Beispiel #1
0
    def __init__(self, engine_path, is_admin):
        self.engine_path = engine_path
        self.is_admin = is_admin
        self.model_path = os.path.join(engine_path, 'model')
        self.config_path = os.path.join(engine_path, 'config.yaml')
        self.gpu_id = None

        # Load parameters from configuration file
        config = load_config(self.config_path)

        if "load_model" in config['training'].keys():
            self.ckpt = os.path.realpath(
                os.path.join(app.config['JOEYNMT_FOLDER'],
                             config['training']["load_model"]))
        else:
            self.ckpt = get_latest_checkpoint(self.model_path)

        self.use_cuda = config["training"].get("use_cuda", False)
        self.level = config["data"]["level"]
        self.max_output_length = config["training"].get(
            "max_output_length", None)
        self.lowercase = config["data"].get("lowercase", False)
        self.model_data = config["model"]

        # load the vocabularies
        src_vocab_file = os.path.realpath(
            os.path.join(app.config['JOEYNMT_FOLDER'],
                         config["data"]["src_vocab"]))
        trg_vocab_file = os.path.realpath(
            os.path.join(app.config['JOEYNMT_FOLDER'],
                         config["data"]["trg_vocab"]))
        self.src_vocab = build_vocab(field="src",
                                     vocab_file=src_vocab_file,
                                     dataset=None,
                                     max_size=-1,
                                     min_freq=0)
        self.trg_vocab = build_vocab(field="trg",
                                     vocab_file=trg_vocab_file,
                                     dataset=None,
                                     max_size=-1,
                                     min_freq=0)

        # whether to use beam search for decoding, 0: greedy decoding
        if "testing" in config.keys():
            self.beam_size = config["testing"].get("beam_size", 0)
            self.beam_alpha = config["testing"].get("alpha", -1)
        else:
            self.beam_size = 1
            self.beam_alpha = -1

        self.logger = logging.getLogger(__name__)
Beispiel #2
0
def translate(cfg_file: str,
              ckpt: str,
              output_path: str = None,
              batch_class: Batch = Batch,
              n_best: int = 1) -> None:
    """
    Interactive translation function.
    Loads model from checkpoint and translates either the stdin input or
    asks for input to translate interactively.
    The input has to be pre-processed according to the data that the model
    was trained on, i.e. tokenized or split into subwords.
    Translations are printed to stdout.

    :param cfg_file: path to configuration file
    :param ckpt: path to checkpoint to load
    :param output_path: path to output file
    :param batch_class: class type of batch
    :param n_best: amount of candidates to display
    """
    def _load_line_as_data(line):
        """ Create a dataset from one line via a temporary file. """
        # write src input to temporary file
        tmp_name = "tmp"
        tmp_suffix = ".src"
        tmp_filename = tmp_name + tmp_suffix
        with open(tmp_filename, "w") as tmp_file:
            tmp_file.write("{}\n".format(line))

        test_data = MonoDataset(path=tmp_name, ext=tmp_suffix, field=src_field)

        # remove temporary file
        if os.path.exists(tmp_filename):
            os.remove(tmp_filename)

        return test_data

    def _translate_data(test_data):
        """ Translates given dataset, using parameters from outer scope. """
        # pylint: disable=unused-variable
        score, loss, ppl, sources, sources_raw, references, hypotheses, \
        hypotheses_raw, attention_scores = validate_on_data(
            model, data=test_data, batch_size=batch_size,
            batch_class=batch_class, batch_type=batch_type, level=level,
            max_output_length=max_output_length, eval_metric="",
            use_cuda=use_cuda, compute_loss=False, beam_size=beam_size,
            beam_alpha=beam_alpha, postprocess=postprocess,
            bpe_type=bpe_type, sacrebleu=sacrebleu, n_gpu=n_gpu, n_best=n_best)
        return hypotheses

    cfg = load_config(cfg_file)
    model_dir = cfg["training"]["model_dir"]

    _ = make_logger(model_dir, mode="translate")
    # version string returned

    # when checkpoint is not specified, take oldest from model dir
    if ckpt is None:
        ckpt = get_latest_checkpoint(model_dir)

    # read vocabs
    src_vocab_file = cfg["data"].get("src_vocab", model_dir + "/src_vocab.txt")
    trg_vocab_file = cfg["data"].get("trg_vocab", model_dir + "/trg_vocab.txt")
    src_vocab = Vocabulary(file=src_vocab_file)
    trg_vocab = Vocabulary(file=trg_vocab_file)

    data_cfg = cfg["data"]
    level = data_cfg["level"]
    lowercase = data_cfg["lowercase"]

    tok_fun = lambda s: list(s) if level == "char" else s.split()

    src_field = Field(init_token=None,
                      eos_token=EOS_TOKEN,
                      pad_token=PAD_TOKEN,
                      tokenize=tok_fun,
                      batch_first=True,
                      lower=lowercase,
                      unk_token=UNK_TOKEN,
                      include_lengths=True)
    src_field.vocab = src_vocab

    # parse test args
    batch_size, batch_type, use_cuda, device, n_gpu, level, _, \
        max_output_length, beam_size, beam_alpha, postprocess, \
        bpe_type, sacrebleu, _, _ = parse_test_args(cfg, mode="translate")

    # load model state from disk
    model_checkpoint = load_checkpoint(ckpt, use_cuda=use_cuda)

    # build model and load parameters into it
    model = build_model(cfg["model"], src_vocab=src_vocab, trg_vocab=trg_vocab)
    model.load_state_dict(model_checkpoint["model_state"])

    if use_cuda:
        model.to(device)

    if not sys.stdin.isatty():
        # input file given
        test_data = MonoDataset(path=sys.stdin, ext="", field=src_field)
        all_hypotheses = _translate_data(test_data)

        if output_path is not None:
            # write to outputfile if given

            def write_to_file(output_path_set, hypotheses):
                with open(output_path_set, mode="w", encoding="utf-8") \
                        as out_file:
                    for hyp in hypotheses:
                        out_file.write(hyp + "\n")
                logger.info("Translations saved to: %s.", output_path_set)

            if n_best > 1:
                for n in range(n_best):
                    file_name, file_extension = os.path.splitext(output_path)
                    write_to_file(
                        "{}-{}{}".format(
                            file_name, n,
                            file_extension if file_extension else ""), [
                                all_hypotheses[i]
                                for i in range(n, len(all_hypotheses), n_best)
                            ])
            else:
                write_to_file("{}".format(output_path), all_hypotheses)
        else:
            # print to stdout
            for hyp in all_hypotheses:
                print(hyp)

    else:
        # enter interactive mode
        batch_size = 1
        batch_type = "sentence"
        while True:
            try:
                src_input = input("\nPlease enter a source sentence "
                                  "(pre-processed): \n")
                if not src_input.strip():
                    break

                # every line has to be made into dataset
                test_data = _load_line_as_data(line=src_input)
                hypotheses = _translate_data(test_data)

                print("JoeyNMT: Hypotheses ranked by score")
                for i, hyp in enumerate(hypotheses):
                    print("JoeyNMT #{}: {}".format(i + 1, hyp))

            except (KeyboardInterrupt, EOFError):
                print("\nBye.")
                break
Beispiel #3
0
def test(cfg_file,
         ckpt: str,
         batch_class: Batch = Batch,
         output_path: str = None,
         save_attention: bool = False,
         datasets: dict = None) -> None:
    """
    Main test function. Handles loading a model from checkpoint, generating
    translations and storing them and attention plots.

    :param cfg_file: path to configuration file
    :param ckpt: path to checkpoint to load
    :param batch_class: class type of batch
    :param output_path: path to output
    :param datasets: datasets to predict
    :param save_attention: whether to save the computed attention weights
    """

    cfg = load_config(cfg_file)
    model_dir = cfg["training"]["model_dir"]

    if len(logger.handlers) == 0:
        _ = make_logger(model_dir, mode="test")  # version string returned

    # when checkpoint is not specified, take latest (best) from model dir
    if ckpt is None:
        ckpt = get_latest_checkpoint(model_dir)
        try:
            step = ckpt.split(model_dir + "/")[1].split(".ckpt")[0]
        except IndexError:
            step = "best"

    # load the data
    if datasets is None:
        _, dev_data, test_data, src_vocab, trg_vocab = load_data(
            data_cfg=cfg["data"], datasets=["dev", "test"])
        data_to_predict = {"dev": dev_data, "test": test_data}
    else:  # avoid to load data again
        data_to_predict = {"dev": datasets["dev"], "test": datasets["test"]}
        src_vocab = datasets["src_vocab"]
        trg_vocab = datasets["trg_vocab"]

    # parse test args
    batch_size, batch_type, use_cuda, device, n_gpu, level, eval_metric, \
        max_output_length, beam_size, beam_alpha, postprocess, \
        bpe_type, sacrebleu, decoding_description, tokenizer_info \
        = parse_test_args(cfg, mode="test")

    # load model state from disk
    model_checkpoint = load_checkpoint(ckpt, use_cuda=use_cuda)

    # build model and load parameters into it
    model = build_model(cfg["model"], src_vocab=src_vocab, trg_vocab=trg_vocab)
    model.load_state_dict(model_checkpoint["model_state"])

    if use_cuda:
        model.to(device)

    # multi-gpu eval
    if n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
        model = _DataParallel(model)

    for data_set_name, data_set in data_to_predict.items():
        if data_set is None:
            continue

        dataset_file = cfg["data"][data_set_name] + "." + cfg["data"]["trg"]
        logger.info("Decoding on %s set (%s)...", data_set_name, dataset_file)

        #pylint: disable=unused-variable
        score, loss, ppl, sources, sources_raw, references, hypotheses, \
        hypotheses_raw, attention_scores = validate_on_data(
            model, data=data_set, batch_size=batch_size,
            batch_class=batch_class, batch_type=batch_type, level=level,
            max_output_length=max_output_length, eval_metric=eval_metric,
            use_cuda=use_cuda, compute_loss=False, beam_size=beam_size,
            beam_alpha=beam_alpha, postprocess=postprocess,
            bpe_type=bpe_type, sacrebleu=sacrebleu, n_gpu=n_gpu)
        #pylint: enable=unused-variable

        if "trg" in data_set.fields:
            logger.info("%4s %s%s: %6.2f [%s]", data_set_name, eval_metric,
                        tokenizer_info, score, decoding_description)
        else:
            logger.info("No references given for %s -> no evaluation.",
                        data_set_name)

        if save_attention:
            if attention_scores:
                attention_name = "{}.{}.att".format(data_set_name, step)
                attention_path = os.path.join(model_dir, attention_name)
                logger.info(
                    "Saving attention plots. This might take a while..")
                store_attention_plots(attentions=attention_scores,
                                      targets=hypotheses_raw,
                                      sources=data_set.src,
                                      indices=range(len(hypotheses)),
                                      output_prefix=attention_path)
                logger.info("Attention plots saved to: %s", attention_path)
            else:
                logger.warning("Attention scores could not be saved. "
                               "Note that attention scores are not available "
                               "when using beam search. "
                               "Set beam_size to 1 for greedy decoding.")

        if output_path is not None:
            output_path_set = "{}.{}".format(output_path, data_set_name)
            with open(output_path_set, mode="w", encoding="utf-8") as out_file:
                for hyp in hypotheses:
                    out_file.write(hyp + "\n")
            logger.info("Translations saved to: %s", output_path_set)
Beispiel #4
0
def translate(cfg_file, ckpt: str, output_path: str = None) -> None:
    """
    Interactive translation function.
    Loads model from checkpoint and translates either the stdin input or
    asks for input to translate interactively.
    The input has to be pre-processed according to the data that the model
    was trained on, i.e. tokenized or split into subwords.
    Translations are printed to stdout.

    :param cfg_file: path to configuration file
    :param ckpt: path to checkpoint to load
    :param output_path: path to output file
    """
    def _load_line_as_data(line):
        """ Create a dataset from one line via a temporary file. """
        # write src input to temporary file
        tmp_name = "tmp"
        tmp_suffix = ".src"
        tmp_filename = tmp_name + tmp_suffix
        with open(tmp_filename, "w") as tmp_file:
            tmp_file.write("{}\n".format(line))

        test_data = MonoDataset(path=tmp_name, ext=tmp_suffix, field=src_field)

        # remove temporary file
        if os.path.exists(tmp_filename):
            os.remove(tmp_filename)

        return test_data

    logger = make_logger()

    def _translate_data(test_data):
        """ Translates given dataset, using parameters from outer scope. """
        # pylint: disable=unused-variable
        score, loss, ppl, sources, sources_raw, references, hypotheses, \
        hypotheses_raw, attention_scores = validate_on_data(
            model, data=test_data, batch_size=batch_size,
            batch_type=batch_type, level=level,
            max_output_length=max_output_length, eval_metric="",
            use_cuda=use_cuda, loss_function=None, beam_size=beam_size,
            beam_alpha=beam_alpha, logger=logger, postprocess=postprocess)
        return hypotheses

    cfg = load_config(cfg_file)

    # when checkpoint is not specified, take oldest from model dir
    if ckpt is None:
        model_dir = cfg["training"]["model_dir"]
        ckpt = get_latest_checkpoint(model_dir)

    batch_size = cfg["training"].get("eval_batch_size",
                                     cfg["training"].get("batch_size", 1))
    batch_type = cfg["training"].get(
        "eval_batch_type", cfg["training"].get("batch_type", "sentence"))
    use_cuda = cfg["training"].get("use_cuda", False)
    level = cfg["data"]["level"]
    max_output_length = cfg["training"].get("max_output_length", None)

    # read vocabs
    src_vocab_file = cfg["data"].get(
        "src_vocab", cfg["training"]["model_dir"] + "/src_vocab.txt")
    trg_vocab_file = cfg["data"].get(
        "trg_vocab", cfg["training"]["model_dir"] + "/trg_vocab.txt")
    src_vocab = Vocabulary(file=src_vocab_file)
    trg_vocab = Vocabulary(file=trg_vocab_file)

    data_cfg = cfg["data"]
    level = data_cfg["level"]
    lowercase = data_cfg["lowercase"]

    tok_fun = lambda s: list(s) if level == "char" else s.split()

    src_field = Field(init_token=None,
                      eos_token=EOS_TOKEN,
                      pad_token=PAD_TOKEN,
                      tokenize=tok_fun,
                      batch_first=True,
                      lower=lowercase,
                      unk_token=UNK_TOKEN,
                      include_lengths=True)
    src_field.vocab = src_vocab

    # load model state from disk
    model_checkpoint = load_checkpoint(ckpt, use_cuda=use_cuda)

    # build model and load parameters into it
    model = build_model(cfg["model"], src_vocab=src_vocab, trg_vocab=trg_vocab)
    model.load_state_dict(model_checkpoint["model_state"])

    if use_cuda:
        model.cuda()

    # whether to use beam search for decoding, <2: greedy decoding
    if "testing" in cfg.keys():
        beam_size = cfg["testing"].get("beam_size", 1)
        beam_alpha = cfg["testing"].get("alpha", -1)
        postprocess = cfg["testing"].get("postprocess", True)
    else:
        beam_size = 1
        beam_alpha = -1
        postprocess = True

    if not sys.stdin.isatty():
        # input file given
        test_data = MonoDataset(path=sys.stdin, ext="", field=src_field)
        hypotheses = _translate_data(test_data)

        if output_path is not None:
            # write to outputfile if given
            output_path_set = "{}".format(output_path)
            with open(output_path_set, mode="w", encoding="utf-8") as out_file:
                for hyp in hypotheses:
                    out_file.write(hyp + "\n")
            logger.info("Translations saved to: %s.", output_path_set)
        else:
            # print to stdout
            for hyp in hypotheses:
                print(hyp)

    else:
        # enter interactive mode
        batch_size = 1
        batch_type = "sentence"
        while True:
            try:
                src_input = input("\nPlease enter a source sentence "
                                  "(pre-processed): \n")
                if not src_input.strip():
                    break

                # every line has to be made into dataset
                test_data = _load_line_as_data(line=src_input)

                hypotheses = _translate_data(test_data)
                print("JoeyNMT: {}".format(hypotheses[0]))

            except (KeyboardInterrupt, EOFError):
                print("\nBye.")
                break
Beispiel #5
0
def test(cfg_file,
         ckpt: str,
         output_path: str = None,
         save_attention: bool = False,
         logger: Logger = None) -> None:
    """
    Main test function. Handles loading a model from checkpoint, generating
    translations and storing them and attention plots.

    :param cfg_file: path to configuration file
    :param ckpt: path to checkpoint to load
    :param output_path: path to output
    :param save_attention: whether to save the computed attention weights
    :param logger: log output to this logger (creates new logger if not set)
    """

    if logger is None:
        logger = make_logger()

    cfg = load_config(cfg_file)

    # when checkpoint is not specified, take latest (best) from model dir
    step = "best"
    model_dir = cfg["training"]["model_dir"]
    if ckpt is None:
        ckpt = get_latest_checkpoint(model_dir)
        if ckpt is None:
            raise FileNotFoundError(
                "No checkpoint found in directory {}.".format(model_dir))
        try:
            step = ckpt.split(model_dir + "/")[1].split(".ckpt")[0]
        except IndexError:
            step = "best"

    architecture = cfg["model"].get("architecture", "encoder-decoder")
    batch_size = cfg["training"].get("eval_batch_size",
                                     cfg["training"]["batch_size"])
    batch_type = cfg["training"].get(
        "eval_batch_type", cfg["training"].get("batch_type", "sentence"))
    use_cuda = cfg["training"].get("use_cuda", False)
    level = cfg["data"]["level"]
    eval_metric = cfg["training"]["eval_metric"]
    max_output_length = cfg["training"].get("max_output_length", None)

    # original encoder-decoder testing
    if architecture == "encoder-decoder":
        if "test" not in cfg["data"].keys():
            raise ValueError("Test data must be specified in config.")
        # load the data
        _, dev_data, test_data, src_vocab, trg_vocab = load_data(
            data_cfg=cfg["data"])
        data_to_predict = {"dev": dev_data, "test": test_data}

        # load model state from disk
        model_checkpoint = load_checkpoint(ckpt, use_cuda=use_cuda)

        # build model and load parameters into it
        model = build_model(cfg["model"],
                            src_vocab=src_vocab,
                            trg_vocab=trg_vocab)
        model.load_state_dict(model_checkpoint["model_state"])

        if use_cuda:
            model.cuda()

        # whether to use beam search for decoding, 0: greedy decoding
        if "testing" in cfg.keys():
            beam_size = cfg["testing"].get("beam_size", 1)
            beam_alpha = cfg["testing"].get("alpha", -1)
            postprocess = cfg["testing"].get("postprocess", True)
        else:
            beam_size = 1
            beam_alpha = -1
            postprocess = True

        for data_set_name, data_set in data_to_predict.items():

            # pylint: disable=unused-variable
            score, loss, ppl, sources, sources_raw, references, hypotheses, \
            hypotheses_raw, attention_scores = validate_on_data(
                model, data=data_set, batch_size=batch_size,
                batch_type=batch_type, level=level,
                max_output_length=max_output_length, eval_metric=eval_metric,
                use_cuda=use_cuda, loss_function=None, beam_size=beam_size,
                beam_alpha=beam_alpha, logger=logger, postprocess=postprocess)
            # pylint: enable=unused-variable

            if "trg" in data_set.fields:
                decoding_description = "Greedy decoding" if beam_size < 2 else \
                    "Beam search decoding with beam size = {} and alpha = {}". \
                        format(beam_size, beam_alpha)
                logger.info("%4s %s: %6.2f [%s]", data_set_name, eval_metric,
                            score, decoding_description)
            else:
                logger.info("No references given for %s -> no evaluation.",
                            data_set_name)

            if save_attention:
                if attention_scores:
                    attention_name = "{}.{}.att".format(data_set_name, step)
                    attention_path = os.path.join(model_dir, attention_name)
                    logger.info(
                        "Saving attention plots. This might take a while..")
                    store_attention_plots(attentions=attention_scores,
                                          targets=hypotheses_raw,
                                          sources=data_set.src,
                                          indices=range(len(hypotheses)),
                                          output_prefix=attention_path)
                    logger.info("Attention plots saved to: %s", attention_path)
                else:
                    logger.warning(
                        "Attention scores could not be saved. "
                        "Note that attention scores are not available "
                        "when using beam search. "
                        "Set beam_size to 1 for greedy decoding.")

            if output_path is not None:
                output_path_set = "{}.{}".format(output_path, data_set_name)
                with open(output_path_set, mode="w",
                          encoding="utf-8") as out_file:
                    for hyp in hypotheses:
                        out_file.write(hyp + "\n")
                logger.info("Translations saved to: %s", output_path_set)
    else:
        # unsupervised NMT testing
        if "src2trg_test" not in cfg["data"].keys(
        ) or "trg2src_test" not in cfg["data"].keys():
            raise ValueError("Test data must be specified in config.")
        # load the data
        _, _, _, _, dev_src2trg, dev_trg2src, test_src2trg, test_trg2src, src_vocab, trg_vocab, _ = \
            load_unsupervised_data(data_cfg=cfg["data"])
        data_to_predict = {
            "src2trg": {
                "dev_src2trg": dev_src2trg,
                "test_src2trg": test_src2trg
            },
            "trg2src": {
                "dev_trg2src": dev_trg2src,
                "test_trg2src": test_trg2src
            }
        }

        # load model state from disk
        model_checkpoint = load_checkpoint(ckpt, use_cuda=use_cuda)

        # build model and load parameters into it
        model = build_model(cfg["model"],
                            src_vocab=src_vocab,
                            trg_vocab=trg_vocab)
        assert isinstance(model, UnsupervisedNMTModel)
        model.src2src_translator.load_state_dict(
            model_checkpoint["src2src_model_state"])
        model.trg2trg_translator.load_state_dict(
            model_checkpoint["trg2trg_model_state"])
        model.src2trg_translator.load_state_dict(
            model_checkpoint["src2trg_model_state"])
        model.trg2src_translator.load_state_dict(
            model_checkpoint["trg2src_model_state"])

        if use_cuda:
            model.src2trg_translator.cuda()
            model.trg2trg_translator.cuda()
            model.src2trg_translator.cuda()
            model.trg2src_translator.cuda()

        # whether to use beam search for decoding, 0: greedy decoding
        if "testing" in cfg.keys():
            beam_size = cfg["testing"].get("beam_size", 1)
            beam_alpha = cfg["testing"].get("alpha", -1)
            postprocess = cfg["testing"].get("postprocess", True)
        else:
            beam_size = 1
            beam_alpha = -1
            postprocess = True

        for translation_direction, dataset_dict in data_to_predict.items():
            # choose correct translator
            if translation_direction == "src2trg":
                model_to_use = model.src2trg_translator
            else:
                model_to_use = model.trg2src_translator

            for dataset_name, dataset in dataset_dict.items():
                score, loss, ppl, sources, sources_raw, references, hypotheses, \
                hypotheses_raw, attention_scores = validate_on_data(
                    model_to_use, data=dataset, batch_size=batch_size,
                    batch_type=batch_type, level=level,
                    max_output_length=max_output_length, eval_metric=eval_metric,
                    use_cuda=use_cuda, loss_function=None, beam_size=beam_size,
                    beam_alpha=beam_alpha, logger=logger, postprocess=postprocess)

                if "trg" in dataset.fields:
                    decoding_description = "Greedy decoding" if beam_size < 2 else \
                        "Beam search decoding with beam size = {} and alpha = {}". \
                            format(beam_size, beam_alpha)
                    logger.info("%4s %s: %6.2f [%s]", dataset_name,
                                eval_metric, score, decoding_description)
                else:
                    logger.info("No references given for %s -> no evaluation.",
                                dataset_name)

                if save_attention:
                    if attention_scores:
                        attention_name = "{}.{}.att".format(dataset_name, step)
                        attention_path = os.path.join(model_dir,
                                                      attention_name)
                        logger.info(
                            "Saving attention plots. This might take a while.."
                        )
                        store_attention_plots(attentions=attention_scores,
                                              targets=hypotheses_raw,
                                              sources=dataset.src,
                                              indices=list(
                                                  range(len(hypotheses))),
                                              output_prefix=attention_path)
                        logger.info("Attention plots saved to: %s",
                                    attention_path)
                    else:
                        logger.warning(
                            "Attention scores could not be saved. "
                            "Note that attention scores are not available "
                            "when using beam search. "
                            "Set beam_size to 1 for greedy decoding.")

                if output_path is not None:
                    output_path_set = "{}.{}".format(output_path, dataset_name)
                    with open(output_path_set, mode="w",
                              encoding="utf-8") as out_file:
                        for hyp in hypotheses:
                            out_file.write(hyp + "\n")
                    logger.info("Translations saved to: %s", output_path_set)
Beispiel #6
0
def run_bot(model_dir, bpe_src_code=None, tokenize=None):
    """
    Start the bot. This means loading the model according to the config file.

    :param model_dir: Model directory of trained Joey NMT model.
    :param bpe_src_code: BPE codes for source side processing (optional).
    :param tokenize: If True, tokenize inputs with Moses tokenizer.
    :return:
    """

    cfg_file = model_dir + "/config.yaml"

    logger = logging.getLogger(__name__)

    # load the Joey configuration
    cfg = load_config(cfg_file)

    # load the checkpoint
    if "load_model" in cfg['training'].keys():
        ckpt = cfg['training']["load_model"]
    else:
        ckpt = get_latest_checkpoint(model_dir)
        if ckpt is None:
            raise FileNotFoundError(
                "No checkpoint found in directory {}.".format(model_dir))

    # prediction parameters from config
    use_cuda = cfg["training"].get("use_cuda", False)
    level = cfg["data"]["level"]
    max_output_length = cfg["training"].get("max_output_length", None)
    lowercase = cfg["data"].get("lowercase", False)

    # load the vocabularies
    src_vocab_file = cfg["training"]["model_dir"] + "/src_vocab.txt"
    trg_vocab_file = cfg["training"]["model_dir"] + "/trg_vocab.txt"
    src_vocab = build_vocab(field="src",
                            vocab_file=src_vocab_file,
                            dataset=None,
                            max_size=-1,
                            min_freq=0)
    trg_vocab = build_vocab(field="trg",
                            vocab_file=trg_vocab_file,
                            dataset=None,
                            max_size=-1,
                            min_freq=0)

    # whether to use beam search for decoding, 0: greedy decoding
    if "testing" in cfg.keys():
        beam_size = cfg["testing"].get("beam_size", 0)
        beam_alpha = cfg["testing"].get("alpha", -1)
    else:
        beam_size = 1
        beam_alpha = -1

    # pre-processing
    if tokenize is not None:
        src_tokenizer = MosesTokenizer(lang=cfg["data"]["src"])
        trg_tokenizer = MosesDetokenizer(lang=cfg["data"]["trg"])
        # tokenize input
        tokenizer = lambda x: src_tokenizer.tokenize(x, return_str=True)
        detokenizer = lambda x: trg_tokenizer.detokenize(x.split(),
                                                         return_str=True)
    else:
        tokenizer = lambda x: x
        detokenizer = lambda x: x

    if bpe_src_code is not None and level == "bpe":
        # load bpe merge file
        merge_file = open(bpe_src_code, "r")
        bpe = apply_bpe.BPE(codes=merge_file)
        segmenter = lambda x: bpe.process_line(x.strip())
    elif level == "char":
        # split to chars
        segmenter = lambda x: list(x.strip())
    else:
        segmenter = lambda x: x.strip()

    # build model and load parameters into it
    model_checkpoint = load_checkpoint(ckpt, use_cuda)
    model = build_model(cfg["model"], src_vocab=src_vocab, trg_vocab=trg_vocab)
    model.load_state_dict(model_checkpoint["model_state"])

    if use_cuda:
        model.cuda()

    print("Joey NMT model loaded successfully.")

    web_client = slack.WebClient(TOKEN, timeout=30)

    # get bot id
    bot_id = (web_client.api_call("auth.test")["user_id"].upper())

    # find bot channel id
    all_channels = web_client.api_call("conversations.list")["channels"]
    for c in all_channels:
        if c["name"] == BOT_CHANNEL:
            bot_channel_id = c["id"]

    slack_events_adapter = SlackEventAdapter(BOT_SIGNIN,
                                             endpoint="/slack/events")

    @slack_events_adapter.on("message")
    def handle_message(event_data):
        message = event_data["event"]
        if message.get("subtype") is None:
            channel = message["channel"]
            user = message["user"]
            text = message["text"].strip()
            if user != bot_id and message.get("subtype") is None:
                # translates all messages in its channel and mentions
                if channel == bot_channel_id or bot_id in text:
                    mention = "<@{}>".format(bot_id)
                    # TODO remove all possible mentions with regex
                    if mention in text:
                        parts = text.split(mention)
                        text = parts[0].strip() + parts[1].strip()
                    message = translate(text,
                                        beam_size=beam_size,
                                        beam_alpha=beam_alpha,
                                        level=level,
                                        lowercase=lowercase,
                                        max_output_length=max_output_length,
                                        model=model,
                                        postprocess=[detokenizer],
                                        preprocess=[tokenizer, segmenter],
                                        src_vocab=src_vocab,
                                        trg_vocab=trg_vocab,
                                        use_cuda=use_cuda,
                                        logger=logger)
                    web_client.chat_postMessage(text=message,
                                                token=TOKEN,
                                                channel=channel)

    # Error events
    @slack_events_adapter.on("error")
    def error_handler(err):
        print("ERROR: " + str(err))

    slack_events_adapter.start(port=3000)
Beispiel #7
0
def test(cfg_file,
         ckpt,
         output_path: str = None,
         save_attention: bool = False,
         logger: logging.Logger = None,
         data_to_test: str = None) -> None:
    """
    Main test function. Handles loading a model from checkpoint, generating
    translations and storing them and attention plots.

    :param cfg_file: path to configuration file
    :param ckpt: path to checkpoint to load
    :param output_path: path to output
    :param save_attention: whether to save the computed attention weights
    :param logger: log output to this logger (creates new logger if not set)
    """

    if logger is None:
        logger = logging.getLogger(__name__)
        FORMAT = '%(asctime)-15s - %(message)s'
        logging.basicConfig(format=FORMAT)
        logger.setLevel(level=logging.DEBUG)

    cfg = load_config(cfg_file)
    train_cfg = cfg["training"]
    data_cfg = cfg["data"]
    test_cfg = cfg["testing"]

    if "test" not in data_cfg.keys():
        raise ValueError("Test data must be specified in config.")

    # when checkpoint is not specified, take latest (best) from model dir
    model_dir = train_cfg["model_dir"]
    if ckpt is None:
        ckpt = get_latest_checkpoint(model_dir)
        if ckpt is None:
            raise FileNotFoundError("No checkpoint at {}.".format(model_dir))
        try:
            step = ckpt.split(model_dir + "/")[1].split(".ckpt")[0]
        except IndexError:
            step = "best"

    batch_size = train_cfg.get("eval_batch_size", train_cfg["batch_size"])
    batch_type = train_cfg.get("batch_type", "sentence")
    use_cuda = train_cfg.get("use_cuda", False)
    assert "level" in data_cfg or "trg_level" in data_cfg
    trg_level = data_cfg.get("level", data_cfg["trg_level"])

    eval_metric = train_cfg["eval_metric"]
    if isinstance(eval_metric, str):
        eval_metric = [eval_metric]
    max_output_length = test_cfg.get("max_output_length",
                                     train_cfg.get("max_output_length", None))

    # load the data
    data = load_data(data_cfg)
    dev_data = data["dev_data"]
    test_data = data["test_data"]
    vocabs = data["vocabs"]

    data_to_predict = {"dev": dev_data, "test": test_data}
    if data_to_test is not None:
        assert data_to_test in data_to_predict
        data_to_predict = {data_to_test: data_to_predict[data_to_test]}

    # load model state from disk
    if isinstance(ckpt, str):
        ckpt = [ckpt]
    models = []
    for c in ckpt:
        model_checkpoint = load_checkpoint(c, use_cuda=use_cuda)

        # build model and load parameters into it
        m = build_model(cfg["model"], vocabs=vocabs)
        m.load_state_dict(model_checkpoint["model_state"])
        models.append(m)
    model = models[0] if len(models) == 1 else EnsembleModel(*models)

    if use_cuda:
        model.cuda()  # should this exist?

    # whether to use beam search for decoding, 0: greedy decoding
    beam_sizes = beam_alpha = 0
    if "testing" in cfg.keys():
        beam_sizes = test_cfg.get("beam_size", 0)
        beam_alpha = test_cfg.get("alpha", 0)
    beam_sizes = [beam_sizes] if isinstance(beam_sizes, int) else beam_sizes
    assert beam_alpha >= 0, "Use alpha >= 0"

    method = test_cfg.get("method", None)
    max_hyps = test_cfg.get("max_hyps", 1)  # only for the enumerate thing

    validate_by_label = test_cfg.get("validate_by_label",
                                     train_cfg.get("validate_by_label", False))
    forced_sparsity = test_cfg.get("forced_sparsity",
                                   train_cfg.get("forced_sparsity", False))

    for beam_size in beam_sizes:
        for data_set_name, data_set in data_to_predict.items():
            valid_results = validate_on_data(
                model,
                data=data_set,
                batch_size=batch_size,
                batch_type=batch_type,
                trg_level=trg_level,
                max_output_length=max_output_length,
                eval_metrics=eval_metric,
                use_cuda=use_cuda,
                loss_function=None,
                beam_size=beam_size,
                beam_alpha=beam_alpha,
                save_attention=save_attention,
                validate_by_label=validate_by_label,
                forced_sparsity=forced_sparsity,
                method=method,
                max_hyps=max_hyps,
                break_at_p=test_cfg.get("break_at_p", 1.0),
                break_at_argmax=test_cfg.get("break_at_argmax", False),
                short_depth=test_cfg.get("short_depth", 0))
            scores = valid_results[0]
            hypotheses, hypotheses_raw = valid_results[2:4]
            scores_by_label = valid_results[5]

            if "trg" in data_set.fields:
                log_scores(logger, data_set_name, scores, scores_by_label,
                           beam_size, beam_alpha)
            else:
                logger.info("No references given for %s -> no evaluation.",
                            data_set_name)

            attention_scores = valid_results[4]
            if save_attention and not attention_scores:
                logger.warning("Attention scores could not be saved. "
                               "Note that attention scores are not "
                               "available when using beam search. "
                               "Set beam_size to 0 for greedy decoding.")
            if save_attention and attention_scores:
                # currently this will break for transformers
                logger.info("Saving attention plots. This might be slow.")
                store_attention_plots(attentions=attention_scores,
                                      targets=hypotheses_raw,
                                      sources=[s for s in data_set.src],
                                      indices=range(len(hypotheses)),
                                      model_dir=model_dir,
                                      steps=step,
                                      data_set_name=data_set_name)
                logger.info("Attention plots saved to: %s", model_dir)

            if output_path is not None:
                output_path_set = "{}.{}".format(output_path, data_set_name)
                with open(output_path_set, mode="w", encoding="utf-8") as outf:
                    for hyp in hypotheses:
                        outf.write(hyp + "\n")
                logger.info("Translations saved to: %s", output_path_set)
Beispiel #8
0
def test(cfg_file,
         ckpt: str,
         output_path: str = None,
         save_attention: bool = False) -> None:
    """
    Main test function. Handles loading a model from checkpoint, generating
    translations and storing them and attention plots.

    :param cfg_file: path to configuration file
    :param ckpt: path to checkpoint to load
    :param output_path: path to output
    :param save_attention: whether to save the computed attention weights
    """

    cfg = load_config(cfg_file)

    if "test" not in cfg["data"].keys():
        raise ValueError("Test data must be specified in config.")

    # when checkpoint is not specified, take oldest from model dir
    if ckpt is None:
        model_dir = cfg["training"]["model_dir"]
        ckpt = get_latest_checkpoint(model_dir)
        if ckpt is None:
            raise FileNotFoundError(
                "No checkpoint found in directory {}.".format(model_dir))
        try:
            step = ckpt.split(model_dir + "/")[1].split(".ckpt")[0]
        except IndexError:
            step = "best"

    batch_size = cfg["training"]["batch_size"]
    use_cuda = cfg["training"].get("use_cuda", False)
    level = cfg["data"]["level"]
    eval_metric = cfg["training"]["eval_metric"]
    max_output_length = cfg["training"].get("max_output_length", None)

    # load the data
    _, dev_data, test_data, src_vocab, trg_vocab = load_data(
        data_cfg=cfg["data"])

    data_to_predict = {"dev": dev_data, "test": test_data}

    # load model state from disk
    model_checkpoint = load_checkpoint(ckpt, use_cuda=use_cuda)

    # build model and load parameters into it
    model = build_model(cfg["model"], src_vocab=src_vocab, trg_vocab=trg_vocab)
    model.load_state_dict(model_checkpoint["model_state"])

    if use_cuda:
        model.cuda()

    # whether to use beam search for decoding, 0: greedy decoding
    if "testing" in cfg.keys():
        beam_size = cfg["testing"].get("beam_size", 0)
        beam_alpha = cfg["testing"].get("alpha", -1)
    else:
        beam_size = 0
        beam_alpha = -1

    for data_set_name, data_set in data_to_predict.items():
        if data_set is None:
            # e.g. no valid_data
            continue

        #pylint: disable=unused-variable
        score, loss, ppl, sources, sources_raw, references, hypotheses, \
        hypotheses_raw, attention_scores, logprobs = validate_on_data(
            model, data=data_set, batch_size=batch_size, level=level,
            max_output_length=max_output_length, eval_metric=eval_metric,
            use_cuda=use_cuda, loss_function=None, beam_size=beam_size,
            beam_alpha=beam_alpha)
        #pylint: enable=unused-variable

        if "trg" in data_set.fields:
            decoding_description = "Greedy decoding" if beam_size == 0 else \
                "Beam search decoding with beam size = {} and alpha = {}".\
                    format(beam_size, beam_alpha)
            print("{:4s} {}: {} [{}]".format(data_set_name, eval_metric, score,
                                             decoding_description))
        else:
            print("No references given for {} -> no evaluation.".format(
                data_set_name))

        if attention_scores is not None and save_attention:
            attention_path = "{}/{}.{}.att".format(model_dir, data_set_name,
                                                   step)
            print("Attention plots saved to: {}.xx".format(attention_path))
            store_attention_plots(attentions=attention_scores,
                                  targets=hypotheses_raw,
                                  sources=[s for s in data_set.src],
                                  indices=range(len(hypotheses)),
                                  output_prefix=attention_path)

        if output_path is not None:
            output_path_set = "{}.{}".format(output_path, data_set_name)
            with open(output_path_set, mode="w", encoding="utf-8") as out_file:
                if cfg["data"].get("post_process", True):
                    for hyp in hypotheses:
                        out_file.write(hyp + "\n")
                else:
                    for hyp in hypotheses_raw:
                        out_file.write(" ".join(hyp) + "\n")
            print("Translations saved to: {}".format(output_path_set))
Beispiel #9
0
def train(cfg_file: str) -> None:
    """
    Main training function. After training, also test on test data if given.

    :param cfg_file: path to configuration yaml file
    """
    cfg = load_config(cfg_file)

    # set the random seed
    set_seed(seed=cfg["training"].get("random_seed", 42))

    # load the data
    train_data, dev_data, test_data, src_vocab, trg_vocab = load_data(
        data_cfg=cfg["data"])

    # build an encoder-decoder model
    model = build_model(cfg["model"], src_vocab=src_vocab, trg_vocab=trg_vocab)

    # for training management, e.g. early stopping and model selection
    trainer = TrainManager(model=model, config=cfg)

    # store copy of original training config in model dir
    shutil.copy2(cfg_file, trainer.model_dir + "/config.yaml")

    # log all entries of config
    log_cfg(cfg, trainer.logger)

    log_data_info(train_data=train_data,
                  valid_data=dev_data,
                  test_data=test_data,
                  src_vocab=src_vocab,
                  trg_vocab=trg_vocab,
                  logging_function=trainer.logger.info)

    # store the vocabs
    src_vocab_file = "{}/src_vocab.txt".format(cfg["training"]["model_dir"])
    src_vocab.to_file(src_vocab_file)
    trg_vocab_file = "{}/trg_vocab.txt".format(cfg["training"]["model_dir"])
    trg_vocab.to_file(trg_vocab_file)

    # train the model
    trainer.train_and_validate(train_data=train_data, valid_data=dev_data)

    # test the model with the best checkpoint
    if test_data is not None:

        # load checkpoint
        if trainer.best_ckpt_iteration > 0:
            checkpoint_path = "{}/{}.ckpt".format(trainer.model_dir,
                                                  trainer.best_ckpt_iteration)
        else:
            ## For save_checkpoint by save_freq
            checkpoint_path = get_latest_checkpoint(trainer.model_dir)
        try:
            trainer.init_from_checkpoint(checkpoint_path)
        except AssertionError:
            trainer.logger.warning(
                "Checkpoint %s does not exist. "
                "Skipping testing.", checkpoint_path)
            if trainer.best_ckpt_iteration == 0 \
                and trainer.best_ckpt_score in [np.inf, -np.inf]:
                trainer.logger.warning(
                    "It seems like no checkpoint was written, "
                    "since no improvement was obtained over the initial model."
                )
            return

        # generate hypotheses for test data
        if "testing" in cfg.keys():
            beam_size = cfg["testing"].get("beam_size", 0)
            beam_alpha = cfg["testing"].get("alpha", -1)
            return_logp = cfg["testing"].get("return_logp", False)
        else:
            beam_size = 0
            beam_alpha = -1
            return_logp = False

        # pylint: disable=unused-variable
        score, loss, ppl, sources, sources_raw, references, hypotheses, \
            hypotheses_raw, attention_scores, log_probs = validate_on_data(
                data=test_data, batch_size=trainer.batch_size,
                eval_metric=trainer.eval_metric, level=trainer.level,
                max_output_length=trainer.max_output_length,
                model=model, use_cuda=trainer.use_cuda, loss_function=None,
                beam_size=beam_size, beam_alpha=beam_alpha,
                return_logp=return_logp)

        if "trg" in test_data.fields:
            decoding_description = "Greedy decoding" if beam_size == 0 else \
                "Beam search decoding with beam size = {} and alpha = {}"\
                    .format(beam_size, beam_alpha)
            trainer.logger.info("Test data result: %f %s [%s]", score,
                                trainer.eval_metric, decoding_description)
        else:
            trainer.logger.info(
                "No references given for %s.%s -> no evaluation.",
                cfg["data"]["test"], cfg["data"]["src"])

        output_path_set = "{}/{}.{}".format(trainer.model_dir, "test",
                                            cfg["data"]["trg"])
        with open(output_path_set, mode="w", encoding="utf-8") as f:
            for h in hypotheses:
                f.write("{}\n".format(h))
        trainer.logger.info("Test translations saved to: %s", output_path_set)

        if return_logp:
            output_path_set_logp = output_path_set + ".logp"
            with open(output_path_set_logp, mode="w", encoding="utf-8") as f:
                for l in log_probs:
                    f.write("{}\n".format(l))
            trainer.logger.info("Test log probs saved to: %s",
                                output_path_set_logp)
Beispiel #10
0
def test(cfg_file,
         ckpt: str = None,
         output_path: str = None,
         save_attention: bool = False):
    """
    Main test function. Handles loading a model from checkpoint, generating
    translations and storing them and attention plots.

    :param cfg_file:
    :param ckpt:
    :param output_path:
    :param save_attention:
    :return:
    """

    cfg = load_config(cfg_file)

    if "test" not in cfg["data"].keys():
        raise ValueError("Test data must be specified in config.")

    # when checkpoint is not specified, take oldest from model dir
    if ckpt is None:
        dir = cfg["training"]["model_dir"]
        ckpt = get_latest_checkpoint(dir)
        try:
            step = ckpt.split(dir + "/")[1].split(".ckpt")[0]
        except IndexError:
            step = "best"

    batch_size = cfg["training"]["batch_size"]
    use_cuda = cfg["training"].get("use_cuda", False)
    level = cfg["data"]["level"]
    eval_metric = cfg["training"]["eval_metric"]
    max_output_length = cfg["training"].get("max_output_length", None)

    # load the data
    # TODO load only test data
    train_data, dev_data, test_data, src_vocab, trg_vocab = \
        load_data(cfg=cfg)

    # TODO specify this differently
    data_to_predict = {"dev": dev_data, "test": test_data}

    # load model state from disk
    model_checkpoint = load_model_from_checkpoint(ckpt, use_cuda=use_cuda)

    # build model and load parameters into it
    model = build_model(cfg["model"], src_vocab=src_vocab, trg_vocab=trg_vocab)
    model.load_state_dict(model_checkpoint["model_state"])

    if use_cuda:
        model.cuda()

    # whether to use beam search for decoding, 0: greedy decoding
    if "testing" in cfg.keys():
        beam_size = cfg["testing"].get("beam_size", 0)
        beam_alpha = cfg["testing"].get("alpha", -1)
    else:
        beam_size = 0
        beam_alpha = -1

    for data_set_name, data_set in data_to_predict.items():

        score, loss, ppl, sources, sources_raw, references, hypotheses, \
        hypotheses_raw, attention_scores = validate_on_data(
            model, data=data_set, batch_size=batch_size, level=level,
            max_output_length=max_output_length, eval_metric=eval_metric,
            use_cuda=use_cuda, criterion=None, beam_size=beam_size,
            beam_alpha=beam_alpha)

        if "trg" in data_set.fields:
            decoding_description = "Greedy decoding" if beam_size == 0 else \
                "Beam search decoding with beam size = {} and alpha = {}".format(
                    beam_size, beam_alpha)
            print("{:4s} {}: {} [{}]".format(data_set_name, eval_metric, score,
                                             decoding_description))
        else:
            print("No references given for {} -> no evaluation.".format(
                data_set_name))

        if attention_scores is not None and save_attention:
            attention_path = "{}/{}.{}.att".format(dir, data_set_name, step)
            print("Attention plots saved to: {}.xx".format(attention_path))
            store_attention_plots(attentions=attention_scores,
                                  targets=hypotheses_raw,
                                  sources=[s for s in data_set.src],
                                  idx=range(len(hypotheses)),
                                  output_prefix=attention_path)

        if output_path is not None:
            output_path_set = "{}.{}".format(output_path, data_set_name)
            with open(output_path_set, mode="w", encoding="utf-8") as f:
                for h in hypotheses:
                    f.write(h + "\n")
            print("Translations saved to: {}".format(output_path_set))
def translate(cfg_file, ckpt: str, output_path: str = None) -> None:
    """
    Interactive translation function.
    Loads model from checkpoint and translates either the stdin input or
    asks for input to translate interactively.
    The input has to be pre-processed according to the data that the model
    was trained on, i.e. tokenized or split into subwords.
    Translations are printed to stdout.

    :param cfg_file: path to configuration file
    :param ckpt: path to checkpoint to load
    """

    def _load_line_as_data(line):
        """ Create a dataset from one line via a temporary file. """
        # write src input to temporary file
        tmp_name = "tmp"
        tmp_suffix = ".src"
        tmp_filename = tmp_name+tmp_suffix
        with open(tmp_filename, "w") as tmp_file:
            tmp_file.write("{}\n".format(line))

        test_data = MonoDataset(path=tmp_name, ext=tmp_suffix, field=src_field)

        # remove temporary file
        if os.path.exists(tmp_filename):
            os.remove(tmp_filename)

        return test_data

    def _translate_data(test_data):
        """ Translates given dataset, using parameters from outer scope. """
        # pylint: disable=unused-variable
        _, _, _, _, hypotheses, _, _, _, _ = validate_on_data(
            model, data=test_data, batch_size=batch_size, level=level,
            max_output_length=max_output_length, eval_metrics=[],
            use_cuda=use_cuda, loss_function=None, beam_size=beam_size,
            beam_alpha=beam_alpha)
        return hypotheses

    cfg = load_config(cfg_file)

    # when checkpoint is not specified, take oldest from model dir
    if ckpt is None:
        model_dir = cfg["training"]["model_dir"]
        ckpt = get_latest_checkpoint(model_dir)

    data_cfg = cfg["data"]

    batch_size = cfg["training"].get("batch_size", 1)
    use_cuda = cfg["training"].get("use_cuda", False)
    max_output_length = cfg["training"].get("max_output_length", None)

    # read vocabs

    # This will need to change: currently translate does not support inflection
    src_vocab_file = data_cfg.get(
        "src_vocab", cfg["training"]["model_dir"] + "/src_vocab.txt")
    trg_vocab_file = data_cfg.get(
        "trg_vocab", cfg["training"]["model_dir"] + "/trg_vocab.txt")
    src_vocab = Vocabulary(file=src_vocab_file)
    trg_vocab = Vocabulary(file=trg_vocab_file)
    vocabs = {"src": src_vocab, "trg": trg_vocab}

    level = data_cfg["level"]
    lowercase = data_cfg["lowercase"]

    tok_fun = list if level == "char" else str.split

    src_field = Field(init_token=None, eos_token=EOS_TOKEN,
                      pad_token=PAD_TOKEN, tokenize=tok_fun,
                      batch_first=True, lower=lowercase,
                      unk_token=UNK_TOKEN,
                      include_lengths=True)
    src_field.vocab = src_vocab

    # load model state from disk
    model_checkpoint = load_checkpoint(ckpt, use_cuda=use_cuda)

    # build model and load parameters into it
    model = build_model(cfg["model"], vocabs=vocabs)
    model.load_state_dict(model_checkpoint["model_state"])

    if use_cuda:
        model.cuda()

    # whether to use beam search for decoding, 0: greedy decoding
    if "testing" in cfg.keys():
        beam_size = cfg["testing"].get("beam_size", 0)
        beam_alpha = cfg["testing"].get("alpha", 0)
    else:
        beam_size = 0
        beam_alpha = 0
    if beam_alpha < 0:
        raise ConfigurationError("alpha for length penalty should be >= 0")

    if not sys.stdin.isatty():
        # file given
        test_data = MonoDataset(path=sys.stdin, ext="", field=src_field)
        hypotheses = _translate_data(test_data)

        if output_path is not None:
            output_path_set = "{}".format(output_path)
            with open(output_path_set, mode="w", encoding="utf-8") as out_file:
                for hyp in hypotheses:
                    out_file.write(hyp + "\n")
            print("Translations saved to: {}".format(output_path_set))
        else:
            for hyp in hypotheses:
                print(hyp)

    else:
        # enter interactive mode
        batch_size = 1
        while True:
            try:
                src_input = input("\nPlease enter a source sentence "
                                  "(pre-processed): \n")
                if not src_input.strip():
                    break

                # every line has to be made into dataset
                test_data = _load_line_as_data(line=src_input)

                hypotheses = _translate_data(test_data)
                print("JoeyNMT: {}".format(hypotheses[0]))

            except (KeyboardInterrupt, EOFError):
                print("\nBye.")
                break
def test(cfg_file,
         ckpt,  # str or list now
         output_path: str = None,
         save_attention: bool = False,
         logger: logging.Logger = None) -> None:
    """
    Main test function. Handles loading a model from checkpoint, generating
    translations and storing them and attention plots.

    :param cfg_file: path to configuration file
    :param ckpt: path to checkpoint to load
    :param output_path: path to output
    :param save_attention: whether to save the computed attention weights
    :param logger: log output to this logger (creates new logger if not set)
    """

    if logger is None:
        logger = logging.getLogger(__name__)
        FORMAT = '%(asctime)-15s - %(message)s'
        logging.basicConfig(format=FORMAT)
        logger.setLevel(level=logging.DEBUG)

    cfg = load_config(cfg_file)
    train_cfg = cfg["training"]
    data_cfg = cfg["data"]
    test_cfg = cfg["testing"]

    if "test" not in data_cfg.keys():
        raise ValueError("Test data must be specified in config.")

    # when checkpoint is not specified, take latest (best) from model dir
    if ckpt is None:
        model_dir = train_cfg["model_dir"]
        ckpt = get_latest_checkpoint(model_dir)
        if ckpt is None:
            raise FileNotFoundError("No checkpoint found in directory {}."
                                    .format(model_dir))
        try:
            step = ckpt.split(model_dir+"/")[1].split(".ckpt")[0]
        except IndexError:
            step = "best"

    batch_size = train_cfg.get("eval_batch_size", train_cfg["batch_size"])
    batch_type = train_cfg.get("eval_batch_type", train_cfg.get("batch_type", "sentence"))
    use_cuda = train_cfg.get("use_cuda", False)
    src_level = data_cfg.get("src_level", data_cfg.get("level", "word"))
    trg_level = data_cfg.get("trg_level", data_cfg.get("level", "word"))

    eval_metric = train_cfg["eval_metric"]
    if isinstance(eval_metric, str):
        eval_metric = [eval_metric]
    attn_metric = train_cfg.get("attn_metric", [])
    if isinstance(attn_metric, str):
        attn_metric = [attn_metric]
    max_output_length = train_cfg.get("max_output_length", None)

    # load the data
    data = load_data(data_cfg)
    dev_data = data["dev_data"]
    test_data = data["test_data"]
    vocabs = data["vocabs"]

    data_to_predict = {"dev": dev_data, "test": test_data}

    # load model state from disk
    if isinstance(ckpt, str):
        ckpt = [ckpt]
    individual_models = []
    for c in ckpt:
        model_checkpoint = load_checkpoint(c, use_cuda=use_cuda)

        # build model and load parameters into it
        m = build_model(cfg["model"], vocabs=vocabs)
        m.load_state_dict(model_checkpoint["model_state"])
        individual_models.append(m)
    if len(individual_models) == 1:
        model = individual_models[0]
    else:
        model = EnsembleModel(*individual_models)

    if use_cuda:
        model.cuda()

    # whether to use beam search for decoding, 0: greedy decoding
    if "testing" in cfg.keys():
        beam_sizes = test_cfg.get("beam_size", 0)
        beam_alpha = test_cfg.get("alpha", 0)
    else:
        beam_sizes = 0
        beam_alpha = 0
    if isinstance(beam_sizes, int):
        beam_sizes = [beam_sizes]
    assert beam_alpha >= 0, "Use alpha >= 0"

    for beam_size in beam_sizes:
        for data_set_name, data_set in data_to_predict.items():

            #pylint: disable=unused-variable
            scores, sources, sources_raw, references, hypotheses, \
            hypotheses_raw, attention_scores, scores_by_lang, by_lang = validate_on_data(
                model, data=data_set, batch_size=batch_size,
                batch_type=batch_type,
                src_level=src_level, trg_level=trg_level,
                max_output_length=max_output_length, eval_metrics=eval_metric,
                attn_metrics=attn_metric,
                use_cuda=use_cuda, loss_function=None, beam_size=beam_size,
                beam_alpha=beam_alpha, save_attention=save_attention)
            #pylint: enable=unused-variable

            if "trg" in data_set.fields:
                labeled_scores = sorted(scores.items())
                eval_report = ", ".join("{}: {:.5f}".format(n, v)
                                        for n, v in labeled_scores)
                decoding_description = "Greedy decoding" if beam_size == 0 else \
                    "Beam search decoding with beam size = {} and alpha = {}".\
                        format(beam_size, beam_alpha)
                logger.info("%4s %s: [%s]",
                            data_set_name, eval_report, decoding_description)
                if scores_by_lang is not None:
                    for metric, scores in scores_by_lang.items():
                        # make a report
                        lang_report = [metric]
                        numbers = sorted(scores.items())
                        lang_report.extend(["{}: {:.5f}".format(k, v)
                                            for k, v in numbers])

                        logger.info("\n\t".join(lang_report))
            else:
                logger.info("No references given for %s -> no evaluation.",
                            data_set_name)

            if save_attention:
                # currently this will break for transformers
                if attention_scores:
                    #attention_name = "{}.{}.att".format(data_set_name, step)
                    #attention_path = os.path.join(model_dir, attention_name)
                    logger.info("Saving attention plots. This might take a while..")
                    store_attention_plots(attentions=attention_scores,
                                          targets=hypotheses_raw,
                                          sources=[s for s in data_set.src],
                                          indices=range(len(hypotheses)),
                                          model_dir=model_dir,
                                          steps=step,
                                          data_set_name=data_set_name)
                    logger.info("Attention plots saved to: %s", model_dir)
                else:
                    logger.warning("Attention scores could not be saved. "
                                   "Note that attention scores are not available "
                                   "when using beam search. "
                                   "Set beam_size to 0 for greedy decoding.")

            if output_path is not None:
                for lang, ref_and_hyp in by_lang.items():
                    if lang is None:
                        # monolingual case
                        output_path_set = "{}.{}".format(output_path, data_set_name)
                    else:
                        output_path_set = "{}.{}.{}".format(output_path, lang, data_set_name)
                    if isinstance(ref_and_hyp[0], str):
                        hyps = ref_and_hyp
                    else:
                        hyps = [hyp for (ref, hyp) in ref_and_hyp]
                    with open(output_path_set, mode="w", encoding="utf-8") as out_file:
                        for hyp in hyps:
                            out_file.write(hyp + "\n")
                    logger.info("Translations saved to: %s", output_path_set)
Beispiel #13
0
    def __init__(self,
                 cfg_file,
                 ckpt: str,
                 output_path: str = None,
                 logger: Logger = None) -> None:
        """
        Recover the saved model, specified as in configuration.

        :param cfg_file: path to configuration file
        :param ckpt: path to checkpoint to load
        :param output_path: path to output
        :param logger: log output to this logger (creates new logger if not set)
        """

        if logger is None:
            logger = make_logger()

        cfg = load_config(cfg_file)

        if "test" not in cfg["data"].keys():
            raise ValueError("Test data must be specified in config.")

        #print(cfg.keys())
        if "dqn" not in cfg.keys():
            raise ValueError("dqn data must be specified in config.")
        self.model_dir = cfg["training"]["model_dir"]
        # when checkpoint is not specified, take latest (best) from model dir
        if ckpt is None:
            model_dir = cfg["training"]["model_dir"]
            ckpt = get_latest_checkpoint(model_dir)
            if ckpt is None:
                raise FileNotFoundError(
                    "No checkpoint found in directory {}.".format(model_dir))
            try:
                step = ckpt.split(model_dir + "/")[1].split(".ckpt")[0]
            except IndexError:
                step = "best"

        self.batch_size = 1  #**
        self.batch_type = cfg["training"].get(
            "eval_batch_type", cfg["training"].get("batch_type", "sentence"))
        self.use_cuda = cfg["training"].get("use_cuda", False)
        self.level = cfg["data"]["level"]
        self.eval_metric = cfg["training"]["eval_metric"]
        self.max_output_length = cfg["training"].get("max_output_length", None)

        # load the data
        train_data, dev_data, test_data, src_vocab, trg_vocab = load_data(
            data_cfg=cfg["data"])
        #Loading the DQN parameters:
        self.sample_size = cfg["dqn"]["sample_size"]
        self.lr = cfg["dqn"].get("lr", 0.01)
        self.egreed_max = cfg["dqn"].get("egreed_max", 0.9)
        self.egreed_min = cfg["dqn"].get("egreed_min", 0.01)
        self.gamma_max = cfg["dqn"].get("gamma_max", 0.9)
        self.gamma_min = cfg["dqn"].get("gamma_min", 0.5)
        self.nu_iter = cfg["dqn"]["nu_iter"]
        self.mem_cap = cfg["dqn"]["mem_cap"]
        self.beam_min = cfg["dqn"]["beam_min"]
        self.beam_max = cfg["dqn"]["beam_max"]
        self.state_type = cfg["dqn"]["state_type"]

        if self.state_type == 'hidden':
            self.state_size = cfg["model"]["encoder"]["hidden_size"] * 2
        else:
            self.state_size = cfg["model"]["encoder"]["hidden_size"]

        self.actions_size = len(src_vocab)
        self.gamma = None

        print("Sample size: ", self.sample_size)
        print("State size: ", self.state_size)
        print("Action size: ", self.actions_size)
        self.epochs = cfg["dqn"]["epochs"]

        # Inii the Qnet and Qnet2
        self.eval_net = Net(self.state_size, self.actions_size)
        self.target_net = Net(self.state_size, self.actions_size)

        #Following the algorithm
        self.target_net.load_state_dict(self.eval_net.state_dict())

        self.learn_step_counter = 0
        self.memory_counter = 0
        self.size_memory1 = self.state_size * 2 + 2 + 1
        self.memory = np.zeros((self.mem_cap, self.size_memory1))
        self.optimizer = torch.optim.Adam(self.eval_net.parameters(),
                                          lr=self.lr)
        self.loss_func = nn.MSELoss()

        #others parameters
        self.bos_index = trg_vocab.stoi[BOS_TOKEN]
        self.eos_index = trg_vocab.stoi[EOS_TOKEN]
        self.pad_index = trg_vocab.stoi[PAD_TOKEN]

        self.data_to_train_dqn = {"train": train_data}

        #self.data_to_train_dqn = {"test": test_data}
        #self.data_to_dev = {"dev": dev_data}
        self.data_to_dev = {"dev": dev_data}
        #self.data_to_train_dqn = {"train": train_data
        #                          ,"dev": dev_data, "test": test_data}
        # load model state from disk
        model_checkpoint = load_checkpoint(ckpt, use_cuda=self.use_cuda)

        # build model and load parameters into it
        self.model = build_model(cfg["model"],
                                 src_vocab=src_vocab,
                                 trg_vocab=trg_vocab)
        self.model.load_state_dict(model_checkpoint["model_state"])

        if self.use_cuda:
            self.model.cuda()

        # whether to use beam search for decoding, 0: greedy decoding
        beam_size = 1
        beam_alpha = -1

        #others not important parameters
        self.index_fin = None
        path_tensroboard = self.model_dir + "/tensorboard_DQN/"
        self.tb_writer = SummaryWriter(log_dir=path_tensroboard, purge_step=0)
        self.dev_network_count = 0
        print(cfg["dqn"]["reward_type"])
        #Reward funtion related:
        if cfg["dqn"]["reward_type"] == "bleu_diff":
            print("You select the reward based on the Bleu score differences")
            self.Reward = self.Reward_bleu_diff
        elif cfg["dqn"]["reward_type"] == "bleu_lin":
            print(
                "You select the reward based on the linear Bleu socres, and several punishments"
            )
            self.Reward = self.Reward_lin
        else:
            print(
                "You select the reward based on the final score on the last state "
            )
            self.Reward = self.Reward_bleu_fin
Beispiel #14
0
def test(cfg_file,
         ckpt: str,
         output_path: str = None,
         save_attention: bool = False,
         logger: Logger = None) -> None:
    """
    Main test function. Handles loading a model from checkpoint, generating
    translations and storing them and attention plots.

    :param cfg_file: path to configuration file
    :param ckpt: path to checkpoint to load
    :param output_path: path to output
    :param save_attention: whether to save the computed attention weights
    :param logger: log output to this logger (creates new logger if not set)
    """

    if logger is None:
        logger = make_logger()

    cfg = load_config(cfg_file)

    if "test" not in cfg["data"].keys():
        raise ValueError("Test data must be specified in config.")

    # when checkpoint is not specified, take latest (best) from model dir
    if ckpt is None:
        model_dir = cfg["training"]["model_dir"]
        ckpt = get_latest_checkpoint(model_dir)
        if ckpt is None:
            raise FileNotFoundError(
                "No checkpoint found in directory {}.".format(model_dir))
        try:
            step = ckpt.split(model_dir + "/")[1].split(".ckpt")[0]
        except IndexError:
            step = "best"

    batch_size = cfg["training"].get("eval_batch_size",
                                     cfg["training"]["batch_size"])
    batch_type = cfg["training"].get(
        "eval_batch_type", cfg["training"].get("batch_type", "sentence"))
    use_cuda = cfg["training"].get("use_cuda", False)
    level = cfg["data"]["level"]
    eval_metric = cfg["training"]["eval_metric"]
    max_output_length = cfg["training"].get("max_output_length", None)

    # load the data
    _, dev_data, test_data, src_vocab, trg_vocab = load_data(
        data_cfg=cfg["data"])

    data_to_predict = {"dev": dev_data, "test": test_data}

    # load model state from disk
    model_checkpoint = load_checkpoint(ckpt, use_cuda=use_cuda)

    # build model and load parameters into it
    model = build_model(cfg["model"], src_vocab=src_vocab, trg_vocab=trg_vocab)
    model.load_state_dict(model_checkpoint["model_state"])

    if use_cuda:
        model.cuda()

    # whether to use beam search for decoding, 0: greedy decoding
    if "testing" in cfg.keys():
        beam_size = cfg["testing"].get("beam_size", 1)
        beam_alpha = cfg["testing"].get("alpha", -1)
    else:
        beam_size = 1
        beam_alpha = -1

    for data_set_name, data_set in data_to_predict.items():

        #pylint: disable=unused-variable
        score, loss, ppl, sources, sources_raw, references, hypotheses, \
        hypotheses_raw, attention_scores,valid_hypotheses_full_n_best,scores = validate_on_data(
            model, data=data_set, batch_size=batch_size,
            batch_type=batch_type, level=level,
            max_output_length=max_output_length, eval_metric=eval_metric,
            use_cuda=use_cuda, loss_function=None, beam_size=beam_size,
            beam_alpha=beam_alpha, logger=logger)
        #pylint: enable=unused-variable

        if "trg" in data_set.fields:
            decoding_description = "Greedy decoding" if beam_size < 2 else \
                "Beam search decoding with beam size = {} and alpha = {}".\
                    format(beam_size, beam_alpha)
            logger.info("%4s %s: %6.2f [%s]", data_set_name, eval_metric,
                        score, decoding_description)
        else:
            logger.info("No references given for %s -> no evaluation.",
                        data_set_name)

        if save_attention:
            if attention_scores:
                attention_name = "{}.{}.att".format(data_set_name, step)
                attention_path = os.path.join(model_dir, attention_name)
                logger.info(
                    "Saving attention plots. This might take a while..")
                store_attention_plots(attentions=attention_scores,
                                      targets=hypotheses_raw,
                                      sources=data_set.src,
                                      indices=range(len(hypotheses)),
                                      output_prefix=attention_path)
                logger.info("Attention plots saved to: %s", attention_path)
            else:
                logger.warning("Attention scores could not be saved. "
                               "Note that attention scores are not available "
                               "when using beam search. "
                               "Set beam_size to 1 for greedy decoding.")

        if output_path is not None:
            '''
            output_path_set = "{}.{}".format(output_path, data_set_name)
            with open(output_path_set, mode="w", encoding="utf-8") as out_file:
                for hyp in hypotheses:
                    out_file.write(hyp + "\n")


            #sy_debug
            alt_output = "{}.n_best.{}".format(output_path, data_set_name)
            with open(alt_output, mode="w", encoding="utf-8") as out_file:
                for n in valid_hypotheses_full_n_best:
                    out_file.write(n + "\n")
'''

            #@Shiya: exporting hypothesis and associated score to .csv file
            #TODO: write_to_csv(hyps,scores)
            def write_to_csv(hyps: list, scores: list):
                import csv

                output_file = "{}.n_csv.{}".format(output_path, data_set_name)
                with open(output_file, mode="w", newline='',
                          encoding="utf-8") as out_file:
                    fieldnames = ['Predictions', 'Scores']
                    writer = csv.DictWriter(out_file, fieldnames=fieldnames)
                    writer.writeheader()

                    for prediction, score in zip(hyps, scores):
                        writer.writerow({
                            fieldnames[0]: prediction,
                            fieldnames[1]: score
                        })

            write_to_csv(valid_hypotheses_full_n_best, scores)
Beispiel #15
0
def test(cfg_file,
         ckpt: str,
         output_path: str = None,
         save_attention: bool = False,
         logger: logging.Logger = None) -> None:
    """
    Main test function. Handles loading a model from checkpoint, generating
    translations and storing them and attention plots.

    :param cfg_file: path to configuration file
    :param ckpt: path to checkpoint to load
    :param output_path: path to output
    :param save_attention: whether to save the computed attention weights
    :param logger: log output to this logger (creates new logger if not set)
    """

    if logger is None:
        logger = logging.getLogger(__name__)
        FORMAT = '%(asctime)-15s - %(message)s'
        logging.basicConfig(format=FORMAT)
        logger.setLevel(level=logging.DEBUG)

    cfg = load_config(cfg_file)

    if "test" not in cfg["data"].keys():
        raise ValueError("Test data must be specified in config.")

    # when checkpoint is not specified, take latest (best) from model dir
    if ckpt is None:
        model_dir = cfg["training"]["model_dir"]
        ckpt = get_latest_checkpoint(model_dir)
        if ckpt is None:
            raise FileNotFoundError(
                "No checkpoint found in directory {}.".format(model_dir))
        try:
            step = ckpt.split(model_dir + "/")[1].split(".ckpt")[0]
        except IndexError:
            step = "best"

    batch_size = cfg["training"]["batch_size"]
    batch_type = cfg["training"].get("batch_type", "sentence")
    use_cuda = cfg["training"].get("use_cuda", False)
    level = cfg["data"]["level"]
    eval_metric = cfg["training"]["eval_metric"]
    max_output_length = cfg["training"].get("max_output_length", None)

    # load the data
    _, dev_data, test_data, src_vocab, trg_vocab = load_data(
        data_cfg=cfg["data"])

    data_to_predict = {"dev": dev_data, "test": test_data}

    # load model state from disk
    model_checkpoint = load_checkpoint(ckpt, use_cuda=use_cuda)

    # build model and load parameters into it
    model = build_model(cfg["model"], src_vocab=src_vocab, trg_vocab=trg_vocab)
    model.load_state_dict(model_checkpoint["model_state"])

    if use_cuda:
        model.cuda()

    # whether to use beam search for decoding, 0: greedy decoding
    if "testing" in cfg.keys():
        beam_size = cfg["testing"].get("beam_size", 0)
        beam_alpha = cfg["testing"].get("alpha", -1)
    else:
        beam_size = 0
        beam_alpha = -1

    for data_set_name, data_set in data_to_predict.items():

        #pylint: disable=unused-variable
        score, loss, ppl, sources, sources_raw, references, hypotheses, \
        hypotheses_raw, attention_scores = validate_on_data(
            model, data=data_set, batch_size=batch_size,
            batch_type=batch_type, level=level,
            max_output_length=max_output_length, eval_metric=eval_metric,
            use_cuda=use_cuda, loss_function=None, beam_size=beam_size,
            beam_alpha=beam_alpha)
        #pylint: enable=unused-variable

        if "trg" in data_set.fields:
            decoding_description = "Greedy decoding" if beam_size == 0 else \
                "Beam search decoding with beam size = {} and alpha = {}".\
                    format(beam_size, beam_alpha)
            logger.info("%4s %s: %6.2f [%s]", data_set_name, eval_metric,
                        score, decoding_description)
        else:
            logger.info("No references given for %s -> no evaluation.",
                        data_set_name)

        if save_attention:
            if attention_scores:
                attention_name = "{}.{}.att".format(data_set_name, step)
                attention_path = os.path.join(model_dir, attention_name)
                logger.info(
                    "Saving attention plots. This might take a while..")
                store_attention_plots(attentions=attention_scores,
                                      targets=hypotheses_raw,
                                      sources=[s for s in data_set.src],
                                      indices=range(len(hypotheses)),
                                      output_prefix=attention_path)
                logger.info("Attention plots saved to: %s", attention_path)
            else:
                logger.warning("Attention scores could not be saved. "
                               "Note that attention scores are not available "
                               "when using beam search. "
                               "Set beam_size to 0 for greedy decoding.")

        if output_path is not None:
            output_path_set = "{}.{}".format(output_path, data_set_name)
            with open(output_path_set, mode="w", encoding="utf-8") as out_file:
                for hyp in hypotheses:
                    out_file.write(hyp + "\n")
            logger.info("Translations saved to: %s", output_path_set)
Beispiel #16
0
def load_model(model_dir, bpe_src_code=None, tokenize=None):
    """
    Start the bot. This means loading the model according to the config file.

    :param model_dir: Model directory of trained Joey NMT model.
    :param bpe_src_code: BPE codes for source side processing (optional).
    :param tokenize: If True, tokenize inputs with Moses tokenizer.
    :return:
    """
    conf = {}
    cfg_file = model_dir+"/config.yaml"

    logger = logging.getLogger(__name__)
    conf["logger"] = logger
    # load the Joey configuration
    cfg = load_config(cfg_file)

    # load the checkpoint
    if "load_model" in cfg['training'].keys():
        ckpt = cfg['training']["load_model"]
    else:
        ckpt = get_latest_checkpoint(model_dir)
        if ckpt is None:
            raise FileNotFoundError("No checkpoint found in directory {}."
                                    .format(model_dir))

    # prediction parameters from config
    conf["use_cuda"] = cfg["training"].get("use_cuda", False)
    conf["level"] = cfg["data"]["level"]
    conf["max_output_length"] = cfg["training"].get("max_output_length", None)
    conf["lowercase"] = cfg["data"].get("lowercase", False)

    # load the vocabularies
    src_vocab_file = cfg["training"]["model_dir"] + "/src_vocab.txt"
    trg_vocab_file = cfg["training"]["model_dir"] + "/trg_vocab.txt"

    conf["src_vocab"] = build_vocab(field="src", vocab_file=src_vocab_file,
                            dataset=None, max_size=-1, min_freq=0)
    conf["trg_vocab"] = build_vocab(field="trg", vocab_file=trg_vocab_file,
                            dataset=None, max_size=-1, min_freq=0)

    # whether to use beam search for decoding, 0: greedy decoding
    if "testing" in cfg.keys():
        conf["beam_size"] = cfg["testing"].get("beam_size", 0)
        conf["beam_alpha"] = cfg["testing"].get("alpha", -1)
    else:
        conf["beam_size"] = 1
        conf["beam_alpha"] = -1

    # pre-processing
    if tokenize is not None:
        src_tokenizer = MosesTokenizer(lang=cfg["data"]["src"])
        trg_tokenizer = MosesDetokenizer(lang=cfg["data"]["trg"])
        # tokenize input
        tokenizer = lambda x: src_tokenizer.tokenize(x, return_str=True)
        detokenizer = lambda x: trg_tokenizer.detokenize(
            x.split(), return_str=True)
    else:
        tokenizer = lambda x: x
        detokenizer = lambda x: x

    if bpe_src_code is not None and level == "bpe":
        # load bpe merge file
        merge_file = open(bpe_src_code, "r")
        bpe = apply_bpe.BPE(codes=merge_file)
        segmenter = lambda x: bpe.process_line(x.strip())
    elif conf["level"] == "char":
        # split to chars
        segmenter = lambda x: list(x.strip())
    else:
        segmenter = lambda x: x.strip()

    conf["preprocess"] = [tokenizer, segmenter]
    conf["postprocess"] = [detokenizer]
    # build model and load parameters into it
    model_checkpoint = load_checkpoint(ckpt, conf["use_cuda"])
    model = build_model(cfg["model"], src_vocab=conf["src_vocab"], trg_vocab=conf["trg_vocab"])
    model.load_state_dict(model_checkpoint["model_state"])

    if conf["use_cuda"]:
        model.cuda()
    conf["model"] = model
    print("Joey NMT model loaded successfully.")
    return conf
Beispiel #17
0
  def load_model(self, src_language, trg_language, domain, bpe_src_code=None, tokenize=None):
    """ Load model for given trg language. """
    # model_dir = "{}-{}".format(self._model_dir_prefix, trg_language)
    model_dir = f"{self._model_dir_prefix}{src_language}-{trg_language}-{domain}"

    # Load the checkpoint.
    ckpt_path = os.path.join(model_dir, 'model.ckpt')
        
    # Load the vocabularies.
    src_vocab_path = os.path.join(model_dir, 'src_vocab.txt')

    trg_vocab_path = os.path.join(model_dir, 'trg_vocab.txt')
    
    # Load the config.
    config_path = os.path.join(model_dir, 'config_orig.yaml')

    # Adjust config.
    config = load_config(config_path)
    new_config_file = os.path.join(model_dir, 'config.yaml')
    config = self._update_config(config, src_vocab_path, trg_vocab_path,
                                 model_dir, ckpt_path)
    with open(new_config_file, 'w') as cfile:
      yaml.dump(config, cfile)

    # print('Loaded model for {}-{}.'.format(self._src_language, trg_language))
    print('Loaded model for {}-{}.'.format(src_language, trg_language))

    conf = {}

    logger = logging.getLogger(__name__)
    conf["logger"] = logger

    # load the Joey configuration
    cfg = load_config(new_config_file)

    # load the checkpoint
    if "load_model" in cfg['training'].keys():
        ckpt = cfg['training']["load_model"]
    else:
        ckpt = get_latest_checkpoint(model_dir)
        if ckpt is None:
            raise FileNotFoundError("No checkpoint found in directory {}."
                                    .format(model_dir))

    # prediction parameters from config
    conf["use_cuda"] = cfg["training"].get("use_cuda", False) if torch.cuda.is_available() else False

    conf["level"] = cfg["data"]["level"]
    conf["max_output_length"] = cfg["training"].get("max_output_length", None)
    conf["lowercase"] = cfg["data"].get("lowercase", False)

    # load the vocabularies
    src_vocab_file = cfg["training"]["model_dir"] + "/src_vocab.txt"
    trg_vocab_file = cfg["training"]["model_dir"] + "/trg_vocab.txt"
    
    conf["src_vocab"] = build_vocab(field="src", vocab_file=src_vocab_file,
                            dataset=None, max_size=-1, min_freq=0)
    conf["trg_vocab"] = build_vocab(field="trg", vocab_file=trg_vocab_file,
                            dataset=None, max_size=-1, min_freq=0)

    # whether to use beam search for decoding, 0: greedy decoding
    if "testing" in cfg.keys():
        conf["beam_size"] = cfg["testing"].get("beam_size", 0)
        conf["beam_alpha"] = cfg["testing"].get("alpha", -1)
    else:
        conf["beam_size"] = 1
        conf["beam_alpha"] = -1

    # pre-processing
    if tokenize is not None:
        src_tokenizer = MosesTokenizer(lang=cfg["data"]["src"])
        trg_tokenizer = MosesDetokenizer(lang=cfg["data"]["trg"])
        # tokenize input
        tokenizer = lambda x: src_tokenizer.tokenize(x, return_str=True)
        detokenizer = lambda x: trg_tokenizer.detokenize(
            x.split(), return_str=True)
    else:
        tokenizer = lambda x: x
        detokenizer = lambda x: x

    if bpe_src_code is not None and level == "bpe":
        # load bpe merge file
        merge_file = open(bpe_src_code, "r")
        bpe = apply_bpe.BPE(codes=merge_file)
        segmenter = lambda x: bpe.process_line(x.strip())
    elif conf["level"] == "char":
        # split to chars
        segmenter = lambda x: list(x.strip())
    else:
        segmenter = lambda x: x.strip()

    conf["preprocess"] = [tokenizer, segmenter]
    conf["postprocess"] = [detokenizer]
    # build model and load parameters into it
    model_checkpoint = load_checkpoint(ckpt, conf["use_cuda"])
    model = build_model(cfg["model"], src_vocab=conf["src_vocab"], trg_vocab=conf["trg_vocab"])
    model.load_state_dict(model_checkpoint["model_state"])
    # ipdb.set_trace()
    if conf["use_cuda"]:
        model.cuda()
    conf["model"] = model
    print("Joey NMT model loaded successfully.")
    return conf
Beispiel #18
0
def test(cfg_file,
         ckpt: str,
         output_path: str = None,
         save_attention: bool = False,
         logger: logging.Logger = None) -> None:
    """
    Main test function. Handles loading a model from checkpoint, generating
    translations and storing them and attention plots.

    :param cfg_file: path to configuration file
    :param ckpt: path to checkpoint to load
    :param output_path: path to output
    :param save_attention: whether to save the computed attention weights
    :param logger: log output to this logger (creates new logger if not set)
    """

    if logger is None:
        logger = logging.getLogger(__name__)
        FORMAT = '%(asctime)-15s - %(message)s'
        logging.basicConfig(format=FORMAT)
        logger.setLevel(level=logging.DEBUG)

    cfg = load_config(cfg_file)

    if "test" not in cfg["data"].keys():
        raise ValueError("Test data must be specified in config.")

    # when checkpoint is not specified, take latest (best) from model dir
    if ckpt is None:
        model_dir = cfg["training"]["model_dir"]
        ckpt = get_latest_checkpoint(model_dir)
        if ckpt is None:
            raise FileNotFoundError(
                "No checkpoint found in directory {}.".format(model_dir))
        try:
            step = ckpt.split(model_dir + "/")[1].split(".ckpt")[0]
        except IndexError:
            step = "best"

    batch_size = cfg["training"].get("eval_batch_size",
                                     cfg["training"]["batch_size"])
    batch_type = cfg["training"].get(
        "eval_batch_type", cfg["training"].get("batch_type", "sentence"))
    use_cuda = cfg["training"].get("use_cuda", False)
    level = cfg["data"]["level"]
    eval_metric = cfg["training"]["eval_metric"]
    max_output_length = cfg["training"].get("max_output_length", None)

    # load the data
    _, dev_data, test_data,\
    src_vocab, trg_vocab,\
    _, dev_kb, test_kb,\
    _, dev_kb_lookup, test_kb_lookup, \
    _, dev_kb_lengths, test_kb_lengths,\
    _, dev_kb_truvals, test_kb_truvals, \
    trv_vocab, canon_fun,\
         dev_data_canon, test_data_canon \
        = load_data(
        data_cfg=cfg["data"]
    )

    report_entf1_on_canonicals = cfg["training"].get(
        "report_entf1_on_canonicals", False)

    kb_task = (test_kb != None)

    data_to_predict = {"dev": dev_data, "test": test_data}

    # load model state from disk
    model_checkpoint = load_checkpoint(ckpt, use_cuda=use_cuda)

    # build model and load parameters into it
    model = build_model(cfg["model"],
                        src_vocab=src_vocab,
                        trg_vocab=trg_vocab,
                        trv_vocab=trv_vocab,
                        canonizer=canon_fun)
    model.load_state_dict(model_checkpoint["model_state"])

    # FIXME for the moment, for testing, try overriding model.canonize with canon_fun from test functions loaded data
    # should hopefully not be an issue with gridsearch results...

    if use_cuda:
        model.cuda()  # move to GPU

    # whether to use beam search for decoding, 0: greedy decoding
    if "testing" in cfg.keys():
        beam_size = cfg["testing"].get("beam_size", 0)
        beam_alpha = cfg["testing"].get("alpha", -1)
    else:
        beam_size = 0
        beam_alpha = -1

    for data_set_name, data_set in data_to_predict.items():

        if data_set_name == "dev":
            kb_info = [
                dev_kb, dev_kb_lookup, dev_kb_lengths, dev_kb_truvals,
                dev_data_canon
            ]
        elif data_set_name == "test":
            kb_info = [
                test_kb, test_kb_lookup, test_kb_lengths, test_kb_truvals,
                test_data_canon
            ]
        else:
            raise ValueError((data_set_name, data_set))

        #pylint: disable=unused-variable
        score, loss, ppl, sources, sources_raw, references, hypotheses, \
        hypotheses_raw, attention_scores, kb_att_scores, ent_f1, ent_mcc = validate_on_data(
            model,
            data=data_set,
            batch_size=batch_size,
            batch_type=batch_type,
            level=level,
            max_output_length=max_output_length,
            eval_metric=eval_metric,
            use_cuda=use_cuda,
            loss_function=None,
            beam_size=beam_size,
            beam_alpha=beam_alpha,
            kb_task = kb_task,
            valid_kb=kb_info[0],
            valid_kb_lkp=kb_info[1],
            valid_kb_lens=kb_info[2],
            valid_kb_truvals=kb_info[3],
            valid_data_canon=kb_info[4],
            report_on_canonicals=report_entf1_on_canonicals
            )
        """
                batch_size=self.eval_batch_size,
                data=valid_data,
                eval_metric=self.eval_metric,
                level=self.level, 
                model=self.model,
                use_cuda=self.use_cuda,
                max_output_length=self.max_output_length,
                loss_function=self.loss,
                beam_size=0,  
                batch_type=self.eval_batch_type,
                kb_task=kb_task,
                valid_kb=valid_kb,
                valid_kb_lkp=valid_kb_lkp,
                valid_kb_lens=valid_kb_lens,
                valid_kb_truvals=valid_kb_truvals
        """
        #pylint: enable=unused-variable

        if "trg" in data_set.fields:
            decoding_description = "Greedy decoding" if beam_size == 0 else \
                "Beam search decoding with beam size = {} and alpha = {}".\
                    format(beam_size, beam_alpha)

            logger.info("%4s %s: %6.2f f1: %6.2f mcc: %6.2f [%s]",
                        data_set_name, eval_metric, score, ent_f1, ent_mcc,
                        decoding_description)
        else:
            logger.info("No references given for %s -> no evaluation.",
                        data_set_name)

        if save_attention:
            if attention_scores:
                attention_name = "{}.{}.att".format(data_set_name, step)
                attention_path = os.path.join(model_dir, attention_name)

                logger.info(
                    "Saving attention plots. This might take a while..")
                store_attention_plots(attentions=attention_scores,
                                      targets=hypotheses_raw,
                                      sources=data_set.src,
                                      indices=range(len(hypotheses)),
                                      output_prefix=attention_path)
                logger.info("Attention plots saved to: %s", attention_path)
            if kb_att_scores:
                kb_att_name = "{}.{}.kbatt".format(data_set_name, step)
                kb_att_path = os.path.join(model_dir, kb_att_name)
                store_attention_plots(
                    attentions=kb_att_scores,
                    targets=hypotheses_raw,
                    sources=list(data_set.kbsrc),  #TODO
                    indices=range(len(hypotheses)),
                    output_prefix=kb_att_path,
                    kb_info=(dev_kb_lookup, dev_kb_lengths,
                             list(data_set.kbtrg)))
                logger.info("KB Attention plots saved to: %s", attention_path)

            else:
                logger.warning("Attention scores could not be saved. "
                               "Note that attention scores are not available "
                               "when using beam search. "
                               "Set beam_size to 0 for greedy decoding.")

        if output_path is not None:
            output_path_set = "{}.{}".format(output_path, data_set_name)
            with open(output_path_set, mode="w", encoding="utf-8") as out_file:
                for hyp in hypotheses:
                    out_file.write(hyp + "\n")
            logger.info("Translations saved to: %s", output_path_set)