def setup(): """General variables needed by multiple benchmark classes.""" global data_1d global data_2d global general_cube data_2d = np.zeros((ARTIFICIAL_DIM_SIZE, ) * 2) data_1d = data_2d[0] general_cube = cube.Cube(data_2d)
def setup(self, n_faces): mesh_kwargs = dict( n_nodes=n_faces + 2, n_edges=n_faces * 2, n_faces=n_faces ) self.mesh_coord = sample_meshcoord(sample_mesh_kwargs=mesh_kwargs) self.data = np.zeros(n_faces) self.cube_blank = cube.Cube(data=self.data) self.cube = self.create()
def setup(self): # Manufacture data from which contours can be derived. # Should generate 10 distinct contours, regardless of dim size. dim_size = int(ARTIFICIAL_DIM_SIZE / 5) repeat_number = int(dim_size / 10) repeat_range = range(int((dim_size ** 2) / repeat_number)) data = np.repeat(repeat_range, repeat_number) data = data.reshape((dim_size,) * 2) # These benchmarks are from a user perspective, so setting up a # user-level case that will prompt the calling of aux_coords.sort in plot.py. dim_coord = coords.DimCoord(np.arange(dim_size)) local_cube = cube.Cube(data) local_cube.add_aux_coord(dim_coord, 0) self.cube = local_cube
def time_basic(self): cube.Cube(data_2d)
def create(self): """Generic cube creation. cube_kwargs allow dynamic inclusion of different components; specified in subclasses.""" return cube.Cube(data=data_2d, **self.cube_kwargs)
def create(self): return cube.Cube( data=self.data, aux_coords_and_dims=[(self.mesh_coord, 0)] )