Beispiel #1
0
def calculate_V_minus_K(s, i, dartmouth=False):
    """
    Using the isochrones package, calculate the V-K color of a star using data
    from the KIC. Takes a pandas dataframe and the index of the star in the
    dataframe. Returns V-K for that star.
    """
    if dartmouth:
        grid = g_dar
    else:
        grid = mist
    mod = StarModel(grid,
                    Teff=(s.teff.values[i], s.teff.values[i]),
                    logg=(s.logg.values[i], s.logg_err1.values[i]),
                    feh=(s.feh.values[i], s.feh_err1.values[i]),
                    J=s.jmag.values[i],
                    K=s.kmag.values[i],
                    H=s.hmag.values[i],
                    Kp=s.kepmag.values[i],
                    parallax=(s.parallax.values[i],
                              s.parallax_error.values[i]),
                    use_emcee=True)
    mod.fit()
    if dartmouth:
        return np.median(mod.samples.V_mag) - np.median(mod.samples.Ks_mag)
    else:
        return np.median(mod.samples.V_mag) - np.median(mod.samples.K_mag)
Beispiel #2
0
def test_lnprob_higher_likelihood_real():
    """
    The same test as above but for simulated data.
    """
    df = pd.read_csv("../paper/code/data/simulated_data.csv")
    teff_err = 25  # Kelvin
    logg_err = .05  # dex
    feh_err = .05  # dex
    jmag_err = .01 # mags
    hmag_err = .01  # mags
    kmag_err = .01  # mags
    parallax_err = .05  # milliarcseconds
    prot_err = 1  # Days
    BV_err = .01  # mags

    i = 0
    iso_params = pd.DataFrame(dict({"teff": (df.teff[i], 25),
                                    "logg": (df.logg[i], .05),
                                    "feh": (df.feh[i], .05),
                                    "jmag": (df.jmag[i], .01),
                                    "hmag": (df.hmag[i], .01),
                                    "kmag": (df.kmag[i], .01),
                                    "parallax": (df.parallax[i], .05)}))

    # Set up the StarModel isochrones object.
    mod = StarModel(mist, **iso_params)
    args = [mod, df.prot[i], 1, None, None, False, False]  # lnprob arguments
    good_lnparams = [df.eep.values[i], df.age.values[i], df.feh.values[i],
                     np.log(df.d_kpc.values[i]*1e3), df.Av.values[i]]
    good_lnprob = lnprob(good_lnparams, *args)
    good_vs_bad(good_lnprob, good_lnparams, args, 10)
Beispiel #3
0
def test_for_nans():
    """
    Something is causing the lhf to return NaN. Get to the bottom of it!
    """
    df = pd.read_csv("../paper/code/data/simulated_data.csv")
    for i in range(len(df)):
        print(i, "of", len(df))
        iso_params = pd.DataFrame(
            dict({
                "teff": (df.teff[i], 10),
                "logg": (df.logg[i], .05),
                "feh": (df.feh[i], .001),
                "parallax": (df.parallax[i], .01)
            }))  # mas

        mod = StarModel(mist, **iso_params)

        N = 10000
        eeps = np.random.uniform(-100, 2000, N)
        lnages = np.random.uniform(0, 11, N)
        fehs = np.random.uniform(-5, 5, N)
        Ds = np.log(np.random.uniform(0, 10000, N))
        Avs = np.random.uniform(-.2, 1.2, N)
        # periods = 10**np.random.uniform(-1, 3, N)
        probs, priors = [np.empty(N) for i in range(2)]

        for j in trange(N):
            lnparams = [eeps[j], lnages[j], fehs[j], Ds[j], Avs[j]]
            args = [mod, df.prot[i], 1., None, None, False, False]
            probs[j] = lnprob(lnparams, *args)[0]
            priors[j] = lnprob(lnparams, *args)[1]

        print(len(probs), len(probs[np.isnan(probs)]))
        assert sum(np.isnan(probs)) == 0
Beispiel #4
0
def test_on_hot_star():
    df = pd.read_csv("paper/code/data/simulated_data_noisy.csv")
    i = 21
    iso_params = dict({
        "teff": (df.teff.values[i], df.teff_err.values[i]),
        "logg": (df.logg.values[i], df.logg_err.values[i]),
        "feh": (df.feh.values[i], df.feh_err.values[i]),
        "J": (df.jmag.values[i], df.J_err.values[i]),
        "H": (df.hmag.values[i], df.H_err.values[i]),
        "K": (df.kmag.values[i], df.K_err.values[i]),
        "B": (df.B.values[i], df.B_err.values[i]),
        "V": (df.V.values[i], df.V_err.values[i]),
        "G": (df.G.values[i], df.G_err.values[i]),
        "BP": (df.BP.values[i], df.BP_err.values[i]),
        "RP": (df.RP.values[i], df.RP_err.values[i]),
        "parallax": (df.parallax.values[i], df.parallax_err.values[i]),
        "maxAV":
        .1
    })

    lnparams = [329.58, np.log10(650 * 1e6), 0., np.log(177), .035]
    mod = StarModel(mist, **iso_params)
    args = [
        mod, df.prot.values[i], df.prot_err.values[i], False, False, True,
        "angus15"
    ]
    prob, prior = lnprob(lnparams, *args)
    print(prob, prior)
    assert np.isfinite(prob)
    assert np.isfinite(prior)
Beispiel #5
0
 def age(name):
     outfn = os.path.join(OUTPUTDIR, '{}_isochrones.hdf'.format(name))
     model = StarModel.load_hdf(outfn)
     age = model.samples['age']
     age = 10**age / 1e9
     p15, p50, p85 = age.quantile([0.15, 0.5, 0.85])
     return "${%.1f}^{%+.1f}_{%+.1f}$" % (p50, p85 - p50, p15 - p50)
Beispiel #6
0
def obs_to_starmodel(obs, iso=None):
    """ Given an Observation, return a StarModel object """

    if iso is None:
        iso = Dartmouth_Isochrone()

    mags = obs_to_mags(obs)
    parallax = (obs.tgas_source.parallax, obs.tgas_source.parallax_error)

    model = StarModel(iso, use_emcee=True, parallax=parallax, **mags)
    model.set_bounds(mass=(0.01, 20),
                     feh=(-1, 1),
                     distance=(0, 300),
                     AV=(0, 1))

    return model
Beispiel #7
0
def _ini1(ic):
    """ Single star
    """
    mod = StarModel.from_ini(ic, folder=os.path.join(FOLDER, 'star1'))
    assert mod.n_params == 5
    assert mod.obs.systems == [0]
    assert mod.obs.Nstars == {0: 1}
    p = [1.0, 9.4, 0.0, 100, 0.2]
    assert np.isfinite(mod.lnlike(p))
Beispiel #8
0
def _ini2(ic):
    """ A wide, well-resolved binary
    """
    mod = StarModel.from_ini(ic, folder=os.path.join(FOLDER, 'star2'))
    assert mod.n_params == 6
    assert mod.obs.systems == [0]
    assert mod.obs.Nstars == {0: 2}
    p = [1.0, 0.5, 9.4, 0.0, 100, 0.2]
    assert np.isfinite(mod.lnlike(p))
Beispiel #9
0
def _check_saving(mod):
    filename = os.path.join(chainsdir,
                            '{}.h5'.format(np.random.randint(1000000)))
    mod.save_hdf(filename)
    newmod = StarModel.load_hdf(filename)

    assert np.allclose(mod.samples, newmod.samples)
    assert mod.ic.bands == newmod.ic.bands

    os.remove(filename)
Beispiel #10
0
def _ini3(ic):
    """ A close resolved triple (unresolved in KIC, TwoMASS)

    modeled as a physically associated triple
    """
    mod = StarModel.from_ini(ic, folder=os.path.join(FOLDER, 'star3'))
    assert mod.n_params == 7
    assert mod.obs.systems == [0]
    assert mod.obs.Nstars == {0: 3}
    p = [1.0, 0.8, 0.5, 9.4, 0.0, 100, 0.2]
    assert np.isfinite(mod.lnlike(p))
Beispiel #11
0
def augment_chain(chain, isochrones_file, lpar_list):
    model = StarModel.load_hdf(isochrones_file)
    chain_star = model.samples
    chain_star['agegyr'] = 10**chain_star['age'] / 1e9
    chain_star = chain_star['Teff mass radius agegyr distance'.split()]
    chain_star['rhostar'] = 1.410 * chain_star.mass * chain_star.radius**-3
    nchain = len(chain)
    chain_star = chain_star.sample(n=nchain, replace=True)
    chain_star.index = chain.index
    chain = pd.concat([chain_star, chain], axis=1)
    if list(chain.columns).count('dvdt') > 0:
        chain['dvdt'] *= 365  # Fitting is done in m/s/day, we want m/s/yr

    i_planet = 1
    for lpar in lpar_list:
        e = chain['e%i' % i_planet]
        k = chain['k%i' % i_planet]
        RpRstar = np.random.normal(
            loc=lpar.RpRstar, scale=lpar.RpRstar_err, size=nchain) * 1e-2
        P = np.random.normal(loc=lpar.P, scale=lpar.P_err, size=nchain)
        T0 = np.random.normal(loc=lpar.T0, scale=lpar.T0_err, size=nchain)

        Rp = chain.radius * 109.045 * RpRstar

        Mpsini = radvel.orbit.Msini(k,
                                    P,
                                    chain['mass'],
                                    e,
                                    Msini_units='earth')
        rhop = radvel.orbit.density(Mpsini, Rp)

        Lstar = radvel.orbit.Lstar(chain['radius'], chain['Teff'])
        a = ((c.G * chain['mass'] * u.Msun * (P * u.d)**2 / 4 /
              np.pi**2)**(1 / 3.)).to(u.AU)
        a = a.to(u.AU).value
        Sinc = radvel.orbit.Sinc(Lstar, a)
        Teq = radvel.orbit.Teq(Sinc)

        chain['P%i' % i_planet] = P
        chain['T0%i' % i_planet] = T0
        chain['RpRstar%i' % i_planet] = RpRstar
        chain['Rp%i' % i_planet] = Rp
        chain['Mpsini%i' % i_planet] = Mpsini
        chain['rhop%i' % i_planet] = rhop

        chain['Teq%i' % i_planet] = Teq
        chain['Lstar%i' % i_planet] = Lstar
        chain['a%i' % i_planet] = a
        chain['Sinc%i' % i_planet] = Sinc
        i_planet += 1

    print_fmt_chain(fmt_chain(chain))

    return chain
Beispiel #12
0
def _check_saving(mod):
    filename = os.path.join(chainsdir, "{}.h5".format(np.random.randint(1000000)))
    mod.save_hdf(filename)
    assert len(tb.file._open_files.get_handlers_by_name(filename)) == 0

    newmod = StarModel.load_hdf(filename)
    assert len(tb.file._open_files.get_handlers_by_name(filename)) == 0

    assert_frame_equal(mod.samples, newmod.samples)
    assert mod.ic.bands == newmod.ic.bands

    os.remove(filename)
Beispiel #13
0
def _check_saving(mod):
    filename = os.path.join(chainsdir, '{}.h5'.format(np.random.randint(1000000)))
    mod.save_hdf(filename)
    assert len(tb.file._open_files.get_handlers_by_name(filename)) == 0

    newmod = StarModel.load_hdf(filename)
    assert len(tb.file._open_files.get_handlers_by_name(filename)) == 0

    assert_frame_equal(mod.samples, newmod.samples)
    assert mod.ic.bands == newmod.ic.bands


    os.remove(filename)
Beispiel #14
0
def _ini3_2(ic):
    """ A close resolved triple (unresolved in KIC, TwoMASS)

    modeled as a physically associated binary plus non-associated single
    """
    mod = StarModel.from_ini(ic,
                             folder=os.path.join(FOLDER, 'star3'),
                             index=[0, 0, 1])
    assert mod.n_params == 11
    assert mod.obs.systems == [0, 1]
    assert mod.obs.Nstars == {0: 2, 1: 1}
    p = [1.0, 0.8, 9.4, 0.0, 100, 0.2, 1.0, 9.7, 0.0, 200, 0.5]
    assert np.isfinite(mod.lnlike(p))
Beispiel #15
0
def test_lnprob_higher_likelihood_sun():
    """
    Make sure the likelihood goes down when the parameters are a worse fit.
    Test on Solar values.
    """
    iso_params = pd.DataFrame(dict({"teff": (5777, 10),
                                "logg": (4.44, .05),
                                "feh": (0., .001),
                                "parallax": (1., .01), # mas
                                "B": (15, 0.02)}))

    # Set up the StarModel isochrones object.
    mod = StarModel(mist, **iso_params)
    args = [mod, 26., 1., None, None, False, False]  # the lnprob arguments]

    good_lnparams = [346, np.log10(4.56*1e9), 0., np.log(1000), 0.]
    good_lnprob = lnprob(good_lnparams, *args)
    good_vs_bad(good_lnprob, good_lnparams, args, 10)
Beispiel #16
0
def test_praesepe_angus_model():
    df = pd.read_csv("paper/code/data/praesepe.csv")
    df = df.iloc[0]

    iso_params = {
        "G": (df["G"], df["G_err"]),
        "BP": (df["bp"], df["BP_err"]),
        "RP": (df["rp"], df["RP_err"]),
        "parallax": (df["parallax"], df["parallax_err"]),
        "maxAV": .1
    }

    inits = [330, np.log10(650 * 1e6), 0., np.log(177), 0.035]
    mod = StarModel(mist, **iso_params)
    args = [mod, df["prot"], df["prot"] * .01, False, False, True, "angus15"]
    prob, prior = lnprob(inits, *args)
    assert np.isfinite(prob)
    assert np.isfinite(prior)
Beispiel #17
0
def test_lnprob_higher_likelihood_sun():
    """
    Make sure the likelihood goes down when the parameters are a worse fit.
    Test on Solar values.
    """

    iso_params = {
        "teff": (5777, 10),
        "logg": (4.44, .05),
        "feh": (0., .001),
        "parallax": (1., .01),  # milliarcseconds
        "B": (15.48, 0.02)
    }

    # Set up the StarModel isochrones object.
    mod = StarModel(mist, **iso_params)
    # the lnprob arguments]
    args = [mod, 26., 1., False, False, True, "angus15"]

    good_lnparams = [346, np.log10(4.56 * 1e9), 0., np.log(1000), 0.]
    good_lnprob = lnprob(good_lnparams, *args)
    good_vs_bad(good_lnprob, good_lnparams, args, 10)
Beispiel #18
0
def isochrones(name):
    dar = Dartmouth_Isochrone()
    Teff, logg, feh, vsini, vmag = parameters(name)
    model = StarModel(
        dar,
        Teff=Teff,
        feh=feh,
        logg=logg,
        V=vmag,
    )
    outfn = os.path.join(OUTPUTDIR, '{}_isochrones.hdf'.format(name))
    print "performing isochrones analysis on {}".format(name)
    model.fit(overwrite=True)
    columns = 'Teff logg feh mass radius age distance'.split()
    print "performing isochrones analysis on {}".format(name)
    print model.samples[columns].quantile([0.15, 0.5, 0.85]).T.to_string()
    model.save_hdf(outfn)
Beispiel #19
0
def colour2physical(kid, plot=False):

    # fetch photometry
    client = kplr.API()
    star = client.star(kid)
    mags = {'H': (star.kic_hmag, 0.08),
            'J': (star.kic_jmag, 0.08),
            'K': (star.kic_kmag, 0.08),
            'g':(star.kic_gmag, 0.08),
            'r':(star.kic_rmag, 0.08)}

    # find the mass and radius using isochrones
    dar = Dartmouth_Isochrone()
    smod_phot = StarModel(dar, **mags)
    result = smod_phot.fit_mcmc()

    # save samples and triangle plot
    if plot:
        smod_phot.triangle_plots("test", format="pdf")
    smod_phot.save_hdf("samples_%s.h5" % str(int(kid)))
    max_like = smod_phot.maxlike()
    print max_like
    np.savetxt("maxlike.txt", max_like)
Beispiel #20
0
    def fit(self,
            inits=[355, 9.659, 0., 1000., .01],
            nwalkers=24,
            max_n=100000,
            thin_by=100,
            burnin=0,
            iso_only=False,
            gyro_only=False):
        """Run MCMC on a star.

        Explore the posterior probability density function of the stellar
        parameters using MCMC (via emcee).

        Args:
            inits (Optional[array-like]): A list of initial values to use for
            EEP, age (in log10[yrs]), feh, distance (in pc) and Av. The
            defaults are Solar values at 1000 pc with .01 extinction.
            nwalkers (Optional[int]): The number of walkers to use with emcee.
            The default is 24.
            max_n (Optional[int]): The maximum number of samples to obtain
                (although not necessarily to save -- see thin_by). The default
                is 100000.
            thin_by (Optional[int]): Only one in every thin_by samples will be
                saved. The default is 100. Set = 1 to save every sample (note
                this substantially slows down the MCMC process because of the
                additional I/O time.
            burnin (Optional[int]): The number of SAVED samples to throw away
                when accessing the results. This number cannot exceed the
                number of saved samples (which is max_n/thin_by). Default = 0.
            iso_only (Optional[bool]): If true only the isochronal likelihood
                function will be used.
            gyro_only (Optional[bool]): If true only the gyrochronal
                likelihood function will be used. Cannot be true if iso_only
                is true.

        """

        self.max_n = max_n
        self.nwalkers = nwalkers
        self.thin_by = thin_by

        if iso_only:
            assert gyro_only == False, "You cannot set both iso_only and "\
                "gyro_only to be True."

        if gyro_only:
            assert mass, "If gyro_only is set to True, you must " \
                "provide a B-V colour and a mass."

        if burnin > max_n / thin_by:
            burnin = int(max_n / thin_by / 3)
            print("Automatically setting burn in to {}".format(burnin))

        p_init = [inits[0], inits[1], inits[2], np.log(inits[3]), inits[4]]
        self.p_init = p_init

        np.random.seed(42)

        # Create the directory if it doesn't already exist.
        if not os.path.exists(self.savedir):
            os.makedirs(self.savedir)

        # Set up the backend
        # Don't forget to clear it in case the file already exists
        fn = "{0}/{1}.h5".format(self.savedir, self.filename)
        backend = emcee.backends.HDFBackend(fn)
        nwalkers, ndim = 24, 5
        backend.reset(nwalkers, ndim)
        self.backend = backend

        # Set up the StarModel object needed to calculate the likelihood.
        mod = StarModel(mist, **self.iso_params)  # StarModel isochrones obj

        # lnprob arguments
        args = [
            mod, self.prot, self.prot_err, self.bv, self.mass, iso_only,
            gyro_only
        ]
        self.args = args

        # Run the MCMC
        # sampler = run_mcmc(args, p_init, backend, nwalkers=nwalkers,
        #                    max_n=max_n, thin_by=thin_by)
        sampler = self.run_mcmc()
        self.sampler = sampler
def main():
    # TODO: bad, hard-coded...
    # base_path = '/Volumes/ProjectData/gaia-comoving-followup/'
    base_path = '../../data/'
    db_path = path.join(base_path, 'db.sqlite')
    engine = db_connect(db_path)
    session = Session()

    chain_path = path.abspath('./isochrone_chains')
    os.makedirs(chain_path, exist_ok=True)

    # Check out the bottom of "Color-magnitude diagram.ipynb":
    interesting_group_ids = [1500, 1229, 1515]

    all_photometry = OrderedDict([
        ('1500-8455',
         OrderedDict([('J', (6.8379998, 0.021)),
                      ('H', (6.4640002, 0.017000001)),
                      ('K', (6.3369999, 0.017999999)),
                      ('W1', (6.2950001, 0.093000002)),
                      ('W2', (6.2490001, 0.026000001)),
                      ('W3', (6.3330002, 0.015)), ('B', (9.5950003, 0.022)),
                      ('V', (8.5120001, 0.014))])),
        ('1500-1804',
         OrderedDict([('J', (6.9039998, 0.041000001)),
                      ('H', (6.8559999, 0.027000001)),
                      ('K', (6.7989998, 0.017000001)),
                      ('W1', (6.803, 0.064999998)),
                      ('W2', (6.7600002, 0.018999999)),
                      ('W3', (6.8270001, 0.016000001)),
                      ('B', (7.4980001, 0.015)), ('V', (7.289, 0.011))])),
        ('1229-1366',
         OrderedDict([('J', (6.7290001, 0.024)), ('H', (6.2449999, 0.02)),
                      ('K', (6.1529999, 0.023)),
                      ('W1', (6.1799998, 0.096000001)), ('W2', (6.04, 0.035)),
                      ('W3', (6.132, 0.016000001)), ('B', (9.5539999, 0.021)),
                      ('V', (8.4619999, 0.014))])),
        ('1229-7470',
         OrderedDict([
             ('J', (9.1709995, 0.024)), ('H', (8.7959995, 0.026000001)),
             ('K', (8.7299995, 0.022)), ('W1', (8.6669998, 0.023)),
             ('W2', (8.7189999, 0.02)), ('W3', (8.6680002, 0.025)),
             ('B', (11.428, 0.054000001)), ('V', (10.614, 0.039999999))
         ])),
        ('1515-3584',
         OrderedDict([('J', (5.363999843597412, 0.024000000208616257)),
                      ('H', (4.965000152587891, 0.035999998450279236)),
                      ('K', (4.815999984741211, 0.032999999821186066)),
                      ('W1', (4.758, 0.215)), ('W2', (4.565, 0.115)),
                      ('W3', (4.771, 0.015)),
                      ('B', (8.347999572753906, 0.01600000075995922)),
                      ('V', (7.182000160217285, 0.009999999776482582))])),
        ('1515-1834',
         OrderedDict([('J', (8.855999946594238, 0.024000000208616257)),
                      ('H', (8.29699993133545, 0.020999999716877937)),
                      ('K', (8.178999900817871, 0.017999999225139618)),
                      ('W1', (8.117, 0.022)), ('W2', (8.15, 0.019)),
                      ('W3', (8.065, 0.02)),
                      ('B', (12.309000015258789, 0.11999999731779099)),
                      ('V', (11.069999694824219, 0.054999999701976776))]))
    ])

    for k in all_photometry:
        samples_file = path.join(chain_path, '{0}.hdf5'.format(k))

        if path.exists(samples_file):
            logger.info("skipping {0} - samples exist at {1}".format(
                k, samples_file))
            continue

        phot = all_photometry[k]
        obs = session.query(Observation).filter(Observation.object == k).one()
        plx = (obs.tgas_source.parallax, obs.tgas_source.parallax_error)

        # fit an isochrone
        model = StarModel(iso, use_emcee=True, parallax=plx, **phot)
        model.set_bounds(mass=(0.01, 20),
                         feh=(-1, 1),
                         distance=(0, 300),
                         AV=(0, 1))

        # initial conditions for emcee walkers
        nwalkers = 128

        p0 = []
        m0, age0, feh0 = model.ic.random_points(nwalkers,
                                                minmass=0.01,
                                                maxmass=10.,
                                                minfeh=-1,
                                                maxfeh=1)
        _, max_distance = model.bounds('distance')
        _, max_AV = model.bounds('AV')
        d0 = 10**(np.random.uniform(0, np.log10(max_distance), size=nwalkers))
        AV0 = np.random.uniform(0, max_AV, size=nwalkers)
        p0 += [m0]
        p0 += [age0, feh0, d0, AV0]

        p0 = np.array(p0).T
        npars = p0.shape[1]

        # run emcee
        ninit = 256
        nburn = 1024
        niter = 4096

        logger.debug('Running emcee - initial sampling...')
        sampler = emcee.EnsembleSampler(nwalkers, npars, model.lnpost)
        # pos, prob, state = sampler.run_mcmc(p0, ninit)

        for pos, prob, state in tqdm(sampler.sample(p0, iterations=ninit),
                                     total=ninit):
            pass

        # cull the weak walkers
        best_ix = sampler.flatlnprobability.argmax()
        best_p0 = (sampler.flatchain[best_ix][None] +
                   np.random.normal(0, 1E-5, size=(nwalkers, npars)))

        sampler.reset()
        logger.debug('burn-in...')
        for pos, prob, state in tqdm(sampler.sample(best_p0, iterations=nburn),
                                     total=nburn):
            pass
        # pos,_,_ = sampler.run_mcmc(best_p0, nburn)

        sampler.reset()
        logger.debug('sampling...')
        # _ = sampler.run_mcmc(pos, niter)
        for pos, prob, state in tqdm(sampler.sample(pos, iterations=niter),
                                     total=niter):
            pass

        model._sampler = sampler
        model._make_samples(0.08)

        model.samples.to_hdf(samples_file, key='samples')
        # np.save('isochrone_chains/chain.npy', sampler.chain)
        logger.debug('...done and saved!')
Beispiel #22
0
    def from_ini(cls, folder='.',
                 ini_file='fpp.ini', recalc=False, refit_trap=False,
                 star_ini_file='star.ini', ichrone=DARTMOUTH,
                 **kwargs):
        """
        To enable simple usage, initializes a FPPCalculation from a .ini file

        By default, a file called ``fpp.ini`` will be looked for in the
        current folder.  Also present must be a ``star.ini`` file that
        contains the observed properties of the target star.

        ``fpp.ini`` must be of the following form::

            name = k2oi
            ra = 11:30:14.510
            dec = +07:35:18.21

            period = 32.988 #days
            rprs = 0.0534   #Rp/Rstar
            photfile = lc_k2oi.csv

            [constraints]
            maxrad = 10 #exclusion radius [arcsec]
            secthresh = 0.001 #maximum allowed secondary signal depth

            #This variable defines contrast curves
            #ccfiles = Keck_J.cc, Lick_J.cc

        Photfile must be a text file with columns ``(days_from_midtransit,
        flux, flux_err)``.  Both whitespace- and comma-delimited
        will be tried, using ``np.loadtxt``.  Photfile need not be there
        if there is a pickled :class:`TransitSignal` saved in the same
        directory as ``ini_file``, named ``trsig.pkl`` (or another name
        as defined by ``trsig`` keyword in ``.ini`` file).

        ``star.ini`` should look something like the following::

            B = 15.005, 0.06
            V = 13.496, 0.05
            g = 14.223, 0.05
            r = 12.858, 0.04
            i = 11.661, 0.08
            J = 9.763, 0.03
            H = 9.135, 0.03
            K = 8.899, 0.02
            W1 = 8.769, 0.023
            W2 = 8.668, 0.02
            W3 = 8.552, 0.025
            Kepler = 12.473

            #Teff = 3503, 80
            #feh = 0.09, 0.09
            #logg = 4.89, 0.1

        Any star properties can be defined; if errors are included
        then they will be used in the :class:`isochrones.StarModel`
        MCMC fit.
        Spectroscopic parameters (``Teff, feh, logg``) are optional.
        If included, then they will also be included in
        :class:`isochrones.StarModel` fit.  A magnitude for the
        band in which the transit signal is observed (e.g., ``Kepler``)
        is required, though need not have associated uncertainty.


        :param folder:
            Folder to find configuration files.

        :param ini_file:
            Input configuration file.

        :param star_ini_file:
            Input config file for :class:`isochrones.StarModel` fits.

        :param recalc:
            Whether to re-calculate :class:`PopulationSet`, if a
            ``popset.h5`` file is already present

        :param **kwargs:
            Keyword arguments passed to :class:`PopulationSet`.

        Creates:

            * ``trsig.pkl``: the pickled :class:`vespa.TransitSignal` object.
            * ``starfield.h5``: the TRILEGAL field star simulation
            * ``starmodel.h5``: the :class:`isochrones.StarModel` fit
            * ``popset.h5``: the :class:`vespa.PopulationSet` object
              representing the model population simulations.

        """

        if not os.path.isabs(ini_file):
            config = ConfigObj(os.path.join(folder,ini_file))
        else:
            config = ConfigObj(ini_file)

        folder = os.path.abspath(folder)

        #required items
        name = config['name']
        ra, dec = config['ra'], config['dec']
        period = float(config['period'])
        rprs = float(config['rprs'])

        #load starmodels if there;
        # if not, create them.
        if 'starmodel_basename' not in config:
            starmodel_basename = 'dartmouth_starmodel'
        else:
            starmodel_basename = config['starmodel_basename']
        single_starmodel_file = os.path.join(folder,'{}_single.h5'.format(starmodel_basename))
        binary_starmodel_file = os.path.join(folder,'{}_binary.h5'.format(starmodel_basename))
        triple_starmodel_file = os.path.join(folder,'{}_triple.h5'.format(starmodel_basename))

        #Single
        try:
            single_starmodel = StarModel.load_hdf(single_starmodel_file)
            logging.info('Single StarModel loaded from {}'.format(single_starmodel_file))
        except:
            single_starmodel = StarModel.from_ini(ichrone, folder,
                                           ini_file=star_ini_file)
            logging.info('Fitting single StarModel to {}...'.format(single_starmodel.properties))
            single_starmodel.fit()
            single_starmodel.save_hdf(single_starmodel_file)
            triangle_base = os.path.join(folder, '{}_triangle_single'.format(starmodel_basename))
            single_starmodel.triangle_plots(triangle_base)
            logging.info('StarModel fit done.')

        #Binary
        try:
            binary_starmodel = BinaryStarModel.load_hdf(binary_starmodel_file)
            logging.info('BinaryStarModel loaded from {}'.format(binary_starmodel_file))
        except:
            binary_starmodel = BinaryStarModel.from_ini(ichrone, folder,
                                                        ini_file=star_ini_file)
            logging.info('Fitting BinaryStarModel to {}...'.format(binary_starmodel.properties))
            binary_starmodel.fit()
            binary_starmodel.save_hdf(binary_starmodel_file)
            triangle_base = os.path.join(folder, '{}_triangle_binary'.format(starmodel_basename))
            binary_starmodel.triangle_plots(triangle_base)
            logging.info('BinaryStarModel fit done.')

        #Triple
        try:
            triple_starmodel = TripleStarModel.load_hdf(triple_starmodel_file)
            logging.info('TripleStarModel loaded from {}'.format(triple_starmodel_file))
        except:
            triple_starmodel = TripleStarModel.from_ini(ichrone, folder,
                                                        ini_file=star_ini_file)
            logging.info('Fitting TripleStarModel to {}...'.format(triple_starmodel.properties))
            triple_starmodel.fit()
            triple_starmodel.save_hdf(triple_starmodel_file)
            triangle_base = os.path.join(folder, '{}_triangle_triple'.format(starmodel_basename))
            triple_starmodel.triangle_plots(triangle_base)
            logging.info('TripleStarModel fit done.')


        if 'popset' in config:
            popset_file = config['popset']
            if not os.path.isabs(popset_file):
                popset_file = os.path.join(folder, popset_file)
        else:
            popset_file = os.path.join(folder,'popset.h5')

        if 'starfield' in config:
            trilegal_file = config['starfield']
            if not os.path.isabs(trilegal_file):
                trilegal_file = os.path.join(folder, trilegal_file)
        else:
            trilegal_file = os.path.join(folder,'starfield.h5')

        if 'trsig' in config:
            trsig_file = config['trsig']
            if not os.path.isabs(trsig_file):
                trsig_file = os.path.join(folder, trsig_file)
        else:
            trsig_file = os.path.join(folder,'trsig.pkl')


        #create TransitSignal
        if os.path.exists(trsig_file):
            logging.info('Loading transit signal from {}...'.format(trsig_file))
            trsig = pickle.load(open(trsig_file,'rb'))
        else:
            if 'photfile' not in config:
                raise AttributeError('If transit pickle file (trsig.pkl) '+
                                     'not present, "photfile" must be'+
                                     'defined.')
            if not os.path.isabs(config['photfile']):
                photfile = os.path.join(folder,config['photfile'])
            else:
                photfile = config['photfile']

            logging.info('Reading transit signal photometry ' +
                         'from {}...'.format(photfile))
            try:
                ts, fs, dfs = np.loadtxt(photfile, unpack=True)
            except:
                ts, fs, dfs = np.loadtxt(photfile, delimiter=',', unpack=True)

            trsig = TransitSignal(ts, fs, dfs, P=period, name=name)
            logging.info('Fitting transitsignal with MCMC...')
            trsig.MCMC()
            trsig.save(trsig_file)

        #create PopulationSet
        try:
            if recalc:
                if os.path.exists(popset_file):
                    os.remove(popset_file)
                raise RuntimeError #just to get to except block
            try:
                popset = PopulationSet.load_hdf(popset_file)
            except HDF5ExtError:
                os.remove(popset_file)
                logging.warning('{} file corrupted; removing.'.format(popset_file))
                raise RuntimeError #to get to except block
            for m in DEFAULT_MODELS:
                popset[m] #should there be a better way to check this? (yes)
            if refit_trap:
                os.remove(popset_file)
                for pop in popset.poplist:
                    logging.info('Re-fitting trapezoids for {}...'.format(pop.model))
                    pop.fit_trapezoids()
                    pop.save_hdf(popset_file, pop.modelshort,
                                 append=True)
                popset = PopulationSet.load_hdf(popset_file)

            logging.info('PopulationSet loaded from {}'.format(popset_file))
        except:
            if recalc:
                do_only = DEFAULT_MODELS
            else:
                try:
                    popset = PopulationSet.load_hdf(popset_file)
                    do_only = []
                    for m in DEFAULT_MODELS:
                        try:
                            popset[m]
                        except:
                            do_only.append(m)
                except:
                    do_only = DEFAULT_MODELS

            if os.path.exists(popset_file):
                logging.warning('{} exists, but regenerating Population Set ({})...'.format(popset_file, do_only),
                                exc_info=True)


            popset = PopulationSet(period=period, mags=single_starmodel.mags,
                                   ra=ra, dec=dec,
                                   trilegal_filename=trilegal_file,
                                   starmodel=single_starmodel,
                                   binary_starmodel=binary_starmodel,
                                   triple_starmodel=triple_starmodel,
                                   rprs=rprs, do_only=do_only,
                                   savefile=popset_file, **kwargs)


        fpp = cls(trsig, popset, folder=folder)

        #############
        # Apply constraints

        # Exclusion radius
        maxrad = float(config['constraints']['maxrad'])
        fpp.set_maxrad(maxrad)
        if 'secthresh' in config['constraints']:
            secthresh = float(config['constraints']['secthresh'])
            if not np.isnan(secthresh):
                fpp.apply_secthresh(secthresh)

        # Odd-even constraint
        diff = 3 * np.max(trsig.depthfit[1])
        fpp.constrain_oddeven(diff)

        #apply contrast curve constraints if present
        if 'ccfiles' in config['constraints']:
            ccfiles = config['constraints']['ccfiles']
            if isinstance(ccfiles, basestring):
                ccfiles = [ccfiles]
            for ccfile in ccfiles:
                if not os.path.isabs(ccfile):
                    ccfile = os.path.join(folder, ccfile)
                m = re.search('(\w+)_(\w+)\.cc',os.path.basename(ccfile))
                if not m:
                    logging.warning('Invalid CC filename ({}); '.format(ccfile) +
                                     'skipping.')
                    continue
                else:
                    band = m.group(2)
                    inst = m.group(1)
                    name = '{} {}-band'.format(inst, band)
                    cc = ContrastCurveFromFile(ccfile, band, name=name)
                    fpp.apply_cc(cc)

        #apply "velocity contrast curve" if present
        if 'vcc' in config['constraints']:
            dv = float(config['constraints']['vcc'][0])
            dmag = float(config['constraints']['vcc'][1])
            vcc = VelocityContrastCurve(dv, dmag)
            fpp.apply_vcc(vcc)

        return fpp
Beispiel #23
0
def _check_spec(ic):
    mod = StarModel(ic, Teff=(5700,100), logg=(4.5, 0.1), feh=(0.0, 0.2))
    assert np.isfinite(mod.lnlike([1.0, 9.6, 0.1, 200, 0.2]))
Beispiel #24
0
    def from_ini(cls,
                 folder='.',
                 ini_file='fpp.ini',
                 recalc=False,
                 refit_trap=False,
                 star_ini_file='star.ini',
                 ichrone=DARTMOUTH,
                 **kwargs):
        """
        To enable simple usage, initializes a FPPCalculation from a .ini file

        By default, a file called ``fpp.ini`` will be looked for in the 
        current folder.  Also present must be a ``star.ini`` file that 
        contains the observed properties of the target star.

        ``fpp.ini`` must be of the following form::

            name = k2oi
            ra = 11:30:14.510
            dec = +07:35:18.21

            period = 32.988 #days
            rprs = 0.0534   #Rp/Rstar
            photfile = lc_k2oi.csv

            [constraints]
            maxrad = 10 #exclusion radius [arcsec]
            secthresh = 0.001 #maximum allowed secondary signal depth

            #This variable defines contrast curves
            #ccfiles = Keck_J.cc, Lick_J.cc

        Photfile must be a text file with columns ``(days_from_midtransit,
        flux, flux_err)``.  Both whitespace- and comma-delimited
        will be tried, using ``np.loadtxt``.  Photfile need not be there
        if there is a pickled :class:`TransitSignal` saved in the same
        directory as ``ini_file``, named ``trsig.pkl`` (or another name
        as defined by ``trsig`` keyword in ``.ini`` file). 

        ``star.ini`` should look something like the following::

            B = 15.005, 0.06
            V = 13.496, 0.05
            g = 14.223, 0.05
            r = 12.858, 0.04
            i = 11.661, 0.08
            J = 9.763, 0.03
            H = 9.135, 0.03
            K = 8.899, 0.02
            W1 = 8.769, 0.023
            W2 = 8.668, 0.02
            W3 = 8.552, 0.025
            Kepler = 12.473

            #Teff = 3503, 80
            #feh = 0.09, 0.09
            #logg = 4.89, 0.1            

        Any star properties can be defined; if errors are included
        then they will be used in the :class:`isochrones.StarModel` 
        MCMC fit.
        Spectroscopic parameters (``Teff, feh, logg``) are optional.
        If included, then they will also be included in
        :class:`isochrones.StarModel` fit.  A magnitude for the
        band in which the transit signal is observed (e.g., ``Kepler``)
        is required, though need not have associated uncertainty.


        :param folder: 
            Folder to find configuration files.

        :param ini_file:
            Input configuration file.

        :param star_ini_file:
            Input config file for :class:`isochrones.StarModel` fits.

        :param recalc:
            Whether to re-calculate :class:`PopulationSet`, if a
            ``popset.h5`` file is already present

        :param **kwargs:
            Keyword arguments passed to :class:`PopulationSet`.

        Creates:
        
            * ``trsig.pkl``: the pickled :class:`vespa.TransitSignal` object.
            * ``starfield.h5``: the TRILEGAL field star simulation
            * ``starmodel.h5``: the :class:`isochrones.StarModel` fit
            * ``popset.h5``: the :class:`vespa.PopulationSet` object
              representing the model population simulations.
                    
        """

        if not os.path.isabs(ini_file):
            config = ConfigObj(os.path.join(folder, ini_file))
        else:
            config = ConfigObj(ini_file)

        folder = os.path.abspath(folder)

        #required items
        name = config['name']
        ra, dec = config['ra'], config['dec']
        period = float(config['period'])
        rprs = float(config['rprs'])

        #load starmodels if there;
        # if not, create them.
        if 'starmodel_basename' not in config:
            starmodel_basename = 'dartmouth_starmodel'
        else:
            starmodel_basename = config['starmodel_basename']
        single_starmodel_file = os.path.join(
            folder, '{}_single.h5'.format(starmodel_basename))
        binary_starmodel_file = os.path.join(
            folder, '{}_binary.h5'.format(starmodel_basename))
        triple_starmodel_file = os.path.join(
            folder, '{}_triple.h5'.format(starmodel_basename))

        #Single
        try:
            single_starmodel = StarModel.load_hdf(single_starmodel_file)
            logging.info('Single StarModel loaded from {}'.format(
                single_starmodel_file))
        except:
            single_starmodel = StarModel.from_ini(ichrone,
                                                  folder,
                                                  ini_file=star_ini_file)
            logging.info('Fitting single StarModel to {}...'.format(
                single_starmodel.properties))
            single_starmodel.fit()
            single_starmodel.save_hdf(single_starmodel_file)
            triangle_base = os.path.join(
                folder, '{}_triangle_single'.format(starmodel_basename))
            single_starmodel.triangle_plots(triangle_base)
            logging.info('StarModel fit done.')

        #Binary
        try:
            binary_starmodel = BinaryStarModel.load_hdf(binary_starmodel_file)
            logging.info(
                'BinaryStarModel loaded from {}'.format(binary_starmodel_file))
        except:
            binary_starmodel = BinaryStarModel.from_ini(ichrone,
                                                        folder,
                                                        ini_file=star_ini_file)
            logging.info('Fitting BinaryStarModel to {}...'.format(
                binary_starmodel.properties))
            binary_starmodel.fit()
            binary_starmodel.save_hdf(binary_starmodel_file)
            triangle_base = os.path.join(
                folder, '{}_triangle_binary'.format(starmodel_basename))
            binary_starmodel.triangle_plots(triangle_base)
            logging.info('BinaryStarModel fit done.')

        #Triple
        try:
            triple_starmodel = TripleStarModel.load_hdf(triple_starmodel_file)
            logging.info(
                'TripleStarModel loaded from {}'.format(triple_starmodel_file))
        except:
            triple_starmodel = TripleStarModel.from_ini(ichrone,
                                                        folder,
                                                        ini_file=star_ini_file)
            logging.info('Fitting TripleStarModel to {}...'.format(
                triple_starmodel.properties))
            triple_starmodel.fit()
            triple_starmodel.save_hdf(triple_starmodel_file)
            triangle_base = os.path.join(
                folder, '{}_triangle_triple'.format(starmodel_basename))
            triple_starmodel.triangle_plots(triangle_base)
            logging.info('TripleStarModel fit done.')

        if 'popset' in config:
            popset_file = config['popset']
            if not os.path.isabs(popset_file):
                popset_file = os.path.join(folder, popset_file)
        else:
            popset_file = os.path.join(folder, 'popset.h5')

        if 'starfield' in config:
            trilegal_file = config['starfield']
            if not os.path.isabs(trilegal_file):
                trilegal_file = os.path.join(folder, trilegal_file)
        else:
            trilegal_file = os.path.join(folder, 'starfield.h5')

        if 'trsig' in config:
            trsig_file = config['trsig']
            if not os.path.isabs(trsig_file):
                trsig_file = os.path.join(folder, trsig_file)
        else:
            trsig_file = os.path.join(folder, 'trsig.pkl')

        #create TransitSignal
        if os.path.exists(trsig_file):
            logging.info(
                'Loading transit signal from {}...'.format(trsig_file))
            trsig = pickle.load(open(trsig_file, 'rb'))
        else:
            if 'photfile' not in config:
                raise AttributeError('If transit pickle file (trsig.pkl) ' +
                                     'not present, "photfile" must be' +
                                     'defined.')
            if not os.path.isabs(config['photfile']):
                photfile = os.path.join(folder, config['photfile'])
            else:
                photfile = config['photfile']

            logging.info('Reading transit signal photometry ' +
                         'from {}...'.format(photfile))
            try:
                ts, fs, dfs = np.loadtxt(photfile, unpack=True)
            except:
                ts, fs, dfs = np.loadtxt(photfile, delimiter=',', unpack=True)

            trsig = TransitSignal(ts, fs, dfs, P=period, name=name)
            logging.info('Fitting transitsignal with MCMC...')
            trsig.MCMC()
            trsig.save(trsig_file)

        #create PopulationSet
        try:
            if recalc:
                if os.path.exists(popset_file):
                    os.remove(popset_file)
                raise RuntimeError  #just to get to except block
            try:
                popset = PopulationSet.load_hdf(popset_file)
            except HDF5ExtError:
                os.remove(popset_file)
                logging.warning(
                    '{} file corrupted; removing.'.format(popset_file))
                raise RuntimeError  #to get to except block
            for m in DEFAULT_MODELS:
                popset[m]  #should there be a better way to check this? (yes)
            if refit_trap:
                os.remove(popset_file)
                for pop in popset.poplist:
                    logging.info('Re-fitting trapezoids for {}...'.format(
                        pop.model))
                    pop.fit_trapezoids()
                    pop.save_hdf(popset_file, pop.modelshort, append=True)
                popset = PopulationSet.load_hdf(popset_file)

            logging.info('PopulationSet loaded from {}'.format(popset_file))
        except:
            if recalc:
                do_only = DEFAULT_MODELS
            else:
                try:
                    popset = PopulationSet.load_hdf(popset_file)
                    do_only = []
                    for m in DEFAULT_MODELS:
                        try:
                            popset[m]
                        except:
                            do_only.append(m)
                except:
                    do_only = DEFAULT_MODELS

            if os.path.exists(popset_file):
                logging.warning(
                    '{} exists, but regenerating Population Set ({})...'.
                    format(popset_file, do_only),
                    exc_info=True)

            popset = PopulationSet(period=period,
                                   mags=single_starmodel.mags,
                                   ra=ra,
                                   dec=dec,
                                   trilegal_filename=trilegal_file,
                                   starmodel=single_starmodel,
                                   binary_starmodel=binary_starmodel,
                                   triple_starmodel=triple_starmodel,
                                   rprs=rprs,
                                   do_only=do_only,
                                   savefile=popset_file,
                                   **kwargs)

        fpp = cls(trsig, popset, folder=folder)

        #############
        # Apply constraints

        # Exclusion radius
        maxrad = float(config['constraints']['maxrad'])
        fpp.set_maxrad(maxrad)
        if 'secthresh' in config['constraints']:
            secthresh = float(config['constraints']['secthresh'])
            if not np.isnan(secthresh):
                fpp.apply_secthresh(secthresh)

        # Odd-even constraint
        diff = 3 * np.max(trsig.depthfit[1])
        fpp.constrain_oddeven(diff)

        #apply contrast curve constraints if present
        if 'ccfiles' in config['constraints']:
            ccfiles = list(config['constraints']['ccfiles'])
            for ccfile in ccfiles:
                if not os.path.isabs(ccfile):
                    ccfile = os.path.join(folder, ccfile)
                m = re.search('(\w+)_(\w+)\.cc', os.path.basename(ccfile))
                if not m:
                    logging.warning('Invalid CC filename ({}); ' +
                                    'skipping.'.format(ccfile))
                    continue
                else:
                    band = m.group(2)
                    inst = m.group(1)
                    name = '{} {}-band'.format(inst, band)
                    cc = ContrastCurveFromFile(ccfile, band, name=name)
                    fpp.apply_cc(cc)

        #apply "velocity contrast curve" if present
        if 'vcc' in config['constraints']:
            dv = float(config['constraints']['vcc'][0])
            dmag = float(config['constraints']['vcc'][1])
            vcc = VelocityContrastCurve(dv, dmag)
            fpp.apply_vcc(vcc)

        return fpp
Beispiel #25
0
def _check_spec(ic):
    mod = StarModel(ic, Teff=(5700, 100), logg=(4.5, 0.1), feh=(0.0, 0.2))
    eep = ic.get_eep(1., 9.6, 0.1, accurate=True)
    assert np.isfinite(mod.lnlike([eep, 9.6, 0.1, 200, 0.2]))
Beispiel #26
0
def test_fitting():
    mod_mist = _check_fitting(StarModel(MIST_Isochrone, **props))

    _check_saving(mod_mist)
Beispiel #27
0
def fit_star(star, verbose=False):
    output_filename = "{0}.h5".format(star.kepid)
    logging.info("Output filename: {0}".format(output_filename))
    if os.path.exists(output_filename):
        return

    time.sleep(30)
    return

    strt = time.time()

    # The KIC parameters
    mean_log_mass = np.log(star.mass)
    sigma_log_mass = (np.log(star.mass + star.mass_err1) -
                      np.log(star.mass + star.mass_err2)
                      )  # double the kic value
    mean_feh = star.feh
    sigma_feh = star.feh_err1 - star.feh_err2  # double the kic value

    min_distance, max_distance = 0.0, 3000.0

    # Other bands
    other_bands = dict()
    if np.isfinite(star.tgas_w1gmag):
        other_bands = dict(
            W1=(star.tgas_w1gmag, star.tgas_w1gmag_error),
            W2=(star.tgas_w2gmag, star.tgas_w2gmag_error),
            W3=(star.tgas_w3gmag, star.tgas_w3gmag_error),
        )
    if np.isfinite(star.tgas_Vmag):
        other_bands["V"] = (star.tgas_Vmag, star.tgas_e_Vmag)
    if np.isfinite(star.tgas_Bmag):
        other_bands["B"] = (star.tgas_Bmag, star.tgas_e_Bmag)
    if np.isfinite(star.tgas_gpmag):
        other_bands["g"] = (star.tgas_gpmag, star.tgas_e_gpmag)
    if np.isfinite(star.tgas_rpmag):
        other_bands["r"] = (star.tgas_rpmag, star.tgas_e_rpmag)
    if np.isfinite(star.tgas_ipmag):
        other_bands["i"] = (star.tgas_ipmag, star.tgas_e_ipmag)

    # Build the model
    mist = MIST_Isochrone()
    mod = StarModel(mist,
                    J=(star.jmag, star.jmag_err),
                    H=(star.hmag, star.hmag_err),
                    K=(star.kmag, star.kmag_err),
                    parallax=(star.tgas_parallax, star.tgas_parallax_error),
                    **other_bands)

    # Initialize
    nwalkers = 500
    ndim = 5
    lnpost_init = -np.inf + np.zeros(nwalkers)
    coords_init = np.empty((nwalkers, ndim))
    m = ~np.isfinite(lnpost_init)
    while np.any(m):
        K = m.sum()

        # Mass
        coords_init[m, 0] = np.exp(mean_log_mass +
                                   sigma_log_mass * np.random.randn(K))

        # Age
        u = np.random.rand(K)
        coords_init[m,
                    1] = np.log((np.exp(mist.maxage) - np.exp(mist.minage)) *
                                u + np.exp(mist.minage))

        # Fe/H
        coords_init[m, 2] = mean_feh + sigma_feh * np.random.randn(K)

        # Distance
        u = np.random.rand(K)
        coords_init[m, 3] = (u * (max_distance**3 - min_distance**3) +
                             min_distance**3)**(1. / 3)

        # Av
        coords_init[m, 4] = np.random.rand(K)

        lnpost_init[m] = np.array(list(map(mod.lnpost, coords_init[m])))
        m = ~np.isfinite(lnpost_init)

    class ICModel(emcee3.Model):
        def compute_log_prior(self, state):
            state.log_prior = mod.lnprior(state.coords)
            return state

        def compute_log_likelihood(self, state):
            state.log_likelihood = mod.lnlike(state.coords)
            return state

    sampler = emcee3.Sampler(emcee3.moves.KDEMove())
    ensemble = emcee3.Ensemble(ICModel(), coords_init)

    chunksize = 200
    targetn = 3
    for iteration in range(100):
        if verbose:
            print("Iteration {0}...".format(iteration + 1))
        sampler.run(ensemble, chunksize, progress=verbose)
        mu = np.mean(sampler.get_coords(), axis=1)
        try:
            tau = emcee3.autocorr.integrated_time(mu, c=1)
        except emcee3.autocorr.AutocorrError:
            continue
        tau_max = tau.max()
        neff = ((iteration + 1) * chunksize / tau_max - 2.0)
        if verbose:
            print("Maximum autocorrelation time: {0}".format(tau_max))
            print("N_eff: {0}\n".format(neff * nwalkers))
        if neff > targetn:
            break

    burnin = int(2 * tau_max)
    ntot = 5000
    if verbose:
        print("Discarding {0} samples for burn-in".format(burnin))
        print("Randomly choosing {0} samples".format(ntot))
    samples = sampler.get_coords(flat=True, discard=burnin)
    total_samples = len(total_samples)
    inds = np.random.choice(np.arange(len(samples)), size=ntot, replace=False)
    samples = samples[inds]

    fit_parameters = np.empty(len(samples),
                              dtype=[
                                  ("mass", float),
                                  ("log10_age", float),
                                  ("feh", float),
                                  ("distance", float),
                                  ("av", float),
                              ])
    computed_parameters = np.empty(len(samples),
                                   dtype=[
                                       ("radius", float),
                                       ("teff", float),
                                       ("logg", float),
                                   ])

    if verbose:
        prog = tqdm.tqdm
    else:
        prog = lambda f, *args, **kwargs: f
    for i, p in prog(enumerate(samples), total=len(samples)):
        ic = mod.ic(*p)
        fit_parameters[i] = p
        computed_parameters[i] = (ic["radius"], ic["Teff"], ic["logg"])

    total_time = time.time() - strt
    logging.info("emcee3 took {0} sec".format(total_time))

    with h5py.File(output_filename, "w") as f:
        f.attrs["kepid"] = int(star.kepid)
        f.attrs["neff"] = neff * nwalkers
        f.attrs["runtime"] = total_time
        f.create_dataset("fit_parameters", data=fit_parameters)
        f.create_dataset("computed_parameters", data=computed_parameters)

    # Plot
    fig = corner.corner(samples)
    fig.savefig("corner-{0}.png".format(star.kepid))
    plt.close(fig)
Beispiel #28
0
 def get_mod(self, ic, folder):
     return StarModel.from_ini(ic, folder=folder, index=self.index)
Beispiel #29
0
import corner
from isochrones import StarModel
from isochrones.mist import MIST_Isochrone

# params from Gaia archive, accessed Dec 2018
Teff = (4444.2, 160) 
logg = (3.0, 0.5)
feh = (0.0, 0.25)
parallax = (31.92,0.05)

# age from BJ's Specmatch-Gaia results
age = [9.9,0.1] # log10(age in yr)

mist = MIST_Isochrone()
model  = StarModel(mist, Teff=Teff, logg=logg, feh=feh, parallax=parallax, age=age, use_emcee=True)
model.fit(niter=1000)

# add in prior on age
age_post = model.samples.age_0

age_prior_probs = nm(age[0],age[1]).pdf(age_post)
compare = np.random.uniform(size=len(age_post))

new_samples = model.samples.loc[age_prior_probs > compare]
new_samples = new_samples[['mass_0_0','radius_0_0','feh_0','age_0','distance_0']]

# make figure
corner.corner(
	new_samples,
	labels=['Mass [Msol]','Radius [Rsol]','Fe/H','log10(age [Gyr])','distance [pc]'],
def get_isochrone_params(stars, modeldir, overwrite=False):
    """Fill out parameter table with values obtained from isochrone package

    Args:
        stars (pd.DataFrame): parameter table
        modeldir (str): directory to save fitted models
        overwrite (bool, optional): whether to use existing models or overwrite
    Returns:
        stars (pd.DataFrame): updated parameter table
    """
    dar = Dartmouth_Isochrone()

    num_stars = len(stars)
    current_star = 1

    for idx, row in stars.iterrows():
        print("Getting isochrone parameters for star {0} of {1}"
              .format(current_star, num_stars))
        current_star += 1

        # get known stellar properties
        lib_props = {}
        for p in library.Library.STAR_PROPS:
            if not np.isnan(row[p]):
                # (value, uncertainty)
                lib_props[p] = (row[p], row['u_'+p])
        # if all properties are known, we don't need to use the model
        if len(lib_props) == 6:
            continue

        if modeldir is None:
            model = StarModel(dar, **lib_props)
            model.fit(overwrite=True, verbose=False)
        else:
            # check if fitting has already been done
            modelfile = os.path.join(modeldir,
                                     "{0}_model.h5".format(row['cps_name']))
            if os.path.exists(modelfile) and not overwrite:
                model = StarModel.load_hdf(modelfile)
            # otherwise perform the fit
            else:
                model = StarModel(dar, **lib_props)
                model.fit(overwrite=True, verbose=False)
                model.save_hdf(modelfile)

        N_SIGMA = 2
        MAX_PERCENTILE = 0.95
        MIN_PERCENTILE = 0.05
        # fill out unknown parameters
        for p in library.Library.STAR_PROPS:
            value = model.samples[p].quantile(0.5)
            upper_bound = model.samples[p].quantile(MAX_PERCENTILE)
            lower_bound = model.samples[p].quantile(MIN_PERCENTILE)

            # If a property is already known, check for model consistency
            if p in lib_props:
                # check if 2-sigma bounds fail to overlap
                if (row[p] + N_SIGMA * row['u_'+p]) < lower_bound \
                        or (row[p] - N_SIGMA * row['u_'+p]) > upper_bound:
                    warningstr = "Warning: Inconisistent {0} for star {1}\n"\
                        .format(p, row['cps_name'])
                    warningstr += "\tLibrary values: {0:.2f} +/- {1:.2f}\n"\
                        .format(row[p], row['u_'+p])
                    warningstr += "\tModel values: {0:.2f}, ".format(value)
                    warningstr += "{0:d}-sigma = ({1:.2f}, {2:.2f})\n".format(
                        N_SIGMA, lower_bound, upper_bound)

                    print(warningstr)
                    # Save error messages to file
                    errpath = os.path.join(modeldir, 'errors.txt')
                    with open(errpath, 'a') as f:
                        f.write(warningstr)
            # Insert the unknown values if we don't already know them
            else:
                stars.loc[idx, p] = np.around(value, 2)
                stars.loc[idx, 'u_'+p] = \
                    np.around((upper_bound - lower_bound) / 2, 2)
    return stars
def get_isochrone_params(stars, modeldir, overwrite=False):
    """Fill out parameter table with values obtained from isochrone package

    Args:
        stars (pd.DataFrame): parameter table
        modeldir (str): directory to save fitted models
        overwrite (bool, optional): whether to use existing models or overwrite
    Returns:
        stars (pd.DataFrame): updated parameter table
    """
    dar = Dartmouth_Isochrone()

    num_stars = len(stars)
    current_star = 1

    for idx, row in stars.iterrows():
        print("Getting isochrone parameters for star {0} of {1}".format(
            current_star, num_stars))
        current_star += 1

        # get known stellar properties
        lib_props = {}
        for p in library.Library.STAR_PROPS:
            if not np.isnan(row[p]):
                # (value, uncertainty)
                lib_props[p] = (row[p], row['u_' + p])
        # if all properties are known, we don't need to use the model
        if len(lib_props) == 6:
            continue

        if modeldir is None:
            model = StarModel(dar, **lib_props)
            model.fit(overwrite=True, verbose=False)
        else:
            # check if fitting has already been done
            modelfile = os.path.join(modeldir,
                                     "{0}_model.h5".format(row['cps_name']))
            if os.path.exists(modelfile) and not overwrite:
                model = StarModel.load_hdf(modelfile)
            # otherwise perform the fit
            else:
                model = StarModel(dar, **lib_props)
                model.fit(overwrite=True, verbose=False)
                model.save_hdf(modelfile)

        N_SIGMA = 2
        MAX_PERCENTILE = 0.95
        MIN_PERCENTILE = 0.05
        # fill out unknown parameters
        for p in library.Library.STAR_PROPS:
            value = model.samples[p].quantile(0.5)
            upper_bound = model.samples[p].quantile(MAX_PERCENTILE)
            lower_bound = model.samples[p].quantile(MIN_PERCENTILE)

            # If a property is already known, check for model consistency
            if p in lib_props:
                # check if 2-sigma bounds fail to overlap
                if (row[p] + N_SIGMA * row['u_'+p]) < lower_bound \
                        or (row[p] - N_SIGMA * row['u_'+p]) > upper_bound:
                    warningstr = "Warning: Inconisistent {0} for star {1}\n"\
                        .format(p, row['cps_name'])
                    warningstr += "\tLibrary values: {0:.2f} +/- {1:.2f}\n"\
                        .format(row[p], row['u_'+p])
                    warningstr += "\tModel values: {0:.2f}, ".format(value)
                    warningstr += "{0:d}-sigma = ({1:.2f}, {2:.2f})\n".format(
                        N_SIGMA, lower_bound, upper_bound)

                    print(warningstr)
                    # Save error messages to file
                    errpath = os.path.join(modeldir, 'errors.txt')
                    with open(errpath, 'a') as f:
                        f.write(warningstr)
            # Insert the unknown values if we don't already know them
            else:
                stars.loc[idx, p] = np.around(value, 2)
                stars.loc[idx, 'u_'+p] = \
                    np.around((upper_bound - lower_bound) / 2, 2)
    return stars
Beispiel #32
0
 def get_mod(self, ic, folder):
     return StarModel.from_ini(ic, folder=folder, index=self.index)
Beispiel #33
0
def main(index, overwrite=False):
    # First make sure paths exist:
    # os.makedirs('../cache', exist_ok=True)
    # os.makedirs('../plots/isochrones', exist_ok=True)

    # Load the DECam photometry
    decam = load_data('../data/decam_apw.fits')

    iso = MIST_Isochrone(['PanSTARRS_g', 'PanSTARRS_i', 'SkyMapper_u'])

    row = decam[index]
    name = 'lmcla-{0}-'.format(row['index'])
    model_file = '../cache/starmodels-{0}.hdf5'.format(str(row['index']))

    if path.exists(model_file) and not overwrite:
        print('skipping {0} - already exists'.format(name))
        sys.exit(0)

    # This is our "anchor star": it was identified as being near the turnoff,
    # bright, and positionally consistent with being in the LA cluster:
    j1, = np.where(decam['index'] == 24365)[0]
    j2 = index

    if j1 == j2:
        print('skipping anchor-anchor pair')
        sys.exit(0)

    # To fit pairs as resolved binaries, we have to construct the observation
    # tree manually:
    tree = ObservationTree()
    for b in ['PanSTARRS_g', 'PanSTARRS_i', 'SkyMapper_u']:
        survey, band = b.split('_')

        if band == 'u' and decam[band.capitalize() + 'MAG'][j2] > 21:
            extra_s = 0.2
        else:
            extra_s = 0.005

        o = Observation(survey, b, 1.)
        s0 = Source(
            decam[band.capitalize() + 'MAG'][j1],
            np.sqrt(0.005**2 + decam[band.capitalize() + 'ERR'][j1]**2))
        s1 = Source(decam[band.capitalize() + 'MAG'][j2],
                    np.sqrt(extra_s**2 +
                            decam[band.capitalize() + 'ERR'][j2]**2),
                    separation=100.)
        o.add_source(s0)
        o.add_source(s1)
        tree.add_observation(o)

    model = StarModel(ic=iso, obs=tree, N=[1, 2])
    # model = StarModel(ic=iso, obs=tree)

    print('setting priors')
    dist_bounds = [1 * 1e3, 100 * 1e3]  # pc
    # model._priors['distance'] = FlatPrior(dist_bounds)
    model._priors['distance'] = GaussianPrior(30 * 1e3,
                                              10 * 1e3,
                                              bounds=dist_bounds)
    model.set_bounds(distance=dist_bounds)  # 1 to 100 kpc

    feh_bounds = (-2., 0.5)
    model.set_bounds(feh=feh_bounds)
    # model._priors['feh'] = FlatPrior(feh_bounds)
    model._priors['feh'] = GaussianPrior(-1.1, 0.5, bounds=feh_bounds)

    AV_bounds = (0, 1)
    model.set_bounds(AV=AV_bounds)
    model._priors['AV'] = PowerLawPrior(-1.1, (1e-3, 1))
    # model._priors['AV'] = GaussianPrior(0.2, 0.1, bounds=AV_bounds)

    age_bounds = (7, 9.5)
    model.set_bounds(age=age_bounds)
    # model._priors['age'] = GaussianPrior(8, 0.5, bounds=age_bounds)
    model._priors['age'] = FlatPrior(age_bounds)

    print('sampling star {0}'.format(row['index']))
    model.fit_multinest(basename=name,
                        refit=overwrite,
                        overwrite=overwrite,
                        n_live_points=2048)
    # model.fit_mcmc(nwalkers=nwalkers,
    #                p0=np.array([350., 8., -0.5, 30000., 0.1]),
    #                nburn=1024, niter=2048)
    model.save_hdf(model_file)

    fig = model.corner_physical()
    fig.savefig('../plots/isochrones/{0}-physical.png'.format(row['index']),
                dpi=200)
    plt.close(fig)

    fig = model.corner_observed()
    fig.savefig('../plots/isochrones/{0}-observed.png'.format(row['index']),
                dpi=200)
    plt.close(fig)

    # model._samples = model.samples[::1024]
    # model.save_hdf(sm_model_file)

    sys.exit(0)
Beispiel #34
0
def _check_spec(ic):
    mod = StarModel(ic, Teff=(5700, 100), logg=(4.5, 0.1), feh=(0.0, 0.2))
    eep = ic.get_eep(1., 9.6, 0.1, accurate=True)
    assert np.isfinite(mod.lnlike([eep, 9.6, 0.1, 200, 0.2]))
Beispiel #35
0
    def from_ini(cls,
                 folder,
                 ini_file='fpp.ini',
                 ichrone='mist',
                 recalc=False,
                 refit_trap=False,
                 **kwargs):
        """
        To enable simple usage, initializes a FPPCalculation from a .ini file

        By default, a file called ``fpp.ini`` will be looked for in the
        current folder.  Also present must be a ``star.ini`` file that
        contains the observed properties of the target star.

        ``fpp.ini`` must be of the following form::

            name = k2oi
            ra = 11:30:14.510
            dec = +07:35:18.21

            period = 32.988 #days
            rprs = 0.0534   #Rp/Rstar
            photfile = lc_k2oi.csv

            [constraints]
            maxrad = 10 #exclusion radius [arcsec]
            secthresh = 0.001 #maximum allowed secondary signal depth

            #This variable defines contrast curves
            #ccfiles = Keck_J.cc, Lick_J.cc

        Photfile must be a text file with columns ``(days_from_midtransit,
        flux, flux_err)``.  Both whitespace- and comma-delimited
        will be tried, using ``np.loadtxt``.  Photfile need not be there
        if there is a pickled :class:`TransitSignal` saved in the same
        directory as ``ini_file``, named ``trsig.pkl`` (or another name
        as defined by ``trsig`` keyword in ``.ini`` file).

        ``star.ini`` should look something like the following::

            B = 15.005, 0.06
            V = 13.496, 0.05
            g = 14.223, 0.05
            r = 12.858, 0.04
            i = 11.661, 0.08
            J = 9.763, 0.03
            H = 9.135, 0.03
            K = 8.899, 0.02
            W1 = 8.769, 0.023
            W2 = 8.668, 0.02
            W3 = 8.552, 0.025
            Kepler = 12.473

            #Teff = 3503, 80
            #feh = 0.09, 0.09
            #logg = 4.89, 0.1

        Any star properties can be defined; if errors are included
        then they will be used in the :class:`isochrones.StarModel`
        MCMC fit.
        Spectroscopic parameters (``Teff, feh, logg``) are optional.
        If included, then they will also be included in
        :class:`isochrones.StarModel` fit.  A magnitude for the
        band in which the transit signal is observed (e.g., ``Kepler``)
        is required, though need not have associated uncertainty.


        :param folder:
            Folder to find configuration files.

        :param ini_file:
            Input configuration file.

        :param star_ini_file:
            Input config file for :class:`isochrones.StarModel` fits.

        :param recalc:
            Whether to re-calculate :class:`PopulationSet`, if a
            ``popset.h5`` file is already present

        :param **kwargs:
            Keyword arguments passed to :class:`PopulationSet`.

        Creates:

            * ``trsig.pkl``: the pickled :class:`vespa.TransitSignal` object.
            * ``starfield.h5``: the TRILEGAL field star simulation
            * ``starmodel.h5``: the :class:`isochrones.StarModel` fit
            * ``popset.h5``: the :class:`vespa.PopulationSet` object
              representing the model population simulations.

        Raises
        ------
        RuntimeError :
            If single, double, and triple starmodels are
            not computed, then raises with admonition to run
            `starfit --all`.

        AttributeError :
            If `trsig.pkl` not present in folder, and
            `photfile` is not defined in config file.

        """

        # Check if all starmodel fits are done.
        # If not, tell user to run 'starfit --all'
        config = ConfigObj(os.path.join(folder, ini_file))

        # Load required entries from ini_file
        try:
            name = config['name']
            ra, dec = config['ra'], config['dec']
            period = float(config['period'])
            rprs = float(config['rprs'])
        except KeyError as err:
            raise KeyError(
                'Missing required element of ini file: {}'.format(err))

        try:
            cadence = float(config['cadence'])
        except KeyError:
            logging.warning(
                'Cadence not provided in fpp.ini; defaulting to Kepler cadence.'
            )
            logging.warning(
                'If this is not a Kepler target, please set cadence (in days).'
            )
            cadence = 1626.0 / 86400  # Default to Kepler cadence

        def fullpath(filename):
            if os.path.isabs(filename):
                return filename
            else:
                return os.path.join(folder, filename)

        # Non-required entries with default values
        popset_file = fullpath(config.get('popset', 'popset.h5'))
        starfield_file = fullpath(config.get('starfield', 'starfield.h5'))
        trsig_file = fullpath(config.get('trsig', 'trsig.pkl'))

        # Check for StarModel fits
        starmodel_basename = config.get('starmodel_basename',
                                        '{}_starmodel'.format(ichrone))
        single_starmodel_file = os.path.join(
            folder, '{}_single.h5'.format(starmodel_basename))
        binary_starmodel_file = os.path.join(
            folder, '{}_binary.h5'.format(starmodel_basename))
        triple_starmodel_file = os.path.join(
            folder, '{}_triple.h5'.format(starmodel_basename))

        try:
            single_starmodel = StarModel.load_hdf(single_starmodel_file)
            binary_starmodel = StarModel.load_hdf(binary_starmodel_file)
            triple_starmodel = StarModel.load_hdf(triple_starmodel_file)
        except Exception as e:
            print(e)
            raise RuntimeError('Cannot load StarModels.  ' +
                               'Please run `starfit --all {}`.'.format(folder))

        # Create (or load) TransitSignal
        if os.path.exists(trsig_file):
            logging.info(
                'Loading transit signal from {}...'.format(trsig_file))
            with open(trsig_file, 'rb') as f:
                trsig = pickle.load(f)
        else:
            try:
                photfile = fullpath(config['photfile'])
            except KeyError:
                raise AttributeError('If transit pickle file (trsig.pkl) ' +
                                     'not present, "photfile" must be' +
                                     'defined.')

            trsig = TransitSignal.from_ascii(photfile, P=period, name=name)
            if not trsig.hasMCMC or refit_trap:
                logging.info('Fitting transitsignal with MCMC...')
                trsig.MCMC()
                trsig.save(trsig_file)

        # Create (or load) PopulationSet
        do_only = DEFAULT_MODELS
        if os.path.exists(popset_file):
            if recalc:
                os.remove(popset_file)
            else:
                with pd.HDFStore(popset_file) as store:
                    do_only = [m for m in DEFAULT_MODELS if m not in store]

        # Check that properties of saved population match requested
        try:
            popset = PopulationSet.load_hdf(popset_file)
            for pop in popset.poplist:
                if pop.cadence != cadence:
                    raise ValueError(
                        'Requested cadence ({}) '.format(cadence) +
                        'does not match stored {})! Set recalc=True.'.format(
                            pop.cadence))
        except:
            raise

        if do_only:
            logging.info(
                'Generating {} models for PopulationSet...'.format(do_only))
        else:
            logging.info(
                'Populations ({}) already generated.'.format(DEFAULT_MODELS))

        popset = PopulationSet(
            period=period,
            cadence=cadence,
            mags=single_starmodel.mags,
            ra=ra,
            dec=dec,
            trilegal_filename=starfield_file,  # Maybe change parameter name?
            starmodel=single_starmodel,
            binary_starmodel=binary_starmodel,
            triple_starmodel=triple_starmodel,
            rprs=rprs,
            do_only=do_only,
            savefile=popset_file,
            **kwargs)

        fpp = cls(trsig, popset, folder=folder)

        #############
        # Apply constraints

        # Exclusion radius
        maxrad = float(config['constraints']['maxrad'])
        fpp.set_maxrad(maxrad)
        if 'secthresh' in config['constraints']:
            secthresh = float(config['constraints']['secthresh'])
            if not np.isnan(secthresh):
                fpp.apply_secthresh(secthresh)

        # Odd-even constraint
        diff = 3 * np.max(trsig.depthfit[1])
        fpp.constrain_oddeven(diff)

        #apply contrast curve constraints if present
        if 'ccfiles' in config['constraints']:
            ccfiles = config['constraints']['ccfiles']
            if isinstance(ccfiles, string_types):
                ccfiles = [ccfiles]
            for ccfile in ccfiles:
                if not os.path.isabs(ccfile):
                    ccfile = os.path.join(folder, ccfile)
                m = re.search('(\w+)_(\w+)\.cc', os.path.basename(ccfile))
                if not m:
                    logging.warning(
                        'Invalid CC filename ({}); '.format(ccfile) +
                        'skipping.')
                    continue
                else:
                    band = m.group(2)
                    inst = m.group(1)
                    name = '{} {}-band'.format(inst, band)
                    cc = ContrastCurveFromFile(ccfile, band, name=name)
                    fpp.apply_cc(cc)

        #apply "velocity contrast curve" if present
        if 'vcc' in config['constraints']:
            dv = float(config['constraints']['vcc'][0])
            dmag = float(config['constraints']['vcc'][1])
            vcc = VelocityContrastCurve(dv, dmag)
            fpp.apply_vcc(vcc)

        return fpp
Beispiel #36
0
def test_likelihood_rotation_giant():
    """
    Make sure that the lhf can cope with zeros, NaNs and None values for the
    rotation period.
    Also, check that there is a drop in likelihood at the eep = 454 boundary.
    """
    iso_params = pd.DataFrame(
        dict({
            "teff": (5777, 10),
            "logg": (4.44, .05),
            "feh": (0., .001),
            "parallax": (1., .01)
        }))  # mas
    # Set up the StarModel isochrones object.
    mod = StarModel(mist, **iso_params)
    lnparams = [355, np.log10(4.56 * 1e9), 0., np.log(1000), 0.]

    args = [mod, None, None, .65, 1., False, False]  # the lnprob arguments]
    none_lnprob = lnprob(lnparams, *args)

    args = [mod, np.nan, np.nan, .65, 1., False,
            False]  # the lnprob arguments]
    nan_lnprob = lnprob(lnparams, *args)

    args = [mod, 0., 0., .65, 1., False, False]  # the lnprob arguments]
    zero_lnprob = lnprob(lnparams, *args)

    args = [mod, 26., 1., .65, 1., True, False]  # the lnprob arguments]
    iso_lnprob = lnprob(lnparams, *args)

    args = [mod, 26., 1., .65, 1., False, True]  # the lnprob arguments]
    gyro_lnprob = lnprob(lnparams, *args)

    # check that gyro is switched off for all of these.
    none_lnprob == nan_lnprob
    nan_lnprob == zero_lnprob

    # check that gyro on gives different lnprob
    assert gyro_lnprob != iso_lnprob

    # Likelihood should be greater for dwarfs because gyro lnlike is a broad
    # Gaussian for giants.
    giant_params = [455, np.log10(4.56 * 1e9), 0., np.log(1000), 0.]
    dwarf_params = [453, np.log10(4.56 * 1e9), 0., np.log(1000), 0.]
    args = [mod, 26., 1., None, None, False, False]
    giant_lnprob = lnprob(giant_params, *args)
    dwarf_lnprob = lnprob(dwarf_params, *args)
    assert giant_lnprob[0] < dwarf_lnprob[0]

    # Likelihood should be greater for cool stars because gyro lnlike is a
    # broad Gaussian for giants.
    heep, hage, hfeh = 405, np.log10(2.295 * 1e9), 0.
    ceep, cage, cfeh = 355, np.log10(4.56 * 1e9), 0.
    hot_params = [heep, hage, hfeh, np.log(1000), 0.]
    cool_params = [ceep, cage, cfeh, np.log(1000), 0.]
    cool_prot = gyro_model_rossby(
        cage, calc_bv(cool_params),
        mist.interp_value([ceep, cage, cfeh], ["mass"]))
    hot_prot = gyro_model_rossby(
        hage, calc_bv(hot_params),
        mist.interp_value([heep, hage, hfeh], ["mass"]))
    cool_args = [mod, cool_prot, 1., None, None, False, False]
    hot_args = [mod, hot_prot, 1., None, None, False, False]

    hot_lnprob = lnprob(hot_params, *args)
    cool_lnprob = lnprob(cool_params, *args)
    assert hot_lnprob[0] < cool_lnprob[0], "cool star likelihood should be" \
        " higher than hot star likelihood"