Beispiel #1
0
def plotdist_1d_hist(x, probs, mode=None, ranges=None):

    if mode is None or ranges is None:

        mode, ranges = isg.getdist_1d_hist(x, probs, [0.68, 0.95])

    fig = pylab.figure()
    ax = fig.add_axes([0.12, 0.12, 0.95 - 0.12, 0.95 - 0.12])

    ax.plot(x, probs, 'b-')

    print '!!!!!!!!!'
    print ranges

    ax.axvline(mode, c='r', linewidth=1.5)

    s68, s95 = ranges
    if isinstance(s68[0], float):
        s68 = [s68]
    if isinstance(s95[0], float):
        s95 = [s95]
    for range in s68:
        ax.axvline(range[0], c='m', linewidth=1.2, linestyle='--')
        ax.axvline(range[1], c='m', linewidth=1.2, linestyle='--')
    for range in s95:
        ax.axvline(range[0], c='c', linewidth=1.2, linestyle=':')
        ax.axvline(range[1], c='c', linewidth=1.2, linestyle=':')

    return fig
Beispiel #2
0
def fitAltOffsetScript(data=None):

    if data is None:
        data = {}

    worklist = readtxtfile('worklist')
    clusters = [x[0] for x in worklist]

    workdir = '/u/ki/dapple/nfs12/cosmos/simulations/clusters_2012-05-17-highdensity/'
    subdirs = ['%sBVRIZ' % x for x in ['', 'contam0p10/', 'contam0p20/']]
    concentration = 4.
    mradius = 1.5
    redshifts = cm.readClusterRedshifts()

    figs = []

    for subdir in subdirs:

        if subdir not in data:

            data[subdir] = {}

        curdata = data[subdir]

        if 'masses' not in curdata:

            curdata['masses'], errs, massgrid, curdata[
                'scale_radii'] = ss.readMLMasses(workdir, subdir, clusters)

        masses = curdata['masses']
        scale_radii = curdata['scale_radii']

        if 'grid' not in curdata:

            refmasses = {}

            for cluster in clusters:

                refmasses[cluster] = nfwutils.massInsideR(
                    scale_radii[cluster], concentration, redshifts[cluster],
                    mradius) * np.ones_like(masses[cluster])

            curdata['grid'], curdata['means'], curdata[
                'scatters'] = isg.intrinsicScatter(
                    refmasses,
                    masses,
                    means=1. + np.arange(-0.08, 0.08, 0.0001),
                    scatters=np.arange(0.005, 0.05, 0.0025))

            means = curdata['means']
            scatters = curdata['scatters']

            mode, (r68, r95) = isg.getdist_1d_hist(means[0],
                                                   means[1],
                                                   levels=[0.68, 0.95])
            curdata['meandist'] = (mode, r68, r95)

            mode, (r68, r95) = isg.getdist_1d_hist(scatters[0],
                                                   scatters[1],
                                                   levels=[0.68, 0.95])
            curdata['scatterdist'] = (mode, r68, r95)

        for varname in 'mean scatter'.split():

            mode, r68, r95 = curdata['%sdist' % varname]

            print mode, r68, r95

            print '%s\t%2.4f\t+%2.4f\t-%2.4f\t+%2.4f\t-%2.4f' % (
                varname, mode, r68[0][1] - mode, mode - r68[0][0],
                r95[0][1] - mode, mode - r95[0][0])

            x, prob = curdata['%ss' % varname]
            fig = isgp.plotdist_1d_hist(x, prob, mode, [r68[0], r95[0]])
            ax = fig.axes[0]
            ax.set_title('%s %s' % (subdir, varname))

            figs.append(fig)
            fig.show()

    return figs, data
Beispiel #3
0
def measureMLCcBootIS(sample='worklist', data=None, diffR=None):

    if data is None:
        data = {}

    if 'items' not in data:
        items = readtxtfile(sample)
        clusters = [x[0] for x in items]
        redshifts = readClusterRedshifts()
        properredshifts = np.array([redshifts[x] for x in clusters])

        data['items'] = items
        data['clusters'] = clusters
        data['redshifts'] = redshifts
        data['properredshifts'] = properredshifts
    else:
        items = data['items']
        clusters = data['clusters']
        redshifts = data['redshifts']
        properredshifts = data['properredshifts']

    if 'MLmasses' not in data or 'CCmasses' not in data:

        if diffR is None:

            if 'MLmasses' not in data:

                MLmasses, MLmask = readMLBootstraps(
                    '/u/ki/dapple/ki06/bootstrap_2012-05-17', items,
                    np.arange(0, 200))
                data['MLmasses'] = MLmasses
                data['MLmask'] = MLmask
            else:
                MLmasses, MLmask = data['MLmasses'], data['MLmask']

            if 'CCmasses' not in data:
                CCmasses, CCmask = readCCSummary(
                    '/u/ki/dapple/ki06/bootstrap_2012-05-17', clusters,
                    np.arange(0, 200))
                data['CCmasses'] = CCmasses
                data['CCmask'] = CCmask
            else:
                CCmasses, CCmask = data['CCmasses'], data['CCmask']

        else:

            print 'Using Alternative diffR'

            if 'MLmasses' not in data:

                MLmasses, MLmask = readMLBootstraps_diffR(
                    '/u/ki/dapple/ki06/bootstrap_2012-05-17', items,
                    np.arange(0, 200), diffR, redshifts)
                data['MLmasses'] = MLmasses
                data['MLmask'] = MLmask
            else:
                MLmasses, MLmask = data['MLmasses'], data['MLmask']

            if 'CCmasses' not in data:
                CCmasses, CCmask = readCCSummary_diffR(
                    '/u/ki/dapple/ki06/bootstrap_2012-05-17', clusters,
                    np.arange(0, 200), diffR, redshifts)
                data['CCmasses'] = CCmasses
                data['CCmask'] = CCmask
            else:
                CCmasses, CCmask = data['CCmasses'], data['CCmask']

        MLreduced = {}
        CCreduced = {}
        for key in MLmasses.keys():
            totalmask = np.logical_and(MLmask[key], CCmask[key])
            MLreduced[key] = MLmasses[key][totalmask]
            CCreduced[key] = CCmasses[key][totalmask]

        data['MLreduced'] = MLreduced
        data['CCreduced'] = CCreduced

    else:
        MLreduced, CCreduced = data['MLreduced'], data['CCreduced']

    grid, means, scatters = isg.intrinsicScatter(
        MLreduced,
        CCreduced,
        means=np.arange(0.5, 1.5, 0.002),
        scatters=np.arange(0.02, 0.2, 0.005))

    data['grid'] = grid
    data['means'] = means
    data['scatters'] = scatters

    figs = []

    print
    print
    print '-----'
    print 'var\tmode\t68%% +\t-\t95%% +\t-'
    print '-----'

    if 'meandist' not in data:

        means = data['means']
        scatters = data['scatters']

        mode, (r68, r95) = isg.getdist_1d_hist(means[0],
                                               means[1],
                                               levels=[0.68, 0.95])
        data['meandist'] = (mode, r68, r95)

        mode, (r68, r95) = isg.getdist_1d_hist(scatters[0],
                                               scatters[1],
                                               levels=[0.68, 0.95])
        data['scatterdist'] = (mode, r68, r95)

    for varname in 'mean scatter'.split():

        mode, r68, r95 = data['%sdist' % varname]

        print mode, r68, r95

        print '%s\t%2.4f\t+%2.4f\t-%2.4f\t+%2.4f\t-%2.4f' % (
            varname, mode, r68[0][1] - mode, mode - r68[0][0],
            r95[0][1] - mode, mode - r95[0][0])

        x, prob = data['%ss' % varname]
        fig = isgp.plotdist_1d_hist(x, prob, mode, [r68[0], r95[0]])
        ax = fig.axes[0]
        ax.set_title(varname)

        figs.append(fig)
        fig.show()

    return figs, data
Beispiel #4
0
def profileScript(items, curdata = None):

    clusters = [x[0] for x in items]


    if curdata is None:

        curdata = {}


    if 'norm' not in curdata and 'cut' not in curdata:

        normMass, normMask = cm.readCCSummary('/u/ki/dapple/ki06/bootstrap_5mpc_2012-02-14/', 
                                              clusters,np.arange(50),
                                              '_rm1.5_ri0.75_ro3.0.out')
        
        cutMass, cutMask = cm.readCCSummary('/u/ki/dapple/ki06/bootstrap_5mpc_2012-02-14/', 
                                            clusters, np.arange(50),
                                            '_bmo2_t2p0_rm1.5_ri0.75_ro3.0.out')

        
        reducedNorm = {}
        reducedCut = {}
        for cluster in normMass.keys():
            totalmask = np.logical_and(normMask[cluster], cutMask[cluster])
            reducedNorm[cluster] = normMass[cluster][totalmask]
            reducedCut[cluster] = cutMass[cluster][totalmask]

        curdata['norm'] = reducedNorm
        curdata['cut'] = reducedCut
        


    if 'grid' not in curdata:

        grid, means, scatters = isg.intrinsicScatter(curdata['norm'], curdata['cut'], scatters=np.arange(0.005, 0.05, 0.01))

        curdata['grid'] = grid
        curdata['means'] = means
        curdata['scatters'] = scatters




    print
    print
    print '-----'
    print 'var\tmode\t68%% +\t-\t95%% +\t-'
    print '-----'


    if 'meandist' not in curdata or 'scatterdist' not in curdata:

        means = curdata['means']
        scatters = curdata['scatters']
        
        mode, (r68, r95) = isg.getdist_1d_hist(means[0], means[1], levels = [0.68, 0.95])
        curdata['meandist'] = (mode, r68, r95)

        mode, (r68, r95) = isg.getdist_1d_hist(scatters[0], scatters[1], levels = [0.68, 0.95])
        curdata['scatterdist'] = (mode, r68, r95)


    figs = []

    for varname in 'mean scatter'.split():

        mode, r68, r95 = curdata['%sdist' % varname]

        print mode, r68, r95

        print '%s\t%2.4f\t+%2.4f\t-%2.4f\t+%2.4f\t-%2.4f' % (varname, mode, 
                                                             r68[0][1] - mode, mode - r68[0][0],
                                                             r95[0][1] - mode, mode - r95[0][0])

        x, prob = curdata['%ss' % varname]
        fig = isgp.plotdist_1d_hist(x, prob, mode, [r68[0], r95[0]])
        ax = fig.axes[0]
        ax.set_title(varname)

        figs.append(fig)
        fig.show()


    return figs, data
Beispiel #5
0
def radialScript(items, curdata = None):

    clusters = [x[0] for x in items]


    if curdata is None:

        curdata = {}

    
    

    

    if 'ir' not in curdata:

        curdata['ir'] = cm.readCCSummary('/u/ki/dapple/ki06/bootstrap_5mpc_2012-02-14/', 
                                         clusters,np.arange(50), '_rm1.5_ri0.75_ro3.0.out')
        

    if 'or' not in curdata:

        curdata['or'] = cm.readCCSummary('/u/ki/dapple/ki06/bootstrap_5mpc_2012-02-14/', 
                                         clusters,np.arange(50), '_rm1.5_ri0.75_ro5.0.out')


    if 'reducedIR' not in curdata or 'reducedOR' not in curdata:

        irMass, irMask = curdata['ir']
        orMass, orMask = curdata['or']

        reducedIR = {}
        reducedOR = {}

        for cluster in clusters:
            totalmask = np.logical_and(irMask[cluster], orMask[cluster])
            reducedIR[cluster] = irMass[cluster][totalmask]
            reducedOR[cluster] = orMass[cluster][totalmask]

            reducedIR[cluster][reducedIR[cluster] == 0.] = 1e13
            reducedOR[cluster][reducedOR[cluster] == 0.] = 1e13
            

        curdata['reducedIR'] = reducedIR
        curdata['reducedOR'] = reducedOR
        


    if 'grid' not in curdata:

        grid, means, scatters = isg.intrinsicScatter(curdata['reducedIR'], curdata['reducedOR'])

        curdata['grid'] = grid
        curdata['means'] = means
        curdata['scatters'] = scatters




    print
    print
    print '-----'
    print 'var\tmode\t68%% +\t-\t95%% +\t-'
    print '-----'


    if 'meandist' not in curdata:

        means = curdata['means']
        scatters = curdata['scatters']
        
        mode, (r68, r95) = isg.getdist_1d_hist(means[0], means[1], levels = [0.68, 0.95])
        curdata['meandist'] = (mode, r68, r95)

        mode, (r68, r95) = isg.getdist_1d_hist(scatters[0], scatters[1], levels = [0.68, 0.95])
        curdata['scatterdist'] = (mode, r68, r95)



    for varname in 'mean scatter'.split():

        mode, r68, r95 = curdata['%sdist' % varname]

        print mode, r68, r95

        print '%s\t%2.4f\t+%2.4f\t-%2.4f\t+%2.4f\t-%2.4f' % (varname, mode, 
                                                             r68[0][1] - mode, mode - r68[0][0],
                                                             r95[0][1] - mode, mode - r95[0][0])

        x, prob = curdata['%ss' % varname]
        fig = isgp.plotdist_1d_hist(x, prob, mode, [r68[0], r95[0]])
        ax = fig.axes[0]
        ax.set_title(varname)

        figs.append(fig)
        fig.show()


    return figs, data
Beispiel #6
0
def magSplit_script(category, data = None):

    figs = []

    if data is None:

        data = {}

    if 'items' not in data:

        data['items'] = readtxtfile('worklist')

#    try:

    loc1 = '%s/%s/low' % (trialsdir, category)
    loc2 = '%s/%s/high' % (trialsdir, category)

    if category not in data:

        
        masses = loadData(loc1, loc2,
                           data['items'])

        data[category] = {}
        data[category]['masses'] = masses

    curdata = data[category]


    if 'grid' not in curdata:

        grid, means, scatters = isg.intrinsicScatter(curdata['masses'][0], curdata['masses'][1], means = np.arange(0.6, 1.4, 0.002), scatters = np.arange(0.02, 0.2, 0.01))

        curdata['grid'] = grid
        curdata['means'] = means
        curdata['scatters'] = scatters

    else:

        grid = curdata['grid']
        means = curdata['means']
        scatters = curdata['scatters']

    print
    print
    print category
    print '-----'
    print 'var\tmode\t68%% +\t-\t95%% +\t-'
    print '-----'


    if 'meandist' not in curdata:

        mode, (r68, r95) = isg.getdist_1d_hist(means[0], means[1], levels = [0.68, 0.95])
        curdata['meandist'] = (mode, r68, r95)

        mode, (r68, r95) = isg.getdist_1d_hist(scatters[0], scatters[1], levels = [0.68, 0.95])
        curdata['scatterdist'] = (mode, r68, r95)



    for varname in 'mean scatter'.split():

        mode, r68, r95 = curdata['%sdist' % varname]

        print mode, r68, r95

        print '%s\t%2.4f\t+%2.4f\t-%2.4f\t+%2.4f\t-%2.4f' % (varname, mode, 
                                                             r68[0][1] - mode, mode - r68[0][0],
                                                             r95[0][1] - mode, mode - r95[0][0])

        x, prob = curdata['%ss' % varname]
        fig = isgp.plotdist_1d_hist(x, prob, mode, [r68[0], r95[0]])
        ax = fig.axes[0]
        ax.set_title(varname)

        figs.append(fig)
        fig.show()

    xlabel, ylabel = label_conv[category]
    fig, xmasses, ymasses = cm.publicationPlotMassMass(loc1, loc2, xlabel, ylabel)
    ax = fig.axes[0]

    mode, r68, r95 = curdata['meandist']

#    ax.axhline(mode, c='r', ls='--', linewidth=1.5)

    ax.fill_between([0.16, 0.72], r95[0][0], r95[0][1], facecolor=(1, 0.642, 0.610), zorder=-1)
    ax.fill_between([0.16, 0.72], r68[0][0], r68[0][1], facecolor='#CC0000', zorder=-1)
    ax.set_xlim(0.16, 0.72)
    ax.set_ylim(0.1, 10)

    fig.show()
    fig.savefig(filename_conv[category])
    figs.append(fig)
    

#    finally:
    
    return figs, data