def process_pie(): df = process_input() df[df.columns[1]] = pd.to_numeric(df[df.columns[1]]) df[df.columns[2]] = pd.to_numeric(df[df.columns[2]]) df[df.columns[3]] = pd.to_numeric(df[df.columns[3]]) col1 = df[df.columns[1]].values col2 = df[df.columns[2]].values col3 = df[df.columns[3]].values Plotly.plot(document.getElementById('plot1'), [{ 'values': [ df[df.columns[1]].sum(), df[df.columns[2]].sum(), df[df.columns[3]].sum() ], 'labels': [ df[df.columns[1]].name, df[df.columns[2]].name, df[df.columns[3]].name ], 'type': 'pie' }], { 'height': 350, 'width': 500 })
def process_scatter(): df = process_input() col1 = df[df.columns[0]].values col2 = df[df.columns[1]].values Plotly.plot(document.getElementById('plot2'), [{ 'x': col1, 'y': col2, 'type': 'scatter', 'mode': 'markers+lines', 'hoverinfo': 'label', 'label': 'Zoom Background Interest' }])
def process_geo_map(): df = process_input() df[df.columns[1]] = pd.to_numeric(df[df.columns[1]]) df[df.columns[2]] = pd.to_numeric(df[df.columns[2]]) col1 = df[df.columns[1]].values col2 = df[df.columns[2]].values col3 = df[df.columns[3]].values Plotly.plot(document.getElementById('plot4'), [{ 'type': 'scattergeo', 'lon': col2, 'lat': col1, 'text': col3 }])
def process_3d_maps(): df = process_input() col0 = df[df.columns[0]].values col1 = df[df.columns[1]].values col2 = df[df.columns[2]].values col3 = df[df.columns[3]].values col4 = df[df.columns[4]].values col5 = df[df.columns[5]].values Plotly.plot(document.getElementById('plot6'), [{ 'x': col0, 'y': col1, 'z': col2, 'mode': 'markers', 'marker': { 'size': 12, 'line': { 'color': 'rgba(217, 217, 217, 0.14)', 'width': 0.5 }, 'opacity': 0.8 }, 'type': 'scatter3d' }, { 'x': col3, 'y': col4, 'z': col5, 'mode': 'markers', 'marker': { 'color': 'rgb(127, 127, 127)', 'size': 12, 'symbol': 'circle', 'line': { 'color': 'rgb(204, 204, 204)', 'width': 1 }, 'opacity': 0.8 }, 'type': 'scatter3d' }], {'margin': { 'l': 0, 'r': 0, 'b': 0, 't': 0 }})
def process_heat_maps(): df = process_input() df[df.columns[0]] = pd.to_numeric(df[df.columns[0]]) df[df.columns[1]] = pd.to_numeric(df[df.columns[1]]) df[df.columns[2]] = pd.to_numeric(df[df.columns[2]]) col0 = df[df.columns[0]].values col1 = df[df.columns[1]].values col2 = df[df.columns[2]].values col3 = df[df.columns[3]].values col4 = df[df.columns[4]].values Plotly.plot(document.getElementById('plot5'), [{ 'z': [col0, col1, col2], 'x': col3, 'y': col4, 'type': 'heatmap', 'hoverongaps': 'false' }])
def process_time_series(): df = process_input() df[df.columns[1]] = pd.to_numeric(df[df.columns[1]]) df[df.columns[2]] = pd.to_numeric(df[df.columns[2]]) df[df.columns[3]] = pd.to_numeric(df[df.columns[3]]) col1 = df[df.columns[0]].values col2 = df[df.columns[1]].values col3 = df[df.columns[2]].values col4 = df[df.columns[3]].values Plotly.plot(document.getElementById('plot3'), [{ 'x': col1, 'y': col2, 'type': 'scatter', 'mode': "lines", 'name': 'Pho', 'line': { 'color': '#17BECF' } }, { 'x': col1, 'y': col3, 'type': "scatter", 'mode': "lines", 'name': 'Ramen', 'line': { 'color': '#7F7F7F' } }, { 'x': col1, 'y': col4, 'type': "scatter", 'mode': "lines", 'name': 'Soba', 'line': { 'color': '#7C19E2' } }])