Beispiel #1
0
def configure_experiment(problems: dict, n_run: int):
    jobs = []
    max_evaluations = 25000

    for run in range(n_run):
        for problem_tag, problem in problems.items():
            jobs.append(
                Job(
                    algorithm=NSGAII(
                        problem=problem,
                        population_size=100,
                        offspring_population_size=100,
                        mutation=PolynomialMutation(
                            probability=1.0 / problem.number_of_variables,
                            distribution_index=20),
                        crossover=SBXCrossover(probability=1.0,
                                               distribution_index=20),
                        termination_criterion=StoppingByEvaluations(
                            max_evaluations=max_evaluations),
                    ),
                    algorithm_tag="NSGAII",
                    problem_tag=problem_tag,
                    run=run,
                ))
            jobs.append(
                Job(
                    algorithm=GDE3(
                        problem=problem,
                        population_size=100,
                        cr=0.5,
                        f=0.5,
                        termination_criterion=StoppingByEvaluations(
                            max_evaluations=max_evaluations),
                    ),
                    algorithm_tag="GDE3",
                    problem_tag=problem_tag,
                    run=run,
                ))
            jobs.append(
                Job(
                    algorithm=SMPSO(
                        problem=problem,
                        swarm_size=100,
                        mutation=PolynomialMutation(
                            probability=1.0 / problem.number_of_variables,
                            distribution_index=20),
                        leaders=CrowdingDistanceArchive(100),
                        termination_criterion=StoppingByEvaluations(
                            max_evaluations=max_evaluations),
                    ),
                    algorithm_tag="SMPSO",
                    problem_tag=problem_tag,
                    run=run,
                ))

    return jobs
Beispiel #2
0
from jmetal.algorithm.multiobjective.gde3 import GDE3
from jmetal.problem import ZDT1
from jmetal.util.solution import (
    print_function_values_to_file,
    print_variables_to_file,
    read_solutions,
)
from jmetal.util.termination_criterion import StoppingByKeyboard

if __name__ == "__main__":
    problem = ZDT1()
    problem.reference_front = read_solutions(
        filename="resources/reference_front/ZDT1.pf")

    algorithm = GDE3(problem=problem,
                     population_size=100,
                     cr=0.5,
                     f=0.5,
                     termination_criterion=StoppingByKeyboard())

    algorithm.run()
    front = algorithm.get_result()

    # Save results to file
    print_function_values_to_file(front, "FUN." + algorithm.label)
    print_variables_to_file(front, "VAR." + algorithm.label)

    print(f"Algorithm: {algorithm.get_name()}")
    print(f"Problem: {problem.get_name()}")
    print(f"Computing time: {algorithm.total_computing_time}")
Beispiel #3
0
from jmetal.util.solutions.comparator import GDominanceComparator
from jmetal.util.termination_criterion import StoppingByEvaluations

if __name__ == "__main__":
    problem = ZDT2()
    problem.reference_front = read_solutions(
        filename="resources/reference_front/{}.pf".format(problem.get_name()))

    max_evaluations = 25000
    reference_point = [0.2, 0.5]

    algorithm = GDE3(
        problem=problem,
        population_size=100,
        cr=0.5,
        f=0.5,
        termination_criterion=StoppingByEvaluations(
            max_evaluations=max_evaluations),
        dominance_comparator=GDominanceComparator(reference_point),
    )

    algorithm.observable.register(
        observer=VisualizerObserver(reference_front=problem.reference_front,
                                    reference_point=reference_point))

    algorithm.run()
    front = algorithm.get_result()

    # Plot front
    plot_front = Plot(plot_title="Pareto front approximation",
                      reference_front=problem.reference_front,
from jmetal.algorithm.multiobjective.gde3 import GDE3
from jmetal.problem.singleobjective.unconstrained import Rastrigin
from jmetal.util.observer import PrintObjectivesObserver
from jmetal.util.solution_list import print_function_values_to_file, print_variables_to_file
from jmetal.util.termination_criterion import StoppingByEvaluations

if __name__ == '__main__':
    problem = Rastrigin(10)

    algorithm = GDE3(
        problem=problem,
        population_size=100,
        cr=0.5,
        f=0.5,
        termination_criterion=StoppingByEvaluations(50000)
    )

    algorithm.observable.register(observer=PrintObjectivesObserver(1000))

    algorithm.run()
    front = algorithm.get_result()

    # Save results to file
    print_function_values_to_file(front, 'FUN.' + algorithm.get_name() + "." + problem.get_name())
    print_variables_to_file(front, 'VAR.' + algorithm.get_name() + "." + problem.get_name())

    print('Algorithm (continuous problem): ' + algorithm.get_name())
    print('Problem: ' + problem.get_name())
    print('Computing time: ' + str(algorithm.total_computing_time))
from examples.multiobjective.zdt1_modified import ZDT1Modified
from jmetal.algorithm.multiobjective.gde3 import GDE3
from jmetal.util.evaluator import SparkEvaluator
from jmetal.util.solution import print_function_values_to_file, print_variables_to_file
from jmetal.util.termination_criterion import StoppingByEvaluations

if __name__ == '__main__':
    problem = ZDT1Modified()

    algorithm = GDE3(problem=problem,
                     population_size=10,
                     cr=0.5,
                     f=0.5,
                     termination_criterion=StoppingByEvaluations(max=100),
                     population_evaluator=SparkEvaluator())

    algorithm.run()
    front = algorithm.get_result()

    # Save results to file
    print_function_values_to_file(
        front, 'FUN.' + algorithm.get_name() + "." + problem.get_name())
    print_variables_to_file(
        front, 'VAR.' + algorithm.get_name() + "." + problem.get_name())

    print('Algorithm (continuous problem): ' + algorithm.get_name())
    print('Problem: ' + problem.get_name())
    print('Computing time: ' + str(algorithm.total_computing_time))
def configure_experiment(problems: dict, n_run: int):
    jobs = []
    num_processes = config.num_cpu
    population = 10
    generations = 10
    max_evaluations = population * generations

    for run in range(n_run):
        for problem_tag, problem in problems.items():
            reference_point = FloatSolution([0, 0], [1, 1], problem.number_of_objectives, )
            reference_point.objectives = np.repeat(1, problem.number_of_objectives).tolist()
            jobs.append(
                Job(
                    algorithm=NSGAIII(
                        problem=problem,
                        population_size=population,
                        mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables,
                                                    distribution_index=20),
                        crossover=SBXCrossover(probability=1.0, distribution_index=20),
                        population_evaluator=MultiprocessEvaluator(processes=num_processes),
                        termination_criterion=StoppingByEvaluations(max_evaluations=max_evaluations),
                        reference_directions=UniformReferenceDirectionFactory(4, n_points=100),
                    ),
                    algorithm_tag='NSGAIII',
                    problem_tag=problem_tag,
                    run=run,
                )
            )

            jobs.append(
                Job(
                    algorithm=GDE3(
                        problem=problem,
                        population_size=population,
                        population_evaluator=MultiprocessEvaluator(processes=num_processes),
                        termination_criterion=StoppingByEvaluations(max_evaluations=max_evaluations),

                        cr=0.5,
                        f=0.5,
                    ),
                    algorithm_tag='GDE3',
                    problem_tag=problem_tag,
                    run=run,
                )
            )

            jobs.append(
                Job(
                    algorithm=SPEA2(
                        problem=problem,
                        population_size=population,
                        mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables,
                                                    distribution_index=20),
                        crossover=SBXCrossover(probability=1.0, distribution_index=20),
                        population_evaluator=MultiprocessEvaluator(processes=num_processes),
                        termination_criterion=StoppingByEvaluations(max_evaluations=max_evaluations),

                        offspring_population_size=population,
                    ),
                    algorithm_tag='SPEA2',
                    problem_tag=problem_tag,

                    run=run,
                )
            )

    return jobs