Beispiel #1
0
def processing(org, binary, clf, main=True):
    if main:
        # *** Step 2 *** object detection: get connected areas -> get boundary -> get corners
        boundary_rec, boundary_non_rec = det.boundary_detection(binary, write_boundary=True)
        corners_rec = det.get_corner(boundary_rec)
        corners_non_rec = det.get_corner(boundary_non_rec)

        # *** Step 3 *** data processing: identify blocks and compos from rectangles -> identify irregular compos
        corners_block, corners_img, corners_compo = det.block_or_compo(org, binary, corners_rec)
        det.compo_irregular(org, corners_non_rec, corners_img, corners_compo)

        # *** Step 4 *** classification: clip and classify the components candidates -> ignore noises -> refine img
        compos = seg.clipping(org, corners_compo)
        compos_class = clf.predict(compos)
        corners_compo, compos_class = det.strip_img(corners_compo, compos_class, corners_img)

        # *** Step 5 *** result refinement
        if is_shrink_img:
            corners_img = det.img_shrink(org, binary, corners_img)

        # *** Step 6 *** recursive inspection: search components nested in components
        corners_block, corners_img, corners_compo, compos_class = det.compo_in_img(processing, org, binary, clf, corners_img, corners_block, corners_compo, compos_class)

        # *** Step 7 *** ocr check and text detection from cleaned image
        if is_ocr:
            corners_block, _ = det.rm_text(org, corners_block, ['block' for i in range(len(corners_block))])
            corners_img, _ = det.rm_text(org, corners_img, ['img' for i in range(len(corners_img))])
            corners_compo, compos_class = det.rm_text(org, corners_compo, compos_class)

        # *** Step 8 *** merge overlapped components
        # corners_img = det.rm_img_in_compo(corners_img, corners_compo)
        corners_img, _ = det.merge_corner(org, corners_img, ['img' for i in range(len(corners_img))], is_merge_nested_same=True)
        corners_compo, compos_class = det.merge_corner(org, corners_compo, compos_class, is_merge_nested_same=True)

        return corners_block, corners_img, corners_compo, compos_class

    # *** used for img inspection ***
    # only consider rectangular components
    else:
        boundary_rec, boundary_non_rec = det.boundary_detection(binary)
        corners_rec = det.get_corner(boundary_rec)
        corners_block, corners_img, corners_compo = det.block_or_compo(org, binary, corners_rec)
        compos = seg.clipping(org, corners_compo)
        compos_class = clf.predict(compos)
        corners_compo, compos_class = det.strip_img(corners_compo, compos_class, corners_img)

        return corners_block, corners_compo, compos_class
def processing(org, binary, main=True):
    if main:
        # *** Step 2 *** object detection: get connected areas -> get boundary -> get corners
        boundary_rec, boundary_non_rec = det.boundary_detection(binary,
                                                                show=False)
        corners_rec = det.get_corner(boundary_rec)
        corners_non_rec = det.get_corner(boundary_non_rec)

        # *** Step 3 *** data processing: identify blocks and compos from rectangles -> identify irregular compos
        corners_block, corners_img, corners_compo = det.block_or_compo(
            org, binary, corners_rec)
        det.compo_irregular(org, corners_non_rec, corners_img, corners_compo)
        corners_img, _ = det.rm_text(org, corners_img,
                                     ['img' for i in range(len(corners_img))])

        # *** Step 4 *** classification: clip and classify the components candidates -> ignore noises -> refine img
        compos = seg.clipping(org, corners_compo)
        compos_class = CNN.predict(compos)
        # corners_compo, compos_class = det.compo_filter(org, corners_compo, compos_class, is_icon)
        corners_compo, compos_class = det.strip_img(corners_compo,
                                                    compos_class, corners_img)
        # *** Step 5 *** result refinement
        if is_merge:
            corners_img, _ = det.merge_corner(
                corners_img, ['img' for i in range(len(corners_img))])
        corners_block, _ = det.rm_text(
            org, corners_block, ['block' for i in range(len(corners_block))])
        corners_img, _ = det.rm_text(org, corners_img,
                                     ['img' for i in range(len(corners_img))])
        corners_compo, compos_class = det.rm_text(org, corners_compo,
                                                  compos_class)
        if is_shrink_img:
            corners_img = det.img_shrink(org, binary, corners_img)

        # *** Step 6 *** text detection from cleaned image
        img_clean = draw.draw_bounding_box(org,
                                           corners_img,
                                           color=(255, 255, 255),
                                           line=-1)
        corners_word = ocr.text_detection(org, img_clean)
        corners_text = ocr.text_merge_word_into_line(org, corners_word)

        # *** Step 7 *** img inspection: search components in img element
        if is_img_inspect:
            corners_block, corners_img, corners_compo, compos_class = det.compo_in_img(
                processing, org, binary, corners_img, corners_block,
                corners_compo, compos_class)

        return corners_block, corners_img, corners_compo, compos_class, corners_text

    # *** used for img inspection ***
    # only consider rectangular components
    else:
        boundary_rec, boundary_non_rec = det.boundary_detection(binary)
        corners_rec = det.get_corner(boundary_rec)
        corners_block, corners_img, corners_compo = det.block_or_compo(
            org, binary, corners_rec)

        compos = seg.clipping(org, corners_compo)
        compos_class = CNN.predict(compos)
        corners_compo, compos_class = det.compo_filter(org, corners_compo,
                                                       compos_class, is_icon)
        corners_compo, compos_class = det.strip_img(corners_compo,
                                                    compos_class, corners_img)

        corners_block, _ = det.rm_text(
            org, corners_block, ['block' for i in range(len(corners_block))])
        corners_compo, compos_class = det.rm_text(org, corners_compo,
                                                  compos_class)

        return corners_block, corners_compo, compos_class
# identify potential buttons and input bars
corners_block, corners_compo = det.uicomponent_or_block(org, corners_block)
# shrink images with extra borders
if is_shrink_img:
    corners_img = det.img_shrink(org, binary, corners_img)
# identify irregular-shape img from irregular shapes
corners_img += det.img_irregular(org, corners_nonrec)
# ignore too large and highly likely text areas
corners_img = det.img_refine(org, corners_img)
# merge overlapped corners, and remove nested corners
if is_merge_img:
    corners_img = det.merge_corners(corners_img)
# detect components on img
corners_compo += det.uicomponent_in_img(org, binary, corners_img)
# remove text misrecognition
corners_block = det.rm_text(org, corners_block)
corners_img = det.rm_text(org, corners_img)
corners_compo = det.rm_text(org, corners_compo)

# *** Step 5 *** text detection from cleaned image
img_clean = draw.draw_bounding_box(org,
                                   corners_img,
                                   color=(255, 255, 255),
                                   line=-1)
if is_ocr:
    draw_bounding, word = ocr.text_detection(org, img_clean)
else:
    draw_bounding = org
img_clean = draw.draw_bounding_box(img_clean,
                                   corners_compo,
                                   color=(255, 255, 255),
Beispiel #4
0
# *** Step 5 *** refine results: refine img according to size -> OCR text area filter
# ignore too large and highly likely text areas
corners_img = det.img_refine(
    org,
    corners_img,
    C.THRESHOLD_IMG_MAX_HEIGHT_RATIO,  # ignore too large imgs
    C.THRESHOLD_TEXT_EDGE_RATIO,
    C.THRESHOLD_TEXT_HEIGHT)  # ignore text areas
# merge overlapped corners, and remove nested corners
if is_merge_img:
    corners_img = det.merge_corners(corners_img)
# remove text
corners_block = det.rm_text(
    org,
    corners_block,
    C.THRESHOLD_IMG_MUST_HEIGHT,
    C.THRESHOLD_IMG_MUST_WIDTH,  # img assertion
    C.OCR_PADDING,
    C.OCR_MIN_WORD_AREA)  # ignore text area
corners_img = det.rm_text(
    org,
    corners_img,
    C.THRESHOLD_IMG_MUST_HEIGHT,
    C.THRESHOLD_IMG_MUST_WIDTH,  # img assertion
    C.OCR_PADDING,
    C.OCR_MIN_WORD_AREA)  # ignore text area
corners_compo = det.rm_text(
    org,
    corners_compo,
    C.THRESHOLD_IMG_MUST_HEIGHT,
    C.THRESHOLD_IMG_MUST_WIDTH,  # img assertion