,2') as fn: ds = datashape.dshape('var * {name: string, amount: int}') csv = CSV(fn) df = csv_to_DataFrame(csv, dshape=ds) assert isinstance(df, pd.DataFrame) assert convert(list, df) == [('Alice', 1), ('Bob', 2)] assert list(df.columns) == ['name', 'amount']
def test_header_disagrees_with_dshape(): ds = datashape.dshape('var * {name: string, bal: int64}') with filetext('name,val\nAlice,100\nBob,200', extension='csv') as fn: csv = CSV(fn, header=True) assert convert(list, csv) == [('Alice', 100), ('Bob', 200)] assert list(convert(pd.DataFrame, csv).columns) == ['name', 'val'] assert list(convert(pd.DataFrame, csv, dshape=ds).columns) == ['name', 'bal']
def test_into_double_string(): with filetext('alice,1\nbob,2', extension='.csv') as source: assert into(list, source) == [('alice', 1), ('bob', 2)] with tmpfile('.csv') as target: csv = into(target, source) assert isinstance(csv, CSV) with open(target) as f: assert 'alice' in f.read()
def test_pandas_read_supports_gzip(): with filetext('Alice,1\nBob,2', open=gzip.open, mode='wt', extension='.csv.gz') as fn: ds = datashape.dshape('var * {name: string, amount: int}') csv = CSV(fn) df = csv_to_DataFrame(csv, dshape=ds) assert isinstance(df, pd.DataFrame) assert convert(list, df) == [('Alice', 1), ('Bob', 2)] assert list(df.columns) == ['name', 'amount']
def test_copy_remote_csv(): with tmpfile('csv') as target: with filetext('name,balance\nAlice,100\nBob,200', extension='csv') as fn: csv = resource(fn) scsv = into('ssh://localhost:foo.csv', csv) assert isinstance(scsv, SSH(CSV)) assert discover(scsv) == discover(csv) # Round trip csv2 = into(target, scsv) assert into(list, csv) == into(list, csv2)
def test_convert_through_temporary_local_storage(): with filetext('name,quantity\nAlice,100\nBob,200', extension='csv') as fn: csv = CSV(fn) df = into(pd.DataFrame, csv) scsv = into(Temp(SSH(CSV)), csv, hostname='localhost') assert into(list, csv) == into(list, scsv) scsv2 = into(Temp(SSH(CSV)), df, hostname='localhost') assert into(list, scsv2) == into(list, df) sjson = into(Temp(SSH(JSONLines)), df, hostname='localhost') assert (into(np.ndarray, sjson) == into(np.ndarray, df)).all()
def test_drop(): with filetext('name,balance\nAlice,100\nBob,200', extension='csv') as fn: with tmpfile('csv') as target: scsv = SSH(CSV)(target, hostname='localhost') assert not os.path.exists(target) conn = sftp(**scsv.auth) conn.put(fn, target) assert os.path.exists(target) drop(scsv) assert not os.path.exists(target)
def test_drop(): with filetext('name,balance\nAlice,100\nBob,200', extension='csv') as fn: with tmpfile('csv') as target: csv = CSV(fn) scsv = SSH(CSV)(target, hostname='localhost') assert not os.path.exists(target) with sftp(**scsv.auth) as conn: conn.put(fn, target) assert os.path.exists(target) drop(scsv) assert not os.path.exists(target)
def test_discover(): with filetext('name,balance\nAlice,100\nBob,200') as fn: local = CSV(fn) remote = SSH(CSV)(fn, hostname='localhost') assert discover(local) == discover(remote)
def test_discover_csv_without_columns(): with filetext('Alice,100\nBob,200', extension='csv') as fn: csv = CSV(fn) ds = discover(csv) assert '100' not in str(ds)
def test_unicode_column_names(): with filetext('foo\xc4\x87,a\n1,2\n3,4', extension='csv') as fn: csv = CSV(fn, has_header=True) df = into(pd.DataFrame, csv)
def test_discover_csv_with_spaces_in_header(): with filetext(' name, val\nAlice,100\nBob,200', extension='csv') as fn: ds = discover(CSV(fn, has_header=True)) assert ds.measure.names == ['name', 'val']
def test_unused_datetime_columns(): ds = datashape.dshape('var * {val: string, when: datetime}') with filetext("val,when\na,2000-01-01\nb,2000-02-02") as fn: csv = CSV(fn, has_header=True) assert convert(list, csv_to_DataFrame(csv, usecols=['val'], squeeze=True, dshape=ds)) == ['a', 'b']
def test_csv_missing_values(): with filetext('name,val\nAlice,100\nNA,200', extension='csv') as fn: csv = CSV(fn) assert discover(csv).measure.dict['name'] == Option(string)
def test_into_string_on_right(): with filetext('alice,1\nbob,2', extension='.csv') as source: assert into([], source) == [('alice', 1), ('bob', 2)]
def test_empty_dataframe(): with filetext('name,val', extension='csv') as fn: csv = CSV(fn, has_header=True) df = convert(pd.DataFrame, csv) assert isinstance(df, pd.DataFrame)
def test_header_argument_set_with_or_without_header(): with filetext('name,val\nAlice,100\nBob,200', extension='csv') as fn: assert into(list, fn) == [('Alice', 100), ('Bob', 200)] with filetext('Alice,100\nBob,200', extension='csv') as fn: assert into(list, fn) == [('Alice', 100), ('Bob', 200)]
def test_drop(): with filetext('hello\nworld') as fn: t = TextFile(fn) assert os.path.exists(fn) drop(t) assert not os.path.exists(fn)
def test_discover_csv_files_without_header(): with filetext('Alice,2014-01-01\nBob,2014-02-02') as fn: csv = CSV(fn, has_header=False) df = convert(pd.DataFrame, csv) assert len(df) == 2 assert 'Alice' not in list(df.columns)
def test_discover_from_resource(): with filetext('name,balance\nAlice,100\nBob,200', extension='csv') as fn: local = CSV(fn) remote = resource('ssh://localhost:' + fn) assert discover(local) == discover(remote)
def test_csv_into_list(): with filetext('name,val\nAlice,100\nBob,200', extension='csv') as fn: L = into(list, fn) assert L == [('Alice', 100), ('Bob', 200)]
def test_raise_errors_quickly_on_into_chunks_dataframe(): with filetext('name,val\nAlice,100\nBob,foo', extension='csv') as fn: ds = datashape.dshape('var * {name: string, val: int}') csv = CSV(fn, header=True) assert raises(Exception, lambda: CSV_to_chunks_of_dataframes(csv, dshape=ds))
def test_discover_csv_yields_string_on_totally_empty_columns(): expected = dshape('var * {a: int64, b: string, c: int64}') with filetext('a,b,c\n1,,3\n4,,6\n7,,9') as fn: csv = CSV(fn, has_header=True) assert discover(csv) == expected
def test_csv_separator_header(): with filetext('a|b|c\n1|2|3\n4|5|6', extension='csv') as fn: csv = CSV(fn, delimiter='|', has_header=True) assert convert(list, csv) == [(1, 2, 3), (4, 5, 6)]
def test_discover_csv_yields_string_on_totally_empty_columns(): expected = dshape('var * {a: int64, b: ?string, c: int64}') with filetext('a,b,c\n1,,3\n4,,6\n7,,9') as fn: csv = CSV(fn, has_header=True) assert discover(csv) == expected
def test_convert(): with filetext('Hello\nWorld') as fn: assert convert(list, TextFile(fn)) == ['Hello\n', 'World']