Beispiel #1
0
def execute(dirpath, filename, name_suffix, prefab_locator_list, offset_matrix, used_parts, used_terrain_points):
    """Exports PIP file from given locator list.

    :param prefab_locator_list:
    :type prefab_locator_list: list of bpy.types.Object
    :param dirpath: directory export path
    :type dirpath: str
    :param filename: name of PIP file
    :type filename: str
    :param name_suffix: file name suffix
    :type name_suffix: str
    :param offset_matrix: offset matrix for locators
    :type offset_matrix: mathutils.Matrix
    :param used_parts: parts transitional structure for storing used parts inside this PIP export
    :type used_parts: io_scs_tools.exp.transition_structs.parts.PartsTrans
    :param used_terrain_points: terrain points transitional structure for accessing terrain points stored during PIM export
    :type used_terrain_points: io_scs_tools.exp.transition_structs.terrain_points.TerrainPntsTrans
    :return: True if successfull; otherwise False
    :rtype: bool
    """

    # CLEANUP CONNECTIONS DATA
    _connections_group_wrapper.cleanup_on_export()

    print("\n************************************")
    print("**      SCS PIP Exporter          **")
    print("**      (c)2015 SCS Software      **")
    print("************************************\n")

    (control_node_locs,
     nav_point_locs,
     sign_locs,
     spawn_point_locs,
     semaphore_locs,
     map_point_locs,
     trigger_point_locs) = __sort_locators_by_type__(prefab_locator_list)

    pip_header = Header(2, filename)
    pip_global = Globall()

    pip_nodes = OrderedDict()
    """:type: dict[int,Node]"""
    pip_curves = OrderedDict()
    """:type: dict[int, Curve]"""
    pip_signs = []
    """:type: list[Sign]"""
    pip_spawn_points = []
    """:type: list[SpawnPoint]"""
    pip_semaphores = []
    """:type: list[Semaphore]"""
    pip_map_points = OrderedDict()
    """:type: dict[str, MapPoint]"""
    pip_trigger_points = OrderedDict()
    """:type: dict[str, TriggerPoint]"""
    pip_intersections = [OrderedDict(), OrderedDict(), OrderedDict()]
    """:type: list[dict[str, list[Intersection]]]"""

    # nodes creation
    for locator in control_node_locs.values():

        locator_scs_props = locator.scs_props
        """:type: io_scs_tools.properties.object.ObjectSCSTools"""

        curr_node_i = int(locator_scs_props.locator_prefab_con_node_index)
        if curr_node_i not in pip_nodes:

            pos, rot, scale = _get_scs_transformation_components(offset_matrix.inverted() * locator.matrix_world)
            rot = Quaternion(rot) * Vector((0, 0, -1))

            # create node with position and direction
            cn = Node(curr_node_i, pos, rot)

            # add terrain points
            terrain_points = used_terrain_points.get(curr_node_i)
            for variant_i in terrain_points:

                # ensure variant entry for no terrain points case
                cn.ensure_variant(variant_i)

                for tp_entry in terrain_points[variant_i]:

                    cn.add_terrain_point(tp_entry.position, tp_entry.normal, variant_i)

            pip_nodes[curr_node_i] = cn
        else:
            lprint("W Multiple Control Nodes with same index detected, only one per index will be exported!\n\t   "
                   "Check Control Nodes in SCS Game Object with Root: %r", (filename,))

    # curves creation
    curves_dict = _connections_group_wrapper.get_curves(nav_point_locs.values())
    for key, curve_entry in curves_dict.items():

        loc0 = nav_point_locs[curves_dict[key].start]
        loc0_scs_props = loc0.scs_props
        """:type: io_scs_tools.properties.object.ObjectSCSTools"""
        loc1 = nav_point_locs[curves_dict[key].end]
        loc1_scs_props = loc1.scs_props
        """:type: io_scs_tools.properties.object.ObjectSCSTools"""

        # create curve and set properties
        curve = __get_curve__(pip_curves, curve_entry.index, loc0.name)

        pos, rot, scale = _get_scs_transformation_components(offset_matrix.inverted() * loc0.matrix_world)
        curve.set_start(pos, rot)
        pos, rot, scale = _get_scs_transformation_components(offset_matrix.inverted() * loc1.matrix_world)
        curve.set_end(pos, rot)

        curve.set_input_boundaries(loc0_scs_props)
        curve.set_output_boundaries(loc1_scs_props)

        curve.set_flags(loc0.scs_props, True)
        curve.set_flags(loc1.scs_props, False)

        curve.set_semaphore_id(int(loc0_scs_props.locator_prefab_np_traffic_semaphore))
        curve.set_traffic_rule(loc0_scs_props.locator_prefab_np_traffic_rule)

        # set next/prev curves
        for next_key in curve_entry.next_curves:

            next_curve = __get_curve__(pip_curves, curves_dict[next_key].index, curves_dict[next_key].start)

            assert curve.add_next_curve(next_curve)

        for prev_key in curve_entry.prev_curves:

            prev_curve = __get_curve__(pip_curves, curves_dict[prev_key].index, curves_dict[prev_key].start)

            assert curve.add_prev_curve(prev_curve)

        # sync nodes input lanes
        boundary_node_i = curve.get_input_node_index()
        if 0 <= boundary_node_i < _PL_consts.PREFAB_NODE_COUNT_MAX:

            if boundary_node_i in pip_nodes:

                assert pip_nodes[boundary_node_i].set_input_lane(curve.get_input_lane_index(), curve.get_index())

            else:

                lprint("E None existing Boundary Node with index: %s used in Navigation Point: %r",
                       (boundary_node_i, loc0.name,))

        # sync nodes output lanes
        boundary_node_i = curve.get_output_node_index()
        if 0 <= boundary_node_i < _PL_consts.PREFAB_NODE_COUNT_MAX:

            if boundary_node_i in pip_nodes:

                assert pip_nodes[boundary_node_i].set_output_lane(curve.get_output_lane_index(), curve.get_index())

            else:

                lprint("E None existing Boundary Node with index: %s used in Navigation Point: %r",
                       (boundary_node_i, loc1.name,))

    Curve.prepare_curves(pip_curves.values())

    # signs creation
    for locator in sign_locs.values():

        locator_scs_props = locator.scs_props
        """:type: io_scs_tools.properties.object.ObjectSCSTools"""

        # create sign and set properties
        sign = Sign(locator.name, used_parts.ensure_part(locator))

        pos, rot, scale = _get_scs_transformation_components(offset_matrix.inverted() * locator.matrix_world)
        sign.set_position(pos)
        sign.set_rotation(rot)

        if ":" in locator_scs_props.locator_prefab_sign_model:
            sign.set_model(locator_scs_props.locator_prefab_sign_model.split(":")[1].strip())
        else:
            lprint("W Invalid Sign Model: %r on locator: %r",
                   (locator_scs_props.locator_prefab_sign_model, locator.name))

        pip_signs.append(sign)

    # spawn points creation
    for locator in spawn_point_locs.values():

        locator_scs_props = locator.scs_props
        """:type: io_scs_tools.properties.object.ObjectSCSTools"""

        # create spawn point and set properties
        spawn_point = SpawnPoint(locator.name)

        pos, rot, scale = _get_scs_transformation_components(offset_matrix.inverted() * locator.matrix_world)
        spawn_point.set_position(pos)
        spawn_point.set_rotation(rot)

        spawn_point.set_type(int(locator_scs_props.locator_prefab_spawn_type))

        pip_spawn_points.append(spawn_point)

    # semaphores creation
    for locator in semaphore_locs.values():

        locator_scs_props = locator.scs_props
        """:type: io_scs_tools.properties.object.ObjectSCSTools"""

        # create semaphore and set properties
        semaphore = Semaphore(int(locator_scs_props.locator_prefab_tsem_type))

        pos, rot, scale = _get_scs_transformation_components(offset_matrix.inverted() * locator.matrix_world)
        semaphore.set_position(pos)
        semaphore.set_rotation(rot)

        semaphore.set_semaphore_id(int(locator_scs_props.locator_prefab_tsem_id))

        if ":" in locator_scs_props.locator_prefab_tsem_profile:
            semaphore.set_profile(locator_scs_props.locator_prefab_tsem_profile.split(":")[1].strip())
        else:
            lprint("W Invalid Profile: %r on Traffic Semaphore locator: %r",
                   (locator_scs_props.locator_prefab_tsem_profile, locator.name))

        semaphore.set_intervals((locator_scs_props.locator_prefab_tsem_gs,
                                 locator_scs_props.locator_prefab_tsem_os1,
                                 locator_scs_props.locator_prefab_tsem_rs,
                                 locator_scs_props.locator_prefab_tsem_os2))
        semaphore.set_cycle(locator_scs_props.locator_prefab_tsem_cyc_delay)

        pip_semaphores.append(semaphore)

    # map points creation
    for locator in map_point_locs.values():

        locator_scs_props = locator.scs_props
        """:type: io_scs_tools.properties.object.ObjectSCSTools"""

        # create map point and set properties
        map_point = __get_map_point__(pip_map_points, locator.name)

        pos, rot, scale = _get_scs_transformation_components(offset_matrix.inverted() * locator.matrix_world)
        map_point.set_position(pos)

        map_point.set_flags(locator_scs_props)

        for neighbour_name in _connections_group_wrapper.get_neighbours(locator):

            assert map_point.add_neighbour(__get_map_point__(pip_map_points, neighbour_name))

    MapPoint.calc_segment_extensions(pip_map_points.values())
    MapPoint.test_map_points(pip_map_points.values())
    MapPoint.auto_generate_map_points(pip_map_points, pip_nodes)

    # trigger points creation
    for locator in trigger_point_locs.values():

        locator_scs_props = locator.scs_props
        """:type: io_scs_tools.properties.object.ObjectSCSTools"""

        # create trigger point and set properties
        trigger_point = __get_trigger_point__(pip_trigger_points, locator.name)

        pos, rot, scale = _get_scs_transformation_components(offset_matrix.inverted() * locator.matrix_world)
        trigger_point.set_position(pos)

        if ":" in locator_scs_props.locator_prefab_tp_action:
            trigger_point.set_action(locator_scs_props.locator_prefab_tp_action.split(":")[1].strip())
        else:
            lprint("W Invalid Action: %r on Trigger Point locator: %r",
                   (locator_scs_props.locator_prefab_tp_action, locator.name))

        trigger_point.set_trigger_range(locator_scs_props.locator_prefab_tp_range)
        trigger_point.set_reset_delay(locator_scs_props.locator_prefab_tp_reset_delay)
        trigger_point.set_flags(locator_scs_props)

        for neighbour_name in _connections_group_wrapper.get_neighbours(locator):

            assert trigger_point.add_neighbour(__get_trigger_point__(pip_trigger_points, neighbour_name))

    TriggerPoint.prepare_trigger_points(pip_trigger_points.values())

    # intersections creation
    for c0_i, c0 in enumerate(sorted(pip_curves.values())):
        for c1_i, c1 in enumerate(sorted(pip_curves.values())):

            if c1_i <= c0_i:  # only search each pair of curves once
                continue

            # get the intersection point and curves coefficient positions
            intersect_p, c0_pos, c1_pos = Intersection.get_intersection(c0, c1)

            if intersect_p:

                intersect_p_str = str(intersect_p)  # Format: '<Vector (0.0000, 0.0000, 0.0000)>'

                is_start = c0_pos == 0 and c0_pos == c1_pos
                is_end = c1_pos == 1 and c0_pos == c1_pos
                is_split_sharp = False

                if is_start:
                    inter_type = 0  # fork
                elif is_end:
                    inter_type = 1  # joint
                else:
                    inter_type = 2  # cross

                    # if there is indication of cross intersection filter out intersections with common fork and joint
                    # NOTE: this condition might not be sufficient, so if anyone will have problems,
                    # this is the point that has to be improved
                    if Intersection.have_common_fork(c0, c1) or Intersection.have_common_joint(c0, c1):
                        continue

                # calculate radius for the same directions on curves
                forward_radius = Intersection.get_intersection_radius(c0, c1, c0_pos, c1_pos, 1, 1)
                backward_radius = Intersection.get_intersection_radius(c0, c1, c0_pos, c1_pos, -1, -1)
                final_radius = max(forward_radius, backward_radius)

                # special calculations only for cross intersections
                if inter_type == 2:

                    # calculate radius also for opposite directions
                    final_radius = max(final_radius, Intersection.get_intersection_radius(c0, c1, c0_pos, c1_pos, 1, -1))
                    final_radius = max(final_radius, Intersection.get_intersection_radius(c0, c1, c0_pos, c1_pos, -1, 1))

                    # calculate position of intersection point on curves with better precision
                    c0_pos = c0.get_closest_point(intersect_p)
                    c1_pos = c1.get_closest_point(intersect_p)

                    # calculate if split cross intersection is too sharp for allowing of smother traffic flow
                    c0_dir = c0.get_curve_tangent_at_position(c0_pos)
                    c1_dir = c1.get_curve_tangent_at_position(c1_pos)
                    is_split_sharp = c0_dir.dot(c1_dir) >= _PL_consts.CURVE_SPLIT_CROSS_DOT

                    lprint("D Found cross intersection point: %r", (intersect_p,))

                # creating intersection class instances
                intersection = Intersection(c0.get_index(), c0.get_ui_name(), c0_pos * c0.get_length())
                intersection1 = Intersection(c1.get_index(), c1.get_ui_name(), c1_pos * c1.get_length())

                # init list of intersections for current intersecting point
                if intersect_p_str not in pip_intersections[inter_type]:
                    pip_intersections[inter_type][intersect_p_str] = []

                # append intersections to list and calculate new siblings
                new_siblings = 2
                if intersection not in pip_intersections[inter_type][intersect_p_str]:
                    pip_intersections[inter_type][intersect_p_str].append(intersection)
                else:
                    del intersection
                    new_siblings -= 1

                if intersection1 not in pip_intersections[inter_type][intersect_p_str]:
                    pip_intersections[inter_type][intersect_p_str].append(intersection1)
                else:
                    del intersection1
                    new_siblings -= 1

                # always set flags on first entry in current intersection point list
                # this way siblings count is getting updated properly
                pip_intersections[inter_type][intersect_p_str][0].set_flags(is_start, is_end, is_split_sharp, new_siblings)

                # update radius on all of intersection in the same intersecting point
                for inter in pip_intersections[inter_type][intersect_p_str]:
                    inter.set_radius(pip_intersections[inter_type][intersect_p_str][0].get_radius())
                    inter.set_radius(final_radius)

    # create container
    pip_container = [pip_header.get_as_section(), pip_global.get_as_section()]

    for node in pip_nodes.values():
        pip_container.append(node.get_as_section())

    for curve_key in sorted(pip_curves):
        pip_container.append(pip_curves[curve_key].get_as_section())

    for sign in pip_signs:
        pip_container.append(sign.get_as_section())

    for spawn_point in pip_spawn_points:
        pip_container.append(spawn_point.get_as_section())

    for semaphore in pip_semaphores:
        pip_container.append(semaphore.get_as_section())

    for map_point in pip_map_points.values():
        pip_container.append(map_point.get_as_section())

    for trigger_point in pip_trigger_points.values():
        pip_container.append(trigger_point.get_as_section())

    for inter_type in range(3):
        for intersect_p_str in pip_intersections[inter_type]:
            for intersection in pip_intersections[inter_type][intersect_p_str]:
                pip_container.append(intersection.get_as_section())

    # write to file
    ind = "    "
    pip_filepath = path.join(dirpath, str(filename + ".pip" + name_suffix))
    result = _pix_container.write_data_to_file(pip_container, pip_filepath, ind)
    return result
Beispiel #2
0
def execute(dirpath, name_suffix, root_object, armature_object, skeleton_filepath, mesh_objects, model_locators,
            used_parts, used_materials, used_bones, used_terrain_points):
    """Executes export of PIM file for given data.
    :param dirpath: directory path for PIM file
    :type dirpath: str
    :param name_suffix: file name suffix
    :type name_suffix: str
    :param root_object: Blender SCS Root empty object
    :type root_object: bpy.types.Object
    :param armature_object: Blender Aramture object belonging to this SCS game object
    :type armature_object: bpy.types.Object
    :param skeleton_filepath: relative file path of PIS file
    :type skeleton_filepath: str
    :param mesh_objects: all the meshes which should be exported for current game object
    :type mesh_objects: list of bpy.types.Object
    :param model_locators: all Blender empty objecs which represents model locators and should be exported for current game object
    :type model_locators: list of bpy.types.Object
    :param used_parts: parts transitional structure for storing used parts inside this PIM export
    :type used_parts: io_scs_tools.exp.transition_structs.parts.PartsTrans
    :param used_materials: materials transitional structure for storing used materials inside this PIM export
    :type used_materials: io_scs_tools.exp.transition_structs.materials.MaterialsTrans
    :param used_bones: bones transitional structure for storing used bones inside this PIM export
    :type used_bones: io_scs_tools.exp.transition_structs.bones.BonesTrans
    :param used_terrain_points: terrain points transitional structure for storing used terrain points
    :type used_terrain_points: io_scs_tools.exp.transition_structs.terrain_points.TerrainPntsTrans
    :return: True if export was successfull; False otherwise
    :rtype: bool
    """

    print("\n************************************")
    print("**      SCS PIM.EF Exporter      **")
    print("**      (c)2017 SCS Software      **")
    print("************************************\n")

    scs_globals = _get_scs_globals()

    format_version = 1

    is_skin_used = (armature_object and root_object.scs_props.scs_root_animated == "anim")

    pim_header = Header("", format_version, root_object.name)
    pim_global = Globall(used_parts.count(), skeleton_filepath)

    pim_materials = collections.OrderedDict()  # dict of Material class instances representing used materials
    """:type: dict[str, Material]"""
    pim_pieces = []  # list of Piece class instances representing mesh pieces
    """:type: list[Piece]"""
    pim_parts = {}  # list of Part class instances representing used parts
    """:type: dict[str, Part]"""
    pim_locators = []  # list of Locator class instances representing model locators
    """:type: list[Locator]"""

    objects_with_default_material = {}  # stores object names which has no material set
    missing_mappings_data = {}  # indicates if material doesn't have set any uv layer for export

    bones = skin = skin_stream = None
    if is_skin_used:
        # create bones data section
        bones = Bones()
        for bone in armature_object.data.bones:
            bones.add_bone(bone.name)
            used_bones.add(bone.name)

        # create skin data section
        skin_stream = SkinStream(SkinStream.Types.POSITION)
        skin = Skin(skin_stream)

    # create mesh object data sections
    for mesh_obj in mesh_objects:

        vert_groups = mesh_obj.vertex_groups

        # calculate faces flip state from all ancestors of current object
        scale_sign = 1
        parent = mesh_obj
        while parent and parent.scs_props.empty_object_type != "SCS_Root":

            for scale_axis in parent.scale:
                scale_sign *= scale_axis

            parent = parent.parent

        winding_order = 1
        if scale_sign < 0:
            winding_order = -1

        # calculate transformation matrix for current object (root object transforms are always subtracted!)
        mesh_transf_mat = root_object.matrix_world.inverted() * mesh_obj.matrix_world
        """:type: mathutils.Matrix"""

        # calculate vertex position transformation matrix for this object
        pos_transf_mat = (Matrix.Scale(scs_globals.export_scale, 4) *
                          _scs_to_blend_matrix().inverted())
        """:type: mathutils.Matrix"""

        # calculate vertex normals transformation matrix for this object
        # NOTE: as normals will be read from none export prepared mesh we have to add rotation and scale from mesh transformation matrix
        _, rot, scale = mesh_transf_mat.decompose()
        scale_matrix_x = Matrix.Scale(scale.x, 3, Vector((1, 0, 0))).to_4x4()
        scale_matrix_y = Matrix.Scale(scale.y, 3, Vector((0, 1, 0))).to_4x4()
        scale_matrix_z = Matrix.Scale(scale.z, 3, Vector((0, 0, 1))).to_4x4()
        nor_transf_mat = (_scs_to_blend_matrix().inverted() *
                          rot.to_matrix().to_4x4() *
                          scale_matrix_x * scale_matrix_y * scale_matrix_z)
        """:type: mathutils.Matrix"""

        # get initial mesh and vertex groups for it
        mesh = _object_utils.get_mesh(mesh_obj)
        _mesh_utils.bm_prepare_mesh_for_export(mesh, mesh_transf_mat)

        # get extra mesh only for normals
        mesh_for_normals = _object_utils.get_mesh(mesh_obj)
        mesh_for_normals.calc_normals_split()

        missing_uv_layers = {}  # stores missing uvs specified by materials of this object
        missing_vcolor = False  # indicates if object is missing vertex color layer
        missing_vcolor_a = False  # indicates if object is missing vertex color alpha layer
        missing_skinned_verts = set()  # indicates if object is having only partial skin, which is not allowed in our models
        has_unnormalized_skin = False  # indicates if object has vertices which bones weight sum is smaller then one

        hard_edges = set()
        mesh_piece = Piece(len(pim_pieces))
        """:type: Piece"""
        for poly in mesh.polygons:

            mat_index = poly.material_index

            # check material existence and decide what material name and effect has to be used
            if mat_index >= len(mesh_obj.material_slots) or mesh_obj.material_slots[mat_index].material is None:  # no material or invalid index
                material = None
                pim_mat_name = "_default_material_-_default_settings_"
                pim_mat_effect = "eut2.dif"
                objects_with_default_material[mesh_obj.name] = 1
            else:
                material = mesh_obj.material_slots[mat_index].material
                pim_mat_name = material.name
                pim_mat_effect = material.scs_props.mat_effect_name

            # create new pim material if material with that name doesn't yet exists
            if pim_mat_name not in pim_materials:
                pim_material = Material(len(pim_materials), pim_mat_name, pim_mat_effect, material)
                pim_materials[pim_mat_name] = pim_material
                used_materials.add(pim_mat_name, material)

            piece_vert_indices = []
            vert_normals = []
            vert_uvs = []
            uvs_aliases = []
            uvs_names = collections.OrderedDict()
            vert_rgbas = []
            rgbas_names = collections.OrderedDict()
            tex_coord_alias_map = pim_materials[pim_mat_name].get_tex_coord_map()
            for loop_i in poly.loop_indices:

                loop = mesh.loops[loop_i]
                """:type: bpy.types.MeshLoop"""
                vert_i = loop.vertex_index

                # as we are already looping first find out if edge is hard and put it to set
                if mesh.edges[loop.edge_index].use_edge_sharp:
                    hard_edges.add(loop.edge_index)

                # get data of current vertex
                # 1. position -> mesh.vertices[loop.vertex_index].co
                position = tuple(pos_transf_mat * mesh.vertices[vert_i].co)

                # 2. normal -> loop.normal -> calc_normals_split() has to be called before
                normal = nor_transf_mat * mesh_for_normals.loops[loop_i].normal
                normal = tuple(Vector(normal).normalized())
                vert_normals.append(normal)

                # 3. uvs -> uv_lay = mesh.uv_layers[0].data; uv_lay[loop_i].uv
                uvs = []
                uvs_aliases = []
                if len(tex_coord_alias_map) < 1:  # no textures or none uses uv mapping in current material effect
                    uvs.append((0.0, 0.0))
                    uvs_names["generated"] = True
                    uvs_aliases.append(["_TEXCOORD0"])

                    # report missing mappings only on actual materials with textures using uv mappings
                    if material and pim_materials[pim_mat_name].uses_textures_with_uv():
                        if material.name not in missing_mappings_data:
                            missing_mappings_data[material.name] = {}

                        if mesh_obj.name not in missing_mappings_data[material.name]:
                            missing_mappings_data[material.name][mesh_obj.name] = 1
                else:

                    for uv_lay_name in mesh.uv_layers.keys():

                        uv_lay = mesh.uv_layers[uv_lay_name]
                        uvs.append(_change_to_scs_uv_coordinates(uv_lay.data[loop_i].uv))
                        uvs_names[uv_lay_name] = True

                        aliases = []
                        if uv_lay_name in tex_coord_alias_map:
                            for alias_index in tex_coord_alias_map[uv_lay_name]:
                                aliases.append("_TEXCOORD" + str(alias_index))

                        uvs_aliases.append(aliases)

                vert_uvs.append(uvs)

                # 4. vcol -> vcol_lay = mesh.vertex_colors[0].data; vcol_lay[loop_i].color
                rgbas = []
                vcol_multi = mesh_obj.data.scs_props.vertex_color_multiplier
                if _MESH_consts.default_vcol not in mesh.vertex_colors:  # get RGB component of RGBA
                    vcol = (1.0,) * 3
                    missing_vcolor = True
                else:
                    color = mesh.vertex_colors[_MESH_consts.default_vcol].data[loop_i].color
                    vcol = (color[0] * 2 * vcol_multi, color[1] * 2 * vcol_multi, color[2] * 2 * vcol_multi)

                if _MESH_consts.default_vcol + _MESH_consts.vcol_a_suffix not in mesh.vertex_colors:  # get A component of RGBA
                    vcol += (1.0,)
                    missing_vcolor_a = True
                else:
                    alpha = mesh.vertex_colors[_MESH_consts.default_vcol + _MESH_consts.vcol_a_suffix].data[loop_i].color
                    vcol += ((alpha[0] + alpha[1] + alpha[2]) / 3.0 * 2 * vcol_multi,)  # take avg of colors for alpha

                rgbas.append(vcol)
                rgbas_names[_MESH_consts.default_vcol] = True

                # export rest of the vertex colors too, but do not apply extra multiplies of SCS exporter
                # as rest of the layers are just artist layers
                for vcol_layer in mesh.vertex_colors:

                    # we already computed thoose so ignore them
                    if vcol_layer.name in [_MESH_consts.default_vcol, _MESH_consts.default_vcol + _MESH_consts.vcol_a_suffix]:
                        continue

                    color = vcol_layer.data[loop_i].color
                    vcol = (color[0], color[1], color[2], 1.0)

                    rgbas.append(vcol)
                    rgbas_names[vcol_layer.name] = True

                vert_rgbas.append(rgbas)

                # save internal vertex index to array to be able to construct triangle afterwards
                piece_vert_index = mesh_piece.add_vertex(vert_i, position)
                piece_vert_indices.append(piece_vert_index)

                if is_skin_used:
                    # get skinning data for vertex and save it to skin stream
                    bone_weights = {}
                    bone_weights_sum = 0
                    for v_group_entry in mesh.vertices[vert_i].groups:
                        bone_indx = bones.get_bone_index(vert_groups[v_group_entry.group].name)
                        bone_weight = v_group_entry.weight

                        # proceed only if bone exists in our armature
                        if bone_indx != -1:
                            bone_weights[bone_indx] = bone_weight
                            bone_weights_sum += bone_weight

                    skin_entry = SkinStream.Entry(mesh_piece.get_index(), piece_vert_index, position, bone_weights, bone_weights_sum)
                    skin_stream.add_entry(skin_entry)

                    # report un-skinned vertices (no bones or zero sum weight) or badly skinned model
                    if bone_weights_sum <= 0:
                        missing_skinned_verts.add(vert_i)
                    elif bone_weights_sum < 1:
                        has_unnormalized_skin = True

                # save to terrain points storage if present in correct vertex group
                for group in mesh.vertices[vert_i].groups:

                    # if current object doesn't have vertex group found in mesh data, then ignore that group
                    # This can happen if multiple objects are using same mesh and
                    # some of them have vertex groups, but others not.
                    if group.group >= len(mesh_obj.vertex_groups):
                        continue

                    curr_vg_name = mesh_obj.vertex_groups[group.group].name

                    # if vertex group name doesn't match prescribed one ignore this vertex group
                    if not match(_OP_consts.TerrainPoints.vg_name_regex, curr_vg_name):
                        continue

                    # if node index is not in bounds ignore this vertex group
                    node_index = int(curr_vg_name[-1])
                    if node_index >= _PL_consts.PREFAB_NODE_COUNT_MAX:
                        continue

                    # if no variants defined add globally (without variant block)
                    if len(root_object.scs_object_variant_inventory) == 0:
                        used_terrain_points.add(-1, node_index, position, normal)
                        continue

                    # finally iterate variant parts entries to find where this part is included
                    # and add terrain points to transitional structure
                    #
                    # NOTE: variant index is donated by direct order of variants in inventory
                    # so export in PIT has to use the same order otherwise variant
                    # indices will be misplaced
                    for variant_i, variant in enumerate(root_object.scs_object_variant_inventory):

                        used_terrain_points.ensure_entry(variant_i, node_index)

                        for variant_part in variant.parts:
                            if variant_part.name == mesh_obj.scs_props.scs_part and variant_part.include:

                                used_terrain_points.add(variant_i, node_index, position, normal)
                                break

            assert mesh_piece.add_face(pim_materials[pim_mat_name],
                                       tuple(piece_vert_indices[::winding_order * -1]),  # invert indices because of conversion to scs system
                                       tuple(vert_normals[::winding_order]),
                                       tuple(vert_uvs[::winding_order]),
                                       list(uvs_names.keys()),
                                       uvs_aliases,
                                       tuple(vert_rgbas[::winding_order]),
                                       list(rgbas_names.keys())
                                       )

        # as we captured all hard edges collect them now and put it into Piece
        for hard_edge in hard_edges:
            (vert1_i, vert2_i) = mesh.edges[hard_edge].vertices
            assert mesh_piece.add_edge(vert1_i, vert2_i, blender_mesh_indices=True)

        # free normals calculations and eventually remove mesh object
        _mesh_utils.cleanup_mesh(mesh)
        _mesh_utils.cleanup_mesh(mesh_for_normals)

        # create part if it doesn't exists yet
        part_name = mesh_obj.scs_props.scs_part
        if part_name not in pim_parts:
            pim_parts[part_name] = Part(part_name)

        # put pieces of current mesh to global list
        pim_pieces.append(mesh_piece)

        # add pieces of current mesh to part
        pim_part = pim_parts[part_name]
        pim_part.add_piece(mesh_piece)

        # report missing data for each object
        if len(missing_uv_layers) > 0:
            for uv_lay_name in missing_uv_layers:
                lprint("W Object '%s' is missing UV layer '%s' specified by materials: %s\n",
                       (mesh_obj.name, uv_lay_name, missing_uv_layers[uv_lay_name]))
        if missing_vcolor:
            lprint("W Object %r is missing vertex color layer with name %r! Default RGB color will be exported (0.5, 0.5, 0.5)!",
                   (mesh_obj.name, _MESH_consts.default_vcol))
        if missing_vcolor_a:
            lprint("W Object %r is missing vertex color alpha layer with name %r! Default alpha will be exported (0.5)",
                   (mesh_obj.name, _MESH_consts.default_vcol + _MESH_consts.vcol_a_suffix))
        if len(missing_skinned_verts) > 0:
            lprint("E Object %r from SCS Root %r has %s vertices which are not skinned to any bone, expect errors during conversion!",
                   (mesh_obj.name, root_object.name, len(missing_skinned_verts)))
        if has_unnormalized_skin:
            lprint("W Object %r from SCS Root %r has unormalized skinning, exporting normalized weights!\n\t   "
                   "You can normalize weights by selecting object & executing 'Normalize All Vertex Groups'.",
                   (mesh_obj.name, root_object.name))

    # report missing data for whole model
    if len(missing_mappings_data) > 0:
        for material_name in missing_mappings_data:
            lprint("W Material '%s' is missing mapping data! Objects using it are exported with default UV:\n\t   %s",
                   (material_name, list(missing_mappings_data[material_name].keys())))
    if len(objects_with_default_material) > 0:
        lprint("W Some objects don't use any material. Default material and UV mapping is used on them:\n\t   %s",
               (list(objects_with_default_material.keys()),))

    # create locators data sections
    for loc_obj in model_locators:

        pos, qua, sca = _get_scs_transformation_components(root_object.matrix_world.inverted() * loc_obj.matrix_world)

        if sca[0] * sca[1] * sca[2] < 0:
            lprint("W Model locator %r inside SCS Root Object %r not exported because of invalid scale.\n\t   " +
                   "Model locators must have positive scale!", (loc_obj.name, root_object.name))
            continue

        name = _name_utils.tokenize_name(loc_obj.name)
        hookup_string = loc_obj.scs_props.locator_model_hookup
        if hookup_string != "" and ":" in hookup_string:
            hookup = hookup_string.split(':', 1)[1].strip()
        else:
            if hookup_string != "":
                lprint("W The Hookup %r has no expected value!", hookup_string)
            hookup = None

        # create locator object for export
        locator = Locator(len(pim_locators), name, hookup)
        locator.set_position(pos)
        locator.set_rotation(qua)
        locator.set_scale(sca)

        # create part if it doesn't exists yet
        part_name = loc_obj.scs_props.scs_part
        if part_name not in pim_parts:
            assert used_parts.is_present(part_name)
            pim_parts[part_name] = Part(part_name)

        # add locator to part
        pim_part = pim_parts[part_name]
        pim_part.add_locator(locator)

        # add locator to locator list
        pim_locators.append(locator)

    # create container
    pim_container = [pim_header.get_as_section(), pim_global.get_as_section()]

    for mat_name in pim_materials:
        pim_container.append(pim_materials[mat_name].get_as_section())

    for pim_piece in pim_pieces:
        pim_container.append(pim_piece.get_as_section())

    for part_name in used_parts.get_as_list():

        # export all parts even empty ones gathered from PIC and PIP
        if part_name in pim_parts:
            pim_container.append(pim_parts[part_name].get_as_section())
        else:
            pim_container.append(Part(part_name).get_as_section())

    for locator in pim_locators:
        pim_container.append(locator.get_as_section())

    if is_skin_used:
        pim_container.append(bones.get_as_section())
        pim_container.append(skin.get_as_section())

    # write to file
    ind = "    "
    pim_filepath = os.path.join(dirpath, root_object.name + ".pim" + name_suffix)
    return _pix_container.write_data_to_file(pim_container, pim_filepath, ind)
Beispiel #3
0
def execute(dirpath, root_object, armature_object, skeleton_filepath, mesh_objects, model_locators,
            used_parts, used_materials, used_bones, used_terrain_points):
    """Executes export of PIM file for given data.
    :param dirpath: directory path for PIM file
    :type dirpath: str
    :param root_object: Blender SCS Root empty object
    :type root_object: bpy.types.Object
    :param armature_object: Blender Aramture object belonging to this SCS game object
    :type armature_object: bpy.types.Object
    :param skeleton_filepath: relative file path of PIS file
    :type skeleton_filepath: str
    :param mesh_objects: all the meshes which should be exported for current game object
    :type mesh_objects: list of bpy.types.Object
    :param model_locators: all Blender empty objecs which represents model locators and should be exported for current game object
    :type model_locators: list of bpy.types.Object
    :param used_parts: parts transitional structure for storing used parts inside this PIM export
    :type used_parts: io_scs_tools.exp.transition_structs.parts.PartsTrans
    :param used_materials: materials transitional structure for storing used materials inside this PIM export
    :type used_materials: io_scs_tools.exp.transition_structs.materials.MaterialsTrans
    :param used_bones: bones transitional structure for storing used bones inside this PIM export
    :type used_bones: io_scs_tools.exp.transition_structs.bones.BonesTrans
    :param used_terrain_points: terrain points transitional structure for storing used terrain points
    :type used_terrain_points: io_scs_tools.exp.transition_structs.terrain_points.TerrainPntsTrans
    :return: True if export was successfull; False otherwise
    :rtype: bool
    """

    print("\n************************************")
    print("**      SCS PIM Exporter          **")
    print("**      (c)2015 SCS Software      **")
    print("************************************\n")

    scs_globals = _get_scs_globals()

    if scs_globals.output_type == "5":
        format_version = 5
        format_type = ""
    else:
        format_version = 1
        format_type = "def"

    is_skin_used = (armature_object and root_object.scs_props.scs_root_animated == "anim")

    pim_header = Header(format_type, format_version, root_object.name)
    pim_global = Globall(skeleton_filepath)

    pim_materials = collections.OrderedDict()  # dict of Material class instances representing used materials
    """:type: dict[str, Material]"""
    pim_pieces = []  # list of Piece class instances representing mesh pieces
    """:type: list[Piece]"""
    pim_parts = {}  # list of Part class instances representing used parts
    """:type: dict[str, Part]"""
    pim_locators = []  # list of Locator class instances representing model locators
    """:type: list[Locator]"""

    objects_with_default_material = {}  # stores object names which has no material set
    missing_mappings_data = {}  # indicates if material doesn't have set any uv layer for export

    bones = skin = skin_stream = None
    if is_skin_used:
        # create bones data section
        bones = Bones()
        for bone in armature_object.data.bones:
            bones.add_bone(bone.name)
            used_bones.add(bone.name)

        # create skin data section
        skin_stream = SkinStream(SkinStream.Types.POSITION)
        skin = Skin(skin_stream)

    # create mesh object data sections
    for mesh_obj in mesh_objects:

        vert_groups = mesh_obj.vertex_groups

        mesh_pieces = collections.OrderedDict()

        # calculate faces flip state from all ancestors of current object
        scale_sign = 1
        parent = mesh_obj
        while parent and parent.scs_props.empty_object_type != "SCS_Root":

            for scale_axis in parent.scale:
                scale_sign *= scale_axis

            parent = parent.parent

        face_flip = scale_sign < 0

        # calculate transformation matrix for current object (root object transforms are always subtracted!)
        mesh_transf_mat = root_object.matrix_world.inverted() * mesh_obj.matrix_world

        # calculate transformation matrices for this object
        pos_transf_mat = (Matrix.Scale(scs_globals.export_scale, 4) *
                          _scs_to_blend_matrix().inverted())

        nor_transf_mat = _scs_to_blend_matrix().inverted()

        # get initial mesh and vertex groups for it
        mesh = _object_utils.get_mesh(mesh_obj)
        _mesh_utils.bm_prepare_mesh_for_export(mesh, mesh_transf_mat, face_flip)
        mesh.calc_normals_split()

        missing_uv_layers = {}  # stores missing uvs specified by materials of this object
        missing_vcolor = False  # indicates if object is missing vertex color layer
        missing_vcolor_a = False  # indicates if object is missing vertex color alpha layer

        for poly in mesh.polygons:

            mat_index = poly.material_index

            # check material existence and decide what material name and effect has to be used
            if mat_index >= len(mesh_obj.material_slots) or mesh_obj.material_slots[mat_index].material is None:  # no material or invalid index
                material = None
                pim_mat_name = "_not_existing_material_"
                pim_mat_effect = "eut2.dif"
                objects_with_default_material[mesh_obj.name] = 1
            else:
                material = mesh_obj.material_slots[mat_index].material
                pim_mat_name = material.name
                pim_mat_effect = material.scs_props.mat_effect_name

            # create new pim material if material with that name doesn't yet exists
            if pim_mat_name not in pim_materials:
                pim_material = Material(len(pim_materials), pim_mat_name, pim_mat_effect, material)
                pim_materials[pim_mat_name] = pim_material
                used_materials.add(pim_mat_name, material)

            # create new piece if piece with this material doesn't exists yet -> split to pieces by material
            if pim_mat_name not in mesh_pieces:
                mesh_pieces[pim_mat_name] = Piece(len(pim_pieces) + len(mesh_pieces), pim_materials[pim_mat_name])

                nmap_uv_layer = pim_materials[pim_mat_name].get_nmap_uv_name()
                if nmap_uv_layer:  # if there is uv layer used for normal maps then calculate tangents on it
                    mesh.calc_tangents(uvmap=nmap_uv_layer)

            mesh_piece = mesh_pieces[pim_mat_name]
            """:type: Piece"""

            piece_vert_indices = []
            for loop_i in poly.loop_indices:

                loop = mesh.loops[loop_i]
                """:type: bpy.types.MeshLoop"""
                vert_i = loop.vertex_index

                # get data of current vertex
                # 1. position -> mesh.vertices[loop.vertex_index].co
                position = tuple(pos_transf_mat * mesh.vertices[vert_i].co)

                # 2. normal -> loop.normal -> calc_normals_split() has to be called before
                normal = nor_transf_mat * loop.normal
                normal = tuple(Vector(normal).normalized())

                # 3. uvs -> uv_lay = mesh.uv_layers[0].data; uv_lay[loop_i].uv
                uvs = []
                uvs_aliases = []
                tex_coord_alias_map = pim_materials[pim_mat_name].get_tex_coord_map()
                if len(tex_coord_alias_map) < 1:  # no textures or none uses uv mapping in current material effect
                    uvs.append((0.0, 0.0))
                    uvs_aliases.append(["_TEXCOORD0"])

                    # report missing mappings only on actual materials with textures using uv mappings
                    if material and pim_materials[pim_mat_name].uses_textures_with_uv():
                        if material.name not in missing_mappings_data:
                            missing_mappings_data[material.name] = {}

                        if mesh_obj.name not in missing_mappings_data[material.name]:
                            missing_mappings_data[material.name][mesh_obj.name] = 1

                else:
                    for uv_lay_name in tex_coord_alias_map:

                        if uv_lay_name not in mesh.uv_layers:
                            uvs.append((0.0, 0.0))

                            # properly report missing uv layers where name of uv layout is key and materials that misses it are values
                            if uv_lay_name not in missing_uv_layers:
                                missing_uv_layers[uv_lay_name] = []

                            if pim_mat_name not in missing_uv_layers[uv_lay_name]:  # add material if not already there
                                missing_uv_layers[uv_lay_name].append(pim_mat_name)
                        else:
                            uv_lay = mesh.uv_layers[uv_lay_name]
                            uvs.append(_change_to_scs_uv_coordinates(uv_lay.data[loop_i].uv))

                        aliases = []
                        for alias_index in tex_coord_alias_map[uv_lay_name]:
                            aliases.append("_TEXCOORD" + str(alias_index))

                        uvs_aliases.append(aliases)

                # 4. vcol -> vcol_lay = mesh.vertex_colors[0].data; vcol_lay[loop_i].color
                vcol_multi = mesh_obj.data.scs_props.vertex_color_multiplier
                if _MESH_consts.default_vcol not in mesh.vertex_colors:  # get RGB component of RGBA
                    vcol = (1.0,) * 3
                    missing_vcolor = True
                else:
                    color = mesh.vertex_colors[_MESH_consts.default_vcol].data[loop_i].color
                    vcol = (color[0] * 2 * vcol_multi, color[1] * 2 * vcol_multi, color[2] * 2 * vcol_multi)

                if _MESH_consts.default_vcol + _MESH_consts.vcol_a_suffix not in mesh.vertex_colors:  # get A component of RGBA
                    vcol += (1.0,)
                    missing_vcolor_a = True
                else:
                    alpha = mesh.vertex_colors[_MESH_consts.default_vcol + _MESH_consts.vcol_a_suffix].data[loop_i].color
                    vcol += ((alpha[0] + alpha[1] + alpha[2]) / 3.0 * 2 * vcol_multi,)  # take avg of colors for alpha

                # 5. tangent -> loop.tangent; loop.bitangent_sign -> calc_tangents() has to be called before
                if pim_materials[pim_mat_name].get_nmap_uv_name():  # calculate tangents only if needed
                    tangent = tuple(nor_transf_mat * loop.tangent)
                    tangent = tuple(Vector(tangent).normalized())
                    tangent = (tangent[0], tangent[1], tangent[2], loop.bitangent_sign)
                else:
                    tangent = None

                # save internal vertex index to array to be able to construct triangle afterwards
                piece_vert_index = mesh_piece.add_vertex(vert_i, position, normal, uvs, uvs_aliases, vcol, tangent)
                piece_vert_indices.append(piece_vert_index)

                if is_skin_used:
                    # get skinning data for vertex and save it to skin stream
                    bone_weights = {}
                    for v_group_entry in mesh.vertices[vert_i].groups:
                        bone_indx = bones.get_bone_index(vert_groups[v_group_entry.group].name)
                        bone_weight = v_group_entry.weight

                        # proceed only if bone exists in our armature
                        if bone_indx != -1:
                            bone_weights[bone_indx] = bone_weight

                    skin_entry = SkinStream.Entry(mesh_piece.get_index(), piece_vert_index, position, bone_weights)
                    skin_stream.add_entry(skin_entry)

                # save to terrain points storage if present in correct vertex group
                for group in mesh.vertices[vert_i].groups:

                    curr_vg_name = mesh_obj.vertex_groups[group.group].name

                    # if vertex group name doesn't match prescribed one ignore this vertex group
                    if not match(_OP_consts.TerrainPoints.vg_name_regex, curr_vg_name):
                        continue

                    # if node index is not in bounds ignore this vertex group
                    node_index = int(curr_vg_name[-1])
                    if node_index >= _PL_consts.PREFAB_NODE_COUNT_MAX:
                        continue

                    # if no variants defined add globally (without variant block)
                    if len(root_object.scs_object_variant_inventory) == 0:
                        used_terrain_points.add(-1, node_index, position, normal)
                        continue

                    # finally iterate variant parts entries to find where this part is included
                    # and add terrain points to transitional structure
                    #
                    # NOTE: variant index is donated by direct order of variants in inventory
                    # so export in PIT has to use the same order otherwise variant
                    # indices will be misplaced
                    for variant_i, variant in enumerate(root_object.scs_object_variant_inventory):

                        used_terrain_points.ensure_entry(variant_i, node_index)

                        for variant_part in variant.parts:
                            if variant_part.name == mesh_obj.scs_props.scs_part and variant_part.include:

                                used_terrain_points.add(variant_i, node_index, position, normal)
                                break

            mesh_piece.add_triangle(tuple(piece_vert_indices[::-1]))  # invert indices because of normals flip

        # free normals calculations
        _mesh_utils.cleanup_mesh(mesh)

        # create part if it doesn't exists yet
        part_name = mesh_obj.scs_props.scs_part
        if part_name not in pim_parts:
            pim_parts[part_name] = Part(part_name)

        mesh_pieces = mesh_pieces.values()
        for piece in mesh_pieces:
            # put pieces of current mesh to global list
            pim_pieces.append(piece)

            # add pieces of current mesh to part
            pim_part = pim_parts[part_name]
            pim_part.add_piece(piece)

        # report missing data for each object
        if len(missing_uv_layers) > 0:
            for uv_lay_name in missing_uv_layers:
                lprint("W Object '%s' is missing UV layer '%s' specified by materials: %s\n",
                       (mesh_obj.name, uv_lay_name, missing_uv_layers[uv_lay_name]))
        if missing_vcolor:
            lprint("W Object %r is missing vertex color layer with name %r! Default RGB color will be exported (0.5, 0.5, 0.5)!",
                   (mesh_obj.name, _MESH_consts.default_vcol))
        if missing_vcolor_a:
            lprint("W Object %r is missing vertex color alpha layer with name %r! Default alpha will be exported (0.5)",
                   (mesh_obj.name, _MESH_consts.default_vcol + _MESH_consts.vcol_a_suffix))

    # report missing data for whole model
    if len(missing_mappings_data) > 0:
        for material_name in missing_mappings_data:
            lprint("W Material '%s' is missing mapping data! Objects using it are exported with default UV:\n\t   %s",
                   (material_name, list(missing_mappings_data[material_name].keys())))
    if len(objects_with_default_material) > 0:
        lprint("W Some objects don't use any material. Default material and UV mapping is used on them:\n\t   %s",
               (list(objects_with_default_material.keys()),))

    # create locators data sections
    for loc_obj in model_locators:

        pos, qua, sca = _get_scs_transformation_components(root_object.matrix_world.inverted() * loc_obj.matrix_world)

        if sca[0] * sca[1] * sca[2] < 0:
            lprint("W Model locator %r inside SCS Root Object %r not exported because of invalid scale.\n\t   " +
                   "Model locators must have positive scale!", (loc_obj.name, root_object.name))
            continue

        name = _name_utils.tokenize_name(loc_obj.name)
        hookup_string = loc_obj.scs_props.locator_model_hookup
        if hookup_string != "" and ":" in hookup_string:
            hookup = hookup_string.split(':', 1)[1].strip()
        else:
            if hookup_string != "":
                lprint("W The Hookup %r has no expected value!", hookup_string)
            hookup = None

        # create locator object for export
        locator = Locator(len(pim_locators), name, hookup)
        locator.set_position(pos)
        locator.set_rotation(qua)
        locator.set_scale(sca)

        # create part if it doesn't exists yet
        part_name = loc_obj.scs_props.scs_part
        if part_name not in pim_parts:
            pim_parts[part_name] = Part(part_name)

        # add locator to part
        pim_part = pim_parts[part_name]
        pim_part.add_locator(locator)

        # add locator to locator list
        pim_locators.append(locator)

    # create container
    pim_container = [pim_header.get_as_section(), pim_global.get_as_section()]

    for mat_name in pim_materials:
        pim_container.append(pim_materials[mat_name].get_as_section())

    for pim_piece in pim_pieces:
        pim_container.append(pim_piece.get_as_section())

    for part_name in used_parts.get_as_list():

        # export all parts even empty ones gathered from PIC and PIP
        if part_name in pim_parts:
            pim_container.append(pim_parts[part_name].get_as_section())
        else:
            pim_container.append(Part(part_name).get_as_section())

    for locator in pim_locators:
        pim_container.append(locator.get_as_section())

    if is_skin_used:
        pim_container.append(bones.get_as_section())
        pim_container.append(skin.get_as_section())

    # write to file
    ind = "    "
    pim_filepath = os.path.join(dirpath, root_object.name + ".pim")
    return _pix_container.write_data_to_file(pim_container, pim_filepath, ind)
Beispiel #4
0
def execute(dirpath, name_suffix, root_object, armature_object,
            skeleton_filepath, mesh_objects, model_locators, used_parts,
            used_materials, used_bones, used_terrain_points):
    """Executes export of PIM file for given data.
    :param dirpath: directory path for PIM file
    :type dirpath: str
    :param name_suffix: file name suffix
    :type name_suffix: str
    :param root_object: Blender SCS Root empty object
    :type root_object: bpy.types.Object
    :param armature_object: Blender Aramture object belonging to this SCS game object
    :type armature_object: bpy.types.Object
    :param skeleton_filepath: relative file path of PIS file
    :type skeleton_filepath: str
    :param mesh_objects: all the meshes which should be exported for current game object
    :type mesh_objects: list of bpy.types.Object
    :param model_locators: all Blender empty objecs which represents model locators and should be exported for current game object
    :type model_locators: list of bpy.types.Object
    :param used_parts: parts transitional structure for storing used parts inside this PIM export
    :type used_parts: io_scs_tools.exp.transition_structs.parts.PartsTrans
    :param used_materials: materials transitional structure for storing used materials inside this PIM export
    :type used_materials: io_scs_tools.exp.transition_structs.materials.MaterialsTrans
    :param used_bones: bones transitional structure for storing used bones inside this PIM export
    :type used_bones: io_scs_tools.exp.transition_structs.bones.BonesTrans
    :param used_terrain_points: terrain points transitional structure for storing used terrain points
    :type used_terrain_points: io_scs_tools.exp.transition_structs.terrain_points.TerrainPntsTrans
    :return: True if export was successfull; False otherwise
    :rtype: bool
    """

    print("\n************************************")
    print("**      SCS PIM Exporter          **")
    print("**      (c)2017 SCS Software      **")
    print("************************************\n")

    scs_globals = _get_scs_globals()

    format_version = 5

    is_skin_used = (armature_object
                    and root_object.scs_props.scs_root_animated == "anim")

    pim_header = Header("", format_version, root_object.name)
    pim_global = Globall(used_parts.count(), skeleton_filepath)

    pim_materials = collections.OrderedDict(
    )  # dict of Material class instances representing used materials
    """:type: dict[str, Material]"""
    pim_pieces = []  # list of Piece class instances representing mesh pieces
    """:type: list[Piece]"""
    pim_parts = {}  # list of Part class instances representing used parts
    """:type: dict[str, Part]"""
    pim_locators = [
    ]  # list of Locator class instances representing model locators
    """:type: list[Locator]"""

    objects_with_default_material = {
    }  # stores object names which has no material set
    missing_mappings_data = {
    }  # indicates if material doesn't have set any uv layer for export
    invalid_objects_for_tangents = set(
    )  # stores object names which tangents calculation failed because of N-gons existence

    bones = skin = skin_stream = None
    if is_skin_used:

        invalid_bone_names = set(
        )  # set for saving bones with invalid names, they are used for reporting to user

        # create bones data section
        bones = Bones()
        for bone in armature_object.data.bones:
            bones.add_bone(bone.name)
            used_bones.add(bone.name)

            # do bones name checks
            if _name_utils.tokenize_name(bone.name) != bone.name:
                invalid_bone_names.add(bone.name)

        # create skin data section
        skin_stream = SkinStream(SkinStream.Types.POSITION)
        skin = Skin(skin_stream)

        # report invalid bone names
        if len(invalid_bone_names) > 0:
            lprint(
                "W Invalid bone names detected, max. length of valid bone name is 12 and must consists from [a-z, 0-9 and _ ] characters.\n\t   "
                "Conversion will generalize names, however expect problems by re-import! List of invalid bone names for %r:\n\t   "
                "%r", (armature_object.name, list(invalid_bone_names)))

    # create mesh object data sections
    for mesh_obj in mesh_objects:

        lprint("I Preparing mesh object: %r ...", (mesh_obj.name, ))

        vert_groups = mesh_obj.vertex_groups

        mesh_pieces = collections.OrderedDict()

        # calculate faces flip state from all ancestors of current object
        scale_sign = 1
        parent = mesh_obj
        while parent and parent.scs_props.empty_object_type != "SCS_Root":

            for scale_axis in parent.scale:
                scale_sign *= scale_axis

            parent = parent.parent

        face_flip = scale_sign < 0

        # calculate transformation matrix for current object (root object transforms are always subtracted!)
        mesh_transf_mat = root_object.matrix_world.inverted(
        ) * mesh_obj.matrix_world
        """:type: mathutils.Matrix"""

        # calculate vertex position transformation matrix for this object
        pos_transf_mat = (Matrix.Scale(scs_globals.export_scale, 4) *
                          _scs_to_blend_matrix().inverted())
        """:type: mathutils.Matrix"""

        # calculate vertex normals transformation matrix for this object
        # NOTE: as normals will be read from none export prepared mesh we have to add rotation and scale from mesh transformation matrix
        _, rot, scale = mesh_transf_mat.decompose()
        scale_matrix_x = Matrix.Scale(scale.x, 3, Vector((1, 0, 0))).to_4x4()
        scale_matrix_y = Matrix.Scale(scale.y, 3, Vector((0, 1, 0))).to_4x4()
        scale_matrix_z = Matrix.Scale(scale.z, 3, Vector((0, 0, 1))).to_4x4()
        nor_transf_mat = (_scs_to_blend_matrix().inverted() *
                          rot.to_matrix().to_4x4() * scale_matrix_x *
                          scale_matrix_y * scale_matrix_z)
        """:type: mathutils.Matrix"""

        tangent_transf_mat = _scs_to_blend_matrix().inverted()
        """:type: mathutils.Matrix"""

        # get initial mesh & extra copy of the mesh for normals
        mesh = _object_utils.get_mesh(mesh_obj)
        mesh_for_normals = mesh.copy()

        # prepare meshes
        faces_mapping = _mesh_utils.bm_prepare_mesh_for_export(
            mesh, mesh_transf_mat, triangulate=True)
        mesh_for_normals.calc_normals_split()

        missing_uv_layers = {
        }  # stores missing uvs specified by materials of this object
        missing_vcolor = False  # indicates if object is missing vertex color layer
        missing_vcolor_a = False  # indicates if object is missing vertex color alpha layer
        missing_skinned_verts = set(
        )  # indicates if object is having only partial skin, which is not allowed in our models
        has_unnormalized_skin = False  # indicates if object has vertices which bones weight sum is smaller then one

        for poly in mesh.polygons:

            mat_index = poly.material_index

            # check material existence and decide what material name and effect has to be used
            if mat_index >= len(
                    mesh_obj.material_slots
            ) or mesh_obj.material_slots[
                    mat_index].material is None:  # no material or invalid index
                material = None
                pim_mat_name = "_default_material_-_default_settings_"
                pim_mat_effect = "eut2.dif"
                objects_with_default_material[mesh_obj.name] = 1
            else:
                material = mesh_obj.material_slots[mat_index].material
                pim_mat_name = material.name
                pim_mat_effect = material.scs_props.mat_effect_name

            # create new pim material if material with that name doesn't yet exists
            if pim_mat_name not in pim_materials:
                pim_material = Material(len(pim_materials), pim_mat_name,
                                        pim_mat_effect, material)
                pim_materials[pim_mat_name] = pim_material
                used_materials.add(pim_mat_name, material)

            # create new piece if piece with this material doesn't exists yet -> split to pieces by material
            if pim_mat_name not in mesh_pieces:
                mesh_pieces[pim_mat_name] = Piece(
                    len(pim_pieces) + len(mesh_pieces),
                    pim_materials[pim_mat_name])

                nmap_uv_layer = pim_materials[pim_mat_name].get_nmap_uv_name()
                # if there is uv layer used for normal maps and that uv layer exists on mesh then calculate tangents on it otherwise report warning
                if nmap_uv_layer:

                    if nmap_uv_layer in mesh.uv_layers:
                        try:
                            mesh.calc_tangents(uvmap=nmap_uv_layer)
                        except RuntimeError:
                            invalid_objects_for_tangents.add(mesh_obj.name)
                    else:
                        lprint(
                            "W Unable to calculate normal map tangents for object %r,\n\t   "
                            "as it's missing UV layer with name: %r, expect problems!",
                            (mesh_obj.name, nmap_uv_layer))

            mesh_piece = mesh_pieces[pim_mat_name]
            """:type: Piece"""

            # get polygon loop indices for normals depending on mapped triangulated face
            if poly.index in faces_mapping:
                normals_poly_loop_indices = list(mesh_for_normals.polygons[
                    faces_mapping[poly.index]].loop_indices)
            else:
                normals_poly_loop_indices = list(
                    mesh_for_normals.polygons[poly.index].loop_indices)

            # vertex data
            triangle_pvert_indices = [
            ]  # storing vertex indices for this polygon triangle
            for loop_i in poly.loop_indices:

                loop = mesh.loops[loop_i]
                """:type: bpy.types.MeshLoop"""
                vert_i = loop.vertex_index

                # get data of current vertex
                # 1. position -> mesh.vertices[loop.vertex_index].co
                position = tuple(pos_transf_mat * mesh.vertices[vert_i].co)

                # 2. normal -> mesh_for_normals.loops[loop_i].normal -> calc_normals_split() has to be called before
                normal = (0, 0, 0)
                for i, normals_poly_loop_i in enumerate(
                        normals_poly_loop_indices):
                    normal_loop = mesh_for_normals.loops[normals_poly_loop_i]

                    # match by vertex index as triangle will for sure have three unique vertices
                    if vert_i == normal_loop.vertex_index:
                        normal = nor_transf_mat * normal_loop.normal
                        normal = tuple(Vector(normal).normalized())
                        del normals_poly_loop_indices[i]
                        break
                else:
                    lprint(
                        "E Normals data gathering went wrong, expect corrupted mesh! Shouldn't happen..."
                    )

                # 3. uvs -> uv_lay = mesh.uv_layers[0].data; uv_lay[loop_i].uv
                uvs = []
                uvs_aliases = []
                tex_coord_alias_map = pim_materials[
                    pim_mat_name].get_tex_coord_map()
                if len(
                        tex_coord_alias_map
                ) < 1:  # no textures or none uses uv mapping in current material effect
                    uvs.append((0.0, 0.0))
                    uvs_aliases.append(["_TEXCOORD0"])

                    # report missing mappings only on actual materials with textures using uv mappings
                    if material and pim_materials[
                            pim_mat_name].uses_textures_with_uv():
                        if material.name not in missing_mappings_data:
                            missing_mappings_data[material.name] = {}

                        if mesh_obj.name not in missing_mappings_data[
                                material.name]:
                            missing_mappings_data[material.name][
                                mesh_obj.name] = 1

                else:
                    for uv_lay_name in tex_coord_alias_map:

                        if uv_lay_name not in mesh.uv_layers:
                            uvs.append((0.0, 0.0))

                            # properly report missing uv layers where name of uv layout is key and materials that misses it are values
                            if uv_lay_name not in missing_uv_layers:
                                missing_uv_layers[uv_lay_name] = []

                            if pim_mat_name not in missing_uv_layers[
                                    uv_lay_name]:  # add material if not already there
                                missing_uv_layers[uv_lay_name].append(
                                    pim_mat_name)
                        else:
                            uv_lay = mesh.uv_layers[uv_lay_name]
                            uvs.append(
                                _change_to_scs_uv_coordinates(
                                    uv_lay.data[loop_i].uv))

                        aliases = []
                        for alias_index in tex_coord_alias_map[uv_lay_name]:
                            aliases.append("_TEXCOORD" + str(alias_index))

                        uvs_aliases.append(aliases)

                # 4. vcol -> vcol_lay = mesh.vertex_colors[0].data; vcol_lay[loop_i].color
                vcol_multi = mesh_obj.data.scs_props.vertex_color_multiplier
                if _MESH_consts.default_vcol not in mesh.vertex_colors:  # get RGB component of RGBA
                    vcol = (1.0, ) * 3
                    missing_vcolor = True
                else:
                    color = mesh.vertex_colors[
                        _MESH_consts.default_vcol].data[loop_i].color
                    vcol = (color[0] * 2 * vcol_multi,
                            color[1] * 2 * vcol_multi,
                            color[2] * 2 * vcol_multi)

                if _MESH_consts.default_vcol + _MESH_consts.vcol_a_suffix not in mesh.vertex_colors:  # get A component of RGBA
                    vcol += (1.0, )
                    missing_vcolor_a = True
                else:
                    alpha = mesh.vertex_colors[
                        _MESH_consts.default_vcol +
                        _MESH_consts.vcol_a_suffix].data[loop_i].color
                    vcol += ((alpha[0] + alpha[1] + alpha[2]) / 3.0 * 2 *
                             vcol_multi, )  # take avg of colors for alpha

                # 5. tangent -> loop.tangent; loop.bitangent_sign -> calc_tangents() has to be called before
                if pim_materials[pim_mat_name].get_nmap_uv_name(
                ):  # calculate tangents only if needed
                    tangent = tuple(tangent_transf_mat * loop.tangent)
                    tangent = tuple(Vector(tangent).normalized())
                    tangent = (tangent[0], tangent[1], tangent[2],
                               loop.bitangent_sign)
                else:
                    tangent = None

                # 6. There we go, vertex data collected! Now create internal vertex index, for triangle and skin stream construction
                piece_vert_index = mesh_piece.add_vertex(
                    vert_i, position, normal, uvs, uvs_aliases, vcol, tangent)

                # 7. Add vertex to triangle creation list
                triangle_pvert_indices.append(piece_vert_index)

                # 8. Get skinning data for vertex and save it to skin stream
                if is_skin_used:
                    bone_weights = {}
                    bone_weights_sum = 0
                    for v_group_entry in mesh.vertices[vert_i].groups:
                        bone_indx = bones.get_bone_index(
                            vert_groups[v_group_entry.group].name)
                        bone_weight = v_group_entry.weight

                        # proceed only if bone exists in our armature
                        if bone_indx != -1:
                            bone_weights[bone_indx] = bone_weight
                            bone_weights_sum += bone_weight

                    skin_entry = SkinStream.Entry(mesh_piece.get_index(),
                                                  piece_vert_index, position,
                                                  bone_weights,
                                                  bone_weights_sum)
                    skin_stream.add_entry(skin_entry)

                    # report un-skinned vertices (no bones or zero sum weight) or badly skinned model
                    if bone_weights_sum <= 0:
                        missing_skinned_verts.add(vert_i)
                    elif bone_weights_sum < 1:
                        has_unnormalized_skin = True

                # Addition - Terrain Points: save vertex to terrain points storage, if present in correct vertex group
                for group in mesh.vertices[vert_i].groups:

                    # if current object doesn't have vertex group found in mesh data, then ignore that group
                    # This can happen if multiple objects are using same mesh and
                    # some of them have vertex groups, but others not.
                    if group.group >= len(mesh_obj.vertex_groups):
                        continue

                    curr_vg_name = mesh_obj.vertex_groups[group.group].name

                    # if vertex group name doesn't match prescribed one ignore this vertex group
                    if not match(_OP_consts.TerrainPoints.vg_name_regex,
                                 curr_vg_name):
                        continue

                    # if node index is not in bounds ignore this vertex group
                    node_index = int(curr_vg_name[-1])
                    if node_index >= _PL_consts.PREFAB_NODE_COUNT_MAX:
                        continue

                    # if no variants defined add globally (without variant block)
                    if len(root_object.scs_object_variant_inventory) == 0:
                        used_terrain_points.add(-1, node_index, position,
                                                normal)
                        continue

                    # finally iterate variant parts entries to find where this part is included
                    # and add terrain points to transitional structure
                    #
                    # NOTE: variant index is donated by direct order of variants in inventory
                    # so export in PIT has to use the same order otherwise variant
                    # indices will be misplaced
                    for variant_i, variant in enumerate(
                            root_object.scs_object_variant_inventory):

                        used_terrain_points.ensure_entry(variant_i, node_index)

                        for variant_part in variant.parts:
                            if variant_part.name == mesh_obj.scs_props.scs_part and variant_part.include:

                                used_terrain_points.add(
                                    variant_i, node_index, position, normal)
                                break

            # triangles
            if face_flip:
                mesh_piece.add_triangle(tuple(triangle_pvert_indices))
            else:
                mesh_piece.add_triangle(
                    tuple(triangle_pvert_indices[::-1]
                          ))  # yep it's weird but it simply works vice versa

        # free normals calculations
        _mesh_utils.cleanup_mesh(mesh)
        _mesh_utils.cleanup_mesh(mesh_for_normals)

        # create part if it doesn't exists yet
        part_name = used_parts.ensure_part(mesh_obj)
        if part_name not in pim_parts:
            pim_parts[part_name] = Part(part_name)

        mesh_pieces = mesh_pieces.values()
        for piece in mesh_pieces:

            # now as pieces are created we can check for it's flaws
            if piece.get_vertex_count() > 65536:
                lprint(
                    "E Object %r has exceeded maximum vertex count (65536), expect errors during conversion!",
                    (mesh_obj.name, ))

            # put pieces of current mesh to global list
            pim_pieces.append(piece)

            # add pieces of current mesh to part
            pim_part = pim_parts[part_name]
            pim_part.add_piece(piece)

        # report missing data for each object
        if len(missing_uv_layers) > 0:
            for uv_lay_name in missing_uv_layers:
                lprint(
                    "W Object %r is missing UV layer %r specified by materials: %r",
                    (mesh_obj.name, uv_lay_name,
                     missing_uv_layers[uv_lay_name]))
        if missing_vcolor:
            lprint(
                "W Object %r is missing vertex color layer with name %r! Default RGB color will be exported (0.5, 0.5, 0.5)!",
                (mesh_obj.name, _MESH_consts.default_vcol))
        if missing_vcolor_a:
            lprint(
                "W Object %r is missing vertex color alpha layer with name %r! Default alpha will be exported (0.5)",
                (mesh_obj.name,
                 _MESH_consts.default_vcol + _MESH_consts.vcol_a_suffix))
        if len(missing_skinned_verts) > 0:
            lprint(
                "E Object %r from SCS Root %r has %s vertices which are not skinned to any bone, expect errors during conversion!",
                (mesh_obj.name, root_object.name, len(missing_skinned_verts)))
        if has_unnormalized_skin:
            lprint(
                "W Object %r from SCS Root %r has unormalized skinning, exporting normalized weights!\n\t   "
                "You can normalize weights by selecting object & executing 'Normalize All Vertex Groups'.",
                (mesh_obj.name, root_object.name))

    # report missing data for whole model
    if len(missing_mappings_data) > 0:
        for material_name in missing_mappings_data:
            lprint(
                "W Material '%s' is missing mapping data! Objects using it are exported with default UV:\n\t   %s",
                (material_name,
                 list(missing_mappings_data[material_name].keys())))
    if len(objects_with_default_material) > 0:
        lprint(
            "W Some objects don't use any material. Default material and UV mapping is used on them:\n\t   %s",
            (list(objects_with_default_material.keys()), ))

    if len(invalid_objects_for_tangents) > 0:
        lprint(
            "E N-gons present in some objects, thus normal map tangent calculation failed.\n\t   "
            "Visualization in game will be distorted for this objects:\n\t   %s",
            (list(invalid_objects_for_tangents), ))

    # create locators data sections
    for loc_obj in model_locators:

        pos, qua, sca = _get_scs_transformation_components(
            root_object.matrix_world.inverted() * loc_obj.matrix_world)

        if sca[0] * sca[1] * sca[2] < 0:
            lprint(
                "W Model locator %r inside SCS Root Object %r not exported because of invalid scale.\n\t   "
                + "Model locators must have positive scale!",
                (loc_obj.name, root_object.name))
            continue

        name = _name_utils.tokenize_name(loc_obj.name)
        hookup_string = loc_obj.scs_props.locator_model_hookup
        hookup_id = None
        if hookup_string != "":
            hookup_id = _hookup_name_to_hookup_id(hookup_string)
            if hookup_id is None:
                lprint("W Model locator %r has unexpected hookup value %r.",
                       (loc_obj.name, loc_obj.scs_props.locator_model_hookup))

        # create locator object for export
        locator = Locator(len(pim_locators), name, hookup_id)
        locator.set_position(pos)
        locator.set_rotation(qua)
        locator.set_scale(sca)

        # create part if it doesn't exists yet
        part_name = used_parts.ensure_part(loc_obj)
        if part_name not in pim_parts:
            pim_parts[part_name] = Part(part_name)

        # add locator to part
        pim_part = pim_parts[part_name]
        pim_part.add_locator(locator)

        # add locator to locator list
        pim_locators.append(locator)

    # create container
    pim_container = [pim_header.get_as_section(), pim_global.get_as_section()]

    for mat_name in pim_materials:
        pim_container.append(pim_materials[mat_name].get_as_section())

    for pim_piece in pim_pieces:
        pim_container.append(pim_piece.get_as_section())

    for part_name in used_parts.get_as_list():

        # export all parts even empty ones used only in PIC and/or PIP
        if part_name in pim_parts:
            pim_container.append(pim_parts[part_name].get_as_section())
        else:
            pim_container.append(Part(part_name).get_as_section())

    for locator in pim_locators:
        pim_container.append(locator.get_as_section())

    if is_skin_used:
        pim_container.append(bones.get_as_section())
        pim_container.append(skin.get_as_section())

    # write to file
    ind = "    "
    pim_filepath = os.path.join(dirpath,
                                root_object.name + ".pim" + name_suffix)
    return _pix_container.write_data_to_file(pim_container, pim_filepath, ind)
Beispiel #5
0
def execute(dirpath, filename, prefab_locator_list, offset_matrix, used_terrain_points):
    """Exports PIP file from given locator list.

    :param prefab_locator_list:
    :type prefab_locator_list: list of bpy.types.Object
    :param dirpath: directory export path
    :type dirpath: str
    :param filename: name of PIP file
    :type filename: str
    :param offset_matrix: offset matrix for locators
    :type offset_matrix: mathutils.Matrix
    :param used_terrain_points: terrain points transitional structure for accessing terrain points stored during PIM export
    :type used_terrain_points: io_scs_tools.exp.transition_structs.terrain_points.TerrainPntsTrans
    :return: True if successfull; otherwise False
    :rtype: bool
    """

    # CLEANUP CONNECTIONS DATA
    _connections_group_wrapper.cleanup_on_export()

    print("\n************************************")
    print("**      SCS PIP Exporter          **")
    print("**      (c)2015 SCS Software      **")
    print("************************************\n")

    (control_node_locs,
     nav_point_locs,
     sign_locs,
     spawn_point_locs,
     semaphore_locs,
     map_point_locs,
     trigger_point_locs) = __sort_locators_by_type__(prefab_locator_list)

    pip_header = Header(2, filename)
    pip_global = Globall()

    pip_nodes = OrderedDict()
    """:type: dict[int,Node]"""
    pip_curves = OrderedDict()
    """:type: dict[int, Curve]"""
    pip_signs = []
    """:type: list[Sign]"""
    pip_spawn_points = []
    """:type: list[SpawnPoint]"""
    pip_semaphores = []
    """:type: list[Semaphore]"""
    pip_map_points = OrderedDict()
    """:type: dict[str, MapPoint]"""
    pip_trigger_points = OrderedDict()
    """:type: dict[str, TriggerPoint]"""
    pip_intersections = [OrderedDict(), OrderedDict(), OrderedDict()]
    """:type: list[dict[str, list[Intersection]]]"""

    # nodes creation
    for locator in control_node_locs.values():

        locator_scs_props = locator.scs_props
        """:type: io_scs_tools.properties.object.ObjectSCSTools"""

        curr_node_i = int(locator_scs_props.locator_prefab_con_node_index)
        if curr_node_i not in pip_nodes:

            pos, rot, scale = _get_scs_transformation_components(offset_matrix.inverted() * locator.matrix_world)
            rot = Quaternion(rot) * Vector((0, 0, -1))

            # create node with position and direction
            cn = Node(curr_node_i, pos, rot)

            # add terrain points
            terrain_points = used_terrain_points.get(curr_node_i)
            for variant_i in terrain_points:

                # ensure variant entry for no terrain points case
                cn.ensure_variant(variant_i)

                for tp_entry in terrain_points[variant_i]:

                    cn.add_terrain_point(tp_entry.position, tp_entry.normal, variant_i)

            pip_nodes[curr_node_i] = cn
        else:
            lprint("W Multiple Control Nodes with same index detected, only one per index will be exported!\n\t   "
                   "Check Control Nodes in SCS Game Object with Root: %r", (filename,))

    # curves creation
    curves_dict = _connections_group_wrapper.get_curves(nav_point_locs.values())
    for key, curve_entry in curves_dict.items():

        loc0 = nav_point_locs[curves_dict[key].start]
        loc0_scs_props = loc0.scs_props
        """:type: io_scs_tools.properties.object.ObjectSCSTools"""
        loc1 = nav_point_locs[curves_dict[key].end]
        loc1_scs_props = loc1.scs_props
        """:type: io_scs_tools.properties.object.ObjectSCSTools"""

        # create curve and set properties
        curve = __get_curve__(pip_curves, curve_entry.index, loc0.name)

        pos, rot, scale = _get_scs_transformation_components(offset_matrix.inverted() * loc0.matrix_world)
        curve.set_start(pos, rot)
        pos, rot, scale = _get_scs_transformation_components(offset_matrix.inverted() * loc1.matrix_world)
        curve.set_end(pos, rot)

        curve.set_input_boundaries(loc0_scs_props)
        curve.set_output_boundaries(loc1_scs_props)

        curve.set_flags(loc0.scs_props, True)
        curve.set_flags(loc1.scs_props, False)

        curve.set_semaphore_id(int(loc0_scs_props.locator_prefab_np_traffic_semaphore))
        curve.set_traffic_rule(loc1_scs_props.locator_prefab_np_traffic_rule)

        # set next/prev curves
        for next_key in curve_entry.next_curves:

            next_curve = __get_curve__(pip_curves, curves_dict[next_key].index, curves_dict[next_key].start)

            assert curve.add_next_curve(next_curve)

        for prev_key in curve_entry.prev_curves:

            prev_curve = __get_curve__(pip_curves, curves_dict[prev_key].index, curves_dict[prev_key].start)

            assert curve.add_prev_curve(prev_curve)

        # sync nodes input lanes
        boundary_node_i = curve.get_input_node_index()
        if 0 <= boundary_node_i < _PL_consts.PREFAB_NODE_COUNT_MAX:

            if boundary_node_i in pip_nodes:

                assert pip_nodes[boundary_node_i].set_input_lane(curve.get_input_lane_index(), curve.get_index())

            else:

                lprint("E None existing Boundary Node with index: %s used in Navigation Point: %r",
                       (boundary_node_i, loc0.name,))

        # sync nodes output lanes
        boundary_node_i = curve.get_output_node_index()
        if 0 <= boundary_node_i < _PL_consts.PREFAB_NODE_COUNT_MAX:

            if boundary_node_i in pip_nodes:

                assert pip_nodes[boundary_node_i].set_output_lane(curve.get_output_lane_index(), curve.get_index())

            else:

                lprint("E None existing Boundary Node with index: %s used in Navigation Point: %r",
                       (boundary_node_i, loc1.name,))

    Curve.prepare_curves(pip_curves.values())

    # signs creation
    for locator in sign_locs.values():

        locator_scs_props = locator.scs_props
        """:type: io_scs_tools.properties.object.ObjectSCSTools"""

        # create sign and set properties
        sign = Sign(locator.name, locator_scs_props.scs_part)

        pos, rot, scale = _get_scs_transformation_components(offset_matrix.inverted() * locator.matrix_world)
        sign.set_position(pos)
        sign.set_rotation(rot)

        if ":" in locator_scs_props.locator_prefab_sign_model:
            sign.set_model(locator_scs_props.locator_prefab_sign_model.split(":")[1].strip())
        else:
            lprint("W Invalid Sign Model: %r on locator: %r",
                   (locator_scs_props.locator_prefab_sign_model, locator.name))

        pip_signs.append(sign)

    # spawn points creation
    for locator in spawn_point_locs.values():

        locator_scs_props = locator.scs_props
        """:type: io_scs_tools.properties.object.ObjectSCSTools"""

        # create spawn point and set properties
        spawn_point = SpawnPoint(locator.name)

        pos, rot, scale = _get_scs_transformation_components(offset_matrix.inverted() * locator.matrix_world)
        spawn_point.set_position(pos)
        spawn_point.set_rotation(rot)

        spawn_point.set_type(int(locator_scs_props.locator_prefab_spawn_type))

        pip_spawn_points.append(spawn_point)

    # semaphores creation
    for locator in semaphore_locs.values():

        locator_scs_props = locator.scs_props
        """:type: io_scs_tools.properties.object.ObjectSCSTools"""

        # create semaphore and set properties
        semaphore = Semaphore(int(locator_scs_props.locator_prefab_tsem_type))

        pos, rot, scale = _get_scs_transformation_components(offset_matrix.inverted() * locator.matrix_world)
        semaphore.set_position(pos)
        semaphore.set_rotation(rot)

        semaphore.set_semaphore_id(int(locator_scs_props.locator_prefab_tsem_id))

        if ":" in locator_scs_props.locator_prefab_tsem_profile:
            semaphore.set_profile(locator_scs_props.locator_prefab_tsem_profile.split(":")[1].strip())
        else:
            lprint("W Invalid Profile: %r on Traffic Semaphore locator: %r",
                   (locator_scs_props.locator_prefab_tsem_profile, locator.name))

        semaphore.set_intervals((locator_scs_props.locator_prefab_tsem_gs,
                                 locator_scs_props.locator_prefab_tsem_os1,
                                 locator_scs_props.locator_prefab_tsem_rs,
                                 locator_scs_props.locator_prefab_tsem_os2))
        semaphore.set_cycle(locator_scs_props.locator_prefab_tsem_cyc_delay)

        pip_semaphores.append(semaphore)

    # map points creation
    for locator in map_point_locs.values():

        locator_scs_props = locator.scs_props
        """:type: io_scs_tools.properties.object.ObjectSCSTools"""

        # create map point and set properties
        map_point = __get_map_point__(pip_map_points, locator.name)

        pos, rot, scale = _get_scs_transformation_components(offset_matrix.inverted() * locator.matrix_world)
        map_point.set_position(pos)

        map_point.set_flags(locator_scs_props)

        for neighbour_name in _connections_group_wrapper.get_neighbours(locator):

            assert map_point.add_neighbour(__get_map_point__(pip_map_points, neighbour_name))

    MapPoint.test_map_points(pip_map_points.values())
    MapPoint.auto_generate_map_points(pip_map_points, pip_nodes)

    # trigger points creation
    for locator in trigger_point_locs.values():

        locator_scs_props = locator.scs_props
        """:type: io_scs_tools.properties.object.ObjectSCSTools"""

        # create trigger point and set properties
        trigger_point = __get_trigger_point__(pip_trigger_points, locator.name)

        pos, rot, scale = _get_scs_transformation_components(offset_matrix.inverted() * locator.matrix_world)
        trigger_point.set_position(pos)

        if ":" in locator_scs_props.locator_prefab_tp_action:
            trigger_point.set_action(locator_scs_props.locator_prefab_tp_action.split(":")[1].strip())
        else:
            lprint("W Invalid Action: %r on Trigger Point locator: %r",
                   (locator_scs_props.locator_prefab_tp_action, locator.name))

        trigger_point.set_trigger_range(locator_scs_props.locator_prefab_tp_range)
        trigger_point.set_reset_delay(locator_scs_props.locator_prefab_tp_reset_delay)
        trigger_point.set_flags(locator_scs_props)

        for neighbour_name in _connections_group_wrapper.get_neighbours(locator):

            assert trigger_point.add_neighbour(__get_trigger_point__(pip_trigger_points, neighbour_name))

    TriggerPoint.prepare_trigger_points(pip_trigger_points.values())

    # intersections creation
    for c0_i, c0 in enumerate(sorted(pip_curves.values())):
        for c1_i, c1 in enumerate(sorted(pip_curves.values())):

            if c1_i <= c0_i:  # only search each pair of curves once
                continue

            # get the intersection point and curves coefficient positions
            intersect_p, c0_pos, c1_pos = Intersection.get_intersection(c0, c1)

            if intersect_p:

                intersect_p_str = str(intersect_p)  # Format: '<Vector (0.0000, 0.0000, 0.0000)>'

                is_start = c0_pos == 0 and c0_pos == c1_pos
                is_end = c1_pos == 1 and c0_pos == c1_pos

                if is_start:
                    inter_type = 0  # fork
                elif is_end:
                    inter_type = 1  # joint
                else:
                    inter_type = 2  # cross

                    # if there is indication of cross intersection filter out intersections with common fork and joint
                    # NOTE: this condition might not be sufficient, so if anyone will have problems,
                    # this is the point that has to be improved
                    if Intersection.have_common_fork(c0, c1) or Intersection.have_common_joint(c0, c1):
                        continue

                # calculate radius for the same directions on curves
                forward_radius = Intersection.get_intersection_radius(c0, c1, c0_pos, c1_pos, 1, 1)
                backward_radius = Intersection.get_intersection_radius(c0, c1, c0_pos, c1_pos, -1, -1)
                final_radius = max(forward_radius, backward_radius)

                # special calculations only for cross intersections
                if inter_type == 2:

                    # calculate radius also for opposite directions
                    final_radius = max(final_radius, Intersection.get_intersection_radius(c0, c1, c0_pos, c1_pos, 1, -1))
                    final_radius = max(final_radius, Intersection.get_intersection_radius(c0, c1, c0_pos, c1_pos, -1, 1))

                    # calculate position of intersection point on curves with better precision
                    c0_pos = c0.get_closest_point(intersect_p)
                    c1_pos = c1.get_closest_point(intersect_p)

                    lprint("D Found cross intersection point: %r", (intersect_p,))

                # creating intersection class instances
                intersection = Intersection(c0.get_index(), c0.get_ui_name(), c0_pos * c0.get_length())
                intersection1 = Intersection(c1.get_index(), c1.get_ui_name(), c1_pos * c1.get_length())

                # init list of intersections for current intersecting point
                if intersect_p_str not in pip_intersections[inter_type]:
                    pip_intersections[inter_type][intersect_p_str] = []

                # append intersections to list and calculate new siblings
                new_siblings = 2
                if intersection not in pip_intersections[inter_type][intersect_p_str]:
                    pip_intersections[inter_type][intersect_p_str].append(intersection)
                else:
                    del intersection
                    new_siblings -= 1

                if intersection1 not in pip_intersections[inter_type][intersect_p_str]:
                    pip_intersections[inter_type][intersect_p_str].append(intersection1)
                else:
                    del intersection1
                    new_siblings -= 1

                # always set flags on first entry in current intersection point list
                # this way siblings count is getting updated properly
                pip_intersections[inter_type][intersect_p_str][0].set_flags(is_start, is_end, new_siblings)

                # update radius on all of intersection in the same intersecting point
                for inter in pip_intersections[inter_type][intersect_p_str]:
                    inter.set_radius(pip_intersections[inter_type][intersect_p_str][0].get_radius())
                    inter.set_radius(final_radius)

    # create container
    pip_container = [pip_header.get_as_section(), pip_global.get_as_section()]

    for node in pip_nodes.values():
        pip_container.append(node.get_as_section())

    for curve_key in sorted(pip_curves):
        pip_container.append(pip_curves[curve_key].get_as_section())

    for sign in pip_signs:
        pip_container.append(sign.get_as_section())

    for spawn_point in pip_spawn_points:
        pip_container.append(spawn_point.get_as_section())

    for semaphore in pip_semaphores:
        pip_container.append(semaphore.get_as_section())

    for map_point in pip_map_points.values():
        pip_container.append(map_point.get_as_section())

    for trigger_point in pip_trigger_points.values():
        pip_container.append(trigger_point.get_as_section())

    for inter_type in range(3):
        for intersect_p_str in pip_intersections[inter_type]:
            for intersection in pip_intersections[inter_type][intersect_p_str]:
                pip_container.append(intersection.get_as_section())

    # write to file
    ind = "    "
    pip_filepath = path.join(dirpath, str(filename + ".pip"))
    result = _pix_container.write_data_to_file(pip_container, pip_filepath, ind)
    return result
Beispiel #6
0
def execute(dirpath, root_object, mesh_objects, model_locators, used_parts,
            used_materials):
    """Executes export of PIM file for given data.
    :param dirpath: directory path for PIM file
    :type dirpath: str
    :param root_object: Blender SCS Root empty object
    :type root_object: bpy.types.Object
    :param mesh_objects: all the meshes which should be exported for current game object
    :type mesh_objects: list of bpy.types.Object
    :param model_locators: all Blender empty objecs which represents model locators and should be exported for current game object
    :type model_locators: list of bpy.types.Object
    :return: True if export was successfull; False otherwise
    :rtype: bool
    """

    print("\n************************************")
    print("**      SCS PIM Exporter          **")
    print("**      (c)2015 SCS Software      **")
    print("************************************\n")

    scs_globals = _get_scs_globals()

    if scs_globals.output_type == "5":
        format_version = 5
        format_type = ""
    else:
        format_version = 1
        format_type = "def"

    pim_header = Header(format_type, format_version, root_object.name)
    pim_global = Globall(root_object.name + ".pis")

    pim_materials = collections.OrderedDict(
    )  # dict of Material class instances representing used materials
    """:type: dict of Material"""
    pim_pieces = []  # list of Piece class instances representing mesh pieces
    """:type: list of Piece"""
    pim_parts = collections.OrderedDict(
    )  # list of Part class instances representing used parts
    """:type: dict of Part"""
    pim_locators = [
    ]  # list of Locator class instances representing model locators
    """:type: list of Locator"""

    objects_with_default_material = {
    }  # stores object names which has no material set
    missing_mappings_data = {
    }  # indicates if material doesn't have set any uv layer for export

    # create mesh object data sections
    for mesh_obj in mesh_objects:

        mesh_pieces = collections.OrderedDict()

        # get initial mesh
        mesh = _object_utils.get_mesh(mesh_obj)
        _mesh_utils.bm_triangulate(mesh)
        mesh.calc_normals_split()

        # calculate transformation matrices for this object
        pos_transf_mat = (Matrix.Scale(scs_globals.export_scale, 4) *
                          _scs_to_blend_matrix().inverted() *
                          root_object.matrix_world.inverted() *
                          mesh_obj.matrix_world)

        nor_transf_mat = (
            _scs_to_blend_matrix().inverted() * root_object.matrix_world.
            inverted().to_quaternion().to_matrix().to_4x4() *
            mesh_obj.matrix_world.to_quaternion().to_matrix().to_4x4())

        missing_uv_layers = {
        }  # stores missing uvs specified by materials of this object
        missing_vcolor = False  # indicates if object is missing vertex colors

        for poly in mesh.polygons:

            mat_index = poly.material_index

            # check material existance and decide what material name and effect has to be used
            if mat_index >= len(
                    mesh_obj.material_slots
            ) or mesh_obj.material_slots[
                    mat_index].material is None:  # no material or invalid index
                material = None
                pim_mat_name = "_not_existing_material_"
                pim_mat_effect = "eut2.dif"
                objects_with_default_material[mesh_obj.name] = 1
            else:
                material = mesh_obj.material_slots[mat_index].material
                pim_mat_name = material.name
                pim_mat_effect = material.scs_props.mat_effect_name

            # create new pim material if material with that name doesn't yet exists
            if pim_mat_name not in pim_materials:
                pim_material = Material(len(pim_materials), pim_mat_name,
                                        pim_mat_effect, material)
                pim_materials[pim_mat_name] = pim_material
                used_materials.append(pim_mat_name)

            # create new piece if piece with this material doesn't exists yet -> split to pieces by material
            if pim_mat_name not in mesh_pieces:
                mesh_pieces[pim_mat_name] = Piece(
                    len(pim_pieces) + len(mesh_pieces),
                    pim_materials[pim_mat_name])

                nmap_uv_layer = pim_materials[pim_mat_name].get_nmap_uv_name()
                if nmap_uv_layer:  # if there is uv layer used for normal maps then calculate tangents on it
                    mesh.calc_tangents(uvmap=nmap_uv_layer)

            mesh_piece = mesh_pieces[pim_mat_name]
            """:type: Piece"""

            piece_vert_indices = []
            for loop_i in poly.loop_indices:

                loop = mesh.loops[loop_i]
                """:type: bpy.types.MeshLoop"""
                vert_i = loop.vertex_index

                # get data of current vertex
                # 1. position -> mesh.vertices[loop.vertex_index].co
                position = tuple(pos_transf_mat * mesh.vertices[vert_i].co)

                # 2. normal -> loop.normal -> calc_normals_split() has to be called before
                normal = nor_transf_mat * loop.normal
                normal = tuple(Vector(normal).normalized())

                # 3. uvs -> uv_lay = mesh.uv_layers[0].data; uv_lay[loop_i].uv
                uvs = []
                uvs_aliases = []
                tex_coord_alias_map = pim_materials[
                    pim_mat_name].get_tex_coord_map()
                if len(tex_coord_alias_map
                       ) < 1:  # no textures for current material effect
                    uvs.append((0.0, 0.0))
                    uvs_aliases.append(["_TEXCOORD0"])

                    # report missing mappings only on actual materials with texture entries
                    if material and pim_materials[pim_mat_name].uses_textures(
                    ):
                        if material.name not in missing_mappings_data:
                            missing_mappings_data[material.name] = {}

                        if mesh_obj.name not in missing_mappings_data[
                                material.name]:
                            missing_mappings_data[material.name][
                                mesh_obj.name] = 1

                else:
                    for uv_lay_name in tex_coord_alias_map:

                        if uv_lay_name not in mesh.uv_layers:
                            uvs.append((0.0, 0.0))

                            # properly report missing uv layers where name of uv layout is key and materials that misses it are values
                            if uv_lay_name not in missing_uv_layers:
                                missing_uv_layers[uv_lay_name] = []

                            if pim_mat_name not in missing_uv_layers[
                                    uv_lay_name]:  # add material if not already there
                                missing_uv_layers[uv_lay_name].append(
                                    pim_mat_name)
                        else:
                            uv_lay = mesh.uv_layers[uv_lay_name]
                            uvs.append(
                                _change_to_scs_uv_coordinates(
                                    uv_lay.data[loop_i].uv))

                        aliases = []
                        for alias_index in tex_coord_alias_map[uv_lay_name]:
                            aliases.append("_TEXCOORD" + str(alias_index))

                        uvs_aliases.append(aliases)

                # 4. vcol -> vcol_lay = mesh.vertex_colors[0].data; vcol_lay[loop_i].color
                if len(mesh.vertex_colors) < 1:
                    vcol = (1.0, 1.0, 1.0, 1.0)
                    missing_vcolor = True
                else:
                    multiplier = mesh_obj.data.scs_props.vertex_color_multiplier
                    color = mesh.vertex_colors[0].data[loop_i].color
                    vcol = (color[0] * multiplier, color[1] * multiplier,
                            color[2] * multiplier, 1.0)

                # 5. tangent -> loop.tangent; loop.bitangent_sign -> calc_tangents() has to be called before
                if pim_materials[pim_mat_name].get_nmap_uv_name(
                ):  # calculate tangents only if needed
                    tangent = tuple(nor_transf_mat * loop.tangent)
                    tangent = tuple(Vector(tangent).normalized())
                    tangent = (tangent[0], tangent[1], tangent[2],
                               loop.bitangent_sign)
                else:
                    tangent = None

                # save internal vertex index to array to be able to construct triangle afterwards
                piece_vert_index = mesh_piece.add_vertex(
                    vert_i, position, normal, uvs, uvs_aliases, vcol, tangent)
                piece_vert_indices.append(piece_vert_index)

            mesh_piece.add_triangle(tuple(piece_vert_indices[::-1])
                                    )  # invert indices because of normals flip

        # create part if it doesn't exists yet
        part_name = mesh_obj.scs_props.scs_part
        if part_name not in pim_parts:
            pim_parts[part_name] = Part(part_name)
            used_parts[part_name] = 1

        mesh_pieces = mesh_pieces.values()
        for piece in mesh_pieces:
            # put pieces of current mesh to global list
            pim_pieces.append(piece)

            # add pieces of current mesh to part
            pim_part = pim_parts[part_name]
            pim_part.add_piece(piece)

        # report missing data for each object
        if len(missing_uv_layers) > 0:
            for uv_lay_name in missing_uv_layers:
                lprint(
                    "W Object '%s' is missing UV layer '%s' specified by materials: %s\n",
                    (mesh_obj.name, uv_lay_name,
                     missing_uv_layers[uv_lay_name]))
        if missing_vcolor:
            lprint(
                "W Object '%s' is missing vertex color layer! Default color will be exported (1, 1, 1, 1)!",
                (mesh_obj.name, ))

    # report mising data for whole model
    if len(missing_mappings_data) > 0:
        for material_name in missing_mappings_data:
            lprint(
                "W Material '%s' is missing mapping data! Objects using it are exported with default UV:\n\t   %s",
                (material_name,
                 list(missing_mappings_data[material_name].keys())))
    if len(objects_with_default_material) > 0:
        lprint(
            "W Some objects don't use any material. Default material and UV mapping is used on them:\n\t   %s",
            (list(objects_with_default_material.keys()), ))

    # create locators data sections
    for loc_obj in model_locators:
        name = _name_utils.tokenize_name(loc_obj.name)
        hookup_string = loc_obj.scs_props.locator_model_hookup
        if hookup_string != "" and ":" in hookup_string:
            hookup = hookup_string.split(':', 1)[1].strip()
        else:
            if hookup_string != "":
                lprint("W The Hookup %r has no expected value!", hookup_string)
            hookup = None
        pos, qua, sca = _get_scs_transformation_components(
            loc_obj.matrix_world)

        # create locator object for export
        locator = Locator(len(pim_locators), name, hookup)
        locator.set_position(pos)
        locator.set_rotation(qua)
        locator.set_scale(sca)

        # create part if it doesn't exists yet
        part_name = loc_obj.scs_props.scs_part
        if part_name not in pim_parts:
            pim_parts[part_name] = Part(part_name)
            used_parts[part_name] = 1

        # add locator to part
        pim_part = pim_parts[part_name]
        pim_part.add_locator(locator)

        # add locator to locator list
        pim_locators.append(locator)

    # create container
    pim_container = [pim_header.get_as_section(), pim_global.get_as_section()]

    for mat_name in pim_materials:
        pim_container.append(pim_materials[mat_name].get_as_section())

    for pim_piece in pim_pieces:
        pim_container.append(pim_piece.get_as_section())

    for part_name in used_parts:
        pim_container.append(pim_parts[part_name].get_as_section())

    for locator in pim_locators:
        pim_container.append(locator.get_as_section())

    # write to file
    ind = "    "
    pim_filepath = dirpath + os.sep + root_object.name + ".pim"
    return _pix_container.write_data_to_file(pim_container, pim_filepath, ind)