Beispiel #1
0
    def params_to_grid(self, **targ):
        """Convert a set of parameters to grid pixel coordinates.

        :param targ:
            The target parameter location, as keyword arguments.  The elements
            of ``labels`` must be present as keywords.

        :returns x:
            The target parameter location in pixel coordinates.
        """
        # Get bin index
        inds = np.array([
            np.digitize([targ[p]], bins=self.gridpoints[p], right=False) - 1
            for p in self.labels
        ])
        inds = np.squeeze(inds)
        # Get fractional index.
        try:
            find = np.asarray([
                (targ[p] - self.gridpoints[p][i]) / self.binwidths[p][i]
                for i, p in zip(inds, self.labels)
            ])
        except (IndexError):
            pstring = "{0}: min={2} max={3} targ={1}\n"
            s = [
                pstring.format(p, targ[p], *self.gridpoints[p][[0, -1]])
                for p in self.labels
            ]
            raise ValueError("At least one parameter outside grid.\n{}".format(
                ' '.join(s)))
        return inds + np.squeeze(find)
Beispiel #2
0
    def antiderivative(self, xs):
        """
        Computes the antiderivative of first order of this spline
        """
        # Retrieve parameters
        x, y, coefficients = self._x, self._y, self._coefficients

        # In case of quadratic, we redefine the knots
        if self.k == 2:
            knots = (x[1:] + x[:-1]) / 2.0
            # We add 2 artificial knots before and after
            knots = np.concatenate([
                np.array([x[0] - (x[1] - x[0]) / 2.0]),
                knots,
                np.array([x[-1] + (x[-1] - x[-2]) / 2.0]),
            ])
        else:
            knots = x

        # Determine the interval that x lies in
        ind = np.digitize(xs, knots) - 1
        # Include the right endpoint in spline piece C[m-1]
        ind = np.clip(ind, 0, len(knots) - 2)
        t = xs - knots[ind]

        if self.k == 1:
            a = y[:-1]
            b = coefficients
            h = np.diff(knots)
            cst = np.concatenate(
                [np.zeros(1), np.cumsum(a * h + b * h**2 / 2)])
            return cst[ind] + a[ind] * t + b[ind] * t**2 / 2

        if self.k == 2:
            h = np.diff(knots)
            dt = x - knots[:-1]
            b = coefficients[:-1]
            b1 = coefficients[1:]
            a = y - b * dt - (b1 - b) * dt**2 / (2 * h)
            c = (b1 - b) / (2 * h)
            cst = np.concatenate(
                [np.zeros(1),
                 np.cumsum(a * h + b * h**2 / 2 + c * h**3 / 3)])
            return cst[ind] + a[ind] * t + b[ind] * t**2 / 2 + c[ind] * t**3 / 3

        if self.k == 3:
            h = np.diff(knots)
            c = coefficients[:-1]
            c1 = coefficients[1:]
            a = y[:-1]
            a1 = y[1:]
            b = (a1 - a) / h - (2 * c + c1) * h / 3.0
            d = (c1 - c) / (3 * h)
            cst = np.concatenate([
                np.zeros(1),
                np.cumsum(a * h + b * h**2 / 2 + c * h**3 / 3 + d * h**4 / 4),
            ])
            return (cst[ind] + a[ind] * t + b[ind] * t**2 / 2 +
                    c[ind] * t**3 / 3 + d[ind] * t**4 / 4)
Beispiel #3
0
def digitize(module, x, bins):
    """
    Calculate bin indices.
    """
    if module in [np, ma]:
        return np.digitize(x, bins)
    elif module == torch:
        return torch.bucketize(x, bins)
    elif module == tf:
        return tf.bucketize(x, bins)
    elif module == jnp:
        return jnp.digitize(x, bins)
    raise UnknownModuleException(f"Module {module.__name__} not supported.")
Beispiel #4
0
    def _compute_coeffs(self, xs):
        """Compute the spline coefficients for a given x."""
        # Retrieve parameters
        x, y, coefficients = self._x, self._y, self._coefficients

        # In case of quadratic, we redefine the knots
        if self.k == 2:
            knots = (x[1:] + x[:-1]) / 2.0
            # We add 2 artificial knots before and after
            knots = np.concatenate(
                [
                    np.array([x[0] - (x[1] - x[0]) / 2.0]),
                    knots,
                    np.array([x[-1] + (x[-1] - x[-2]) / 2.0]),
                ]
            )
        else:
            knots = x

        # Determine the interval that x lies in
        ind = np.digitize(xs, knots) - 1
        # Include the right endpoint in spline piece C[m-1]
        ind = np.clip(ind, 0, len(knots) - 2)
        t = xs - knots[ind]
        h = np.diff(knots)[ind]

        if self.k == 1:
            a = y[ind]
            result = (t, a, coefficients[ind])

        if self.k == 2:
            dt = (x - knots[:-1])[ind]
            b = coefficients[ind]
            b1 = coefficients[ind + 1]
            a = y[ind] - b * dt - (b1 - b) * dt ** 2 / (2 * h)
            c = (b1 - b) / (2 * h)
            result = (t, a, b, c)

        if self.k == 3:
            c = coefficients[ind]
            c1 = coefficients[ind + 1]
            a = y[ind]
            a1 = y[ind + 1]
            b = (a1 - a) / h - (2 * c + c1) * h / 3.0
            d = (c1 - c) / (3 * h)
            result = (t, a, b, c, d)

        return result
Beispiel #5
0
 def ppf(cf):
     x = norm.ppf((cf + 0.5) / (1 << post_prec), mean, stdd)
     # Binary search is faster than using the actual gaussian cdf for the
     # precisions we typically use, however the cdf is O(1) whereas search
     # is O(precision), so for high precision cdf will be faster.
     idxs = jnp.digitize(x, std_gaussian_bins(prior_prec)) - 1
     # This loop works around an issue which is extremely rare when we use
     # float64 everywhere but is common if we work with float32: due to the
     # finite precision of floating point arithmetic, norm.[cdf,ppf] are not
     # perfectly inverse to each other.
     idxs_ = lax.while_loop(
         lambda idxs: ~jnp.all((cdf(idxs) <= cf) & (cf < cdf(idxs + 1))),
         lambda idxs: jnp.select(
             [cf < cdf(idxs), cf >= cdf(idxs + 1)],
             [idxs - 1,       idxs + 1           ], idxs),
         idxs)
     return idxs_
Beispiel #6
0
def make_graph_mnist(image, patch_size, bins=(0., .3, 1.)):
    """Makes a graph object to hold an MNIST sample.

  Args:
    image: Should be squeezable to a 2d array
    patch_size: size of patches for node features.
    bins: Used for binning the pixel values. The highest bin must be greater
      than the highest value in image.

  Returns:
    graph representing the image.
  """
    return image_graph.ImageGraph.create(
        # The threshold value .3 was selected to keep information
        # while not introducing noise
        jnp.digitize(image, bins).squeeze(),
        get_start_pixel_fn=lambda _: (14, 14),  # start in the center
        num_colors=len(bins),  # number of bins + 'out of bounds' pixel
        patch_size=patch_size)
Beispiel #7
0
 def lib_as_grid(self):
     """Convert the library parameters to pixel indices in each dimension,
     and build and store a KDTree for the pixel coordinates.
     """
     # Get the unique gridpoints in each param
     self.gridpoints = {}
     self.binwidths = {}
     for p in self.labels:
         self.gridpoints[p] = np.unique(self.libparams[p])
         self.binwidths[p] = np.diff(self.gridpoints[p])
     # Digitize the library parameters
     X = np.array([
         np.digitize(self.libparams[p], bins=self.gridpoints[p], right=True)
         for p in self.labels
     ])
     self.X = X.T
     # Build the KDTree
     startime = datetime.now()
     self._kdt = KDTree(self.X, leafsize=1000)  # , metric='euclidean')
     print('built KDTree: {}'.format(datetime.now() - startime))
Beispiel #8
0
def logacia(Tarr, nus, nucia, tcia, logac):
    """interpolated function of log10(alpha_CIA)

    Args:
       Tarr: temperature array
       nus: wavenumber array
       nucia: CIA wavenumber (cm-1)
       tcia: CIA temperature (K)
       logac: log10 cia coefficient

    Returns:
       logac(Tarr, nus)

    Example:
       >>> nucia,tcia,ac=read_cia("../../data/CIA/H2-H2_2011.cia",nus[0]-1.0,nus[-1]+1.0)
       >>> logac=jnp.array(np.log10(ac))
       >>> logacia(Tarr,nus,nucia,tcia,logac)
    """
    def fcia(x, i): return jnp.interp(x, tcia, logac[:, i])
    vfcia = vmap(fcia, (None, 0), 0)
    mfcia = vmap(vfcia, (0, None), 0)
    inus = jnp.digitize(nus, nucia)
    return mfcia(Tarr, inus)
Beispiel #9
0
def make_graph_pathfinder(
    image,
    patch_size,
    bins,
):
    """Makes a graph holding a pathfinder image.

  Args:
    image: Should be squeezable to a 2d array
    patch_size: size of patches for node features.
    bins: Used for binning the pixel values. The highest bin must be greater
      than the highest value in image.

  Returns:
    graph representing the image.
  """

    # TODO(gnegiar): Allow multiple start nodes.
    # The threshold value .3 was selected to keep information
    # while not introducing noise
    def _get_start_pixel_fn(image, thresh=.5 * len(bins)):
        """Detects a probable start point in a Pathfinder image example."""
        thresh_image = np.where(image > thresh, 1, 0)
        distance = ndi.distance_transform_edt(thresh_image)
        idx = distance.argmax()
        coords = np.unravel_index(idx, thresh_image.shape)
        return coords

    # TODO(gnegiar): Allow continuous features in models.
    return image_graph.ImageGraph.create(
        jnp.digitize(image, bins).squeeze(),
        # Set thresh to .5 by leveraging the image discretization.
        get_start_pixel_fn=functools.partial(_get_start_pixel_fn,
                                             thresh=.5 * len(bins)),
        num_colors=len(bins),  # number of bins + 'out of bounds' pixel
        patch_size=patch_size)
Beispiel #10
0
def digitize(x, bins, right=False):
  if isinstance(x, JaxArray): x = x.value
  if isinstance(bins, JaxArray): bins = bins.value
  return JaxArray(jnp.digitize(x, bins=bins, right=right))