Beispiel #1
0
def pushUpAnalysis(folder_path):
    '''Open folder and process .json into a dict
       input: The file path
       ouput: The times of push-up
       Judge by tendency!
    '''
    files = os.listdir(folder_path)

    results = []
    tendency = []
    result = {}
    r_elbow_angle_list = []
    r_knee_angle_list = []
    hip_angle_list = []
    # l_elbow_angle_list = []
    tick = []
    cnt = 0

    for i, file in enumerate(files):
        coor = jp.getJson(folder_path + '\\' + file)
        if not coor:
            continue

        r_elbow_angle = getValue.getElbowAngle(coor, 'R')
        r_knee_angle = getValue.getKneeAngle(coor, 'R')
        hip_angle = getValue.getHipAngle(coor, 'R')

        if hip_angle:
            hip_angle_list.append(hip_angle)

        if r_knee_angle:
            r_knee_angle_list.append(r_knee_angle)

        if r_elbow_angle:
            r_elbow_angle_list.append(r_elbow_angle)
            tick.append(r_elbow_angle)

        if len(tick) == 5:
            tend = analysis.getTendency(tick, 20)  # One tick
            tick = []
            if tend:
                tendency.append(tend)
                if 3 <= len(tendency):
                    if tendency[-1] == 'down' or tendency[-1] == 'stable':
                        if tendency[-2] == 'upper' and tendency[
                                -3] == 'upper':  # a period
                            cnt += 1
                            result['Num'] = cnt
                            standard = analysis.pushUpPeriodJudge(
                                r_elbow_angle_list, hip_angle_list,
                                r_knee_angle_list)
                            result['IsRElbowStandard'], result[
                                'IsHipAngleStandard'], result[
                                    'IsRKneeStandard'] = standard
                            result['Flag'] = i
                            r_elbow_angle_list = r_knee_angle_list = hip_angle_list = []
                            results.append(result)
                            result = {}
    # print(tendency)
    return results
Beispiel #2
0
def pullUpAnalysis(folder_path):
    '''Open folder and process .json into a dict
       input: The file path
       ouput: The times of push-up
    '''
    files = os.listdir(folder_path)

    results = []
    tendency = []
    result = {}
    r_elbow_angle_list = []
    l_elbow_angle_list = []
    eye_distance_list = []
    tick = []
    cnt = 0

    for i, file in enumerate(files):
        coor = jp.getJson(folder_path + '\\' + file)
        if not coor:
            continue

        r_elbow_angle = getValue.getElbowAngle(coor, 'R')
        l_elbow_angle = getValue.getElbowAngle(coor, 'L')
        eye_distance = getValue.getEyeWristDistance(coor)

        if l_elbow_angle:
            l_elbow_angle_list.append(l_elbow_angle)

        if eye_distance:
            eye_distance_list.append(eye_distance)

        if r_elbow_angle:
            r_elbow_angle_list.append(r_elbow_angle)
            tick.append(r_elbow_angle)
        if len(tick) == 5:
            tend = analysis.getTendency(tick, 8)  # One tick
            tick = []
            if tend:
                tendency.append(tend)
                if 3 <= len(tendency):
                    if tendency[-1] == 'down':
                        if tendency[
                                -2] == 'upper':  # a period and tendency[-3] == 'upper'
                            cnt += 1
                            result['Num'] = cnt
                            standard = analysis.pullUpPeriodJudge(
                                r_elbow_angle_list, l_elbow_angle_list,
                                eye_distance_list)
                            result['IsRElbowStandard'], result[
                                'IsLElbowStandard'], result[
                                    'IsHeightStandard'] = standard
                            result['Flag'] = i
                            r_elbow_angle_list = l_elbow_angle_list = eye_distance_list = []
                            results.append(result)
                            result = {}

    return results
Beispiel #3
0
def getPushUpInfos(folder_path, is_print, region=[]):
    '''Open folder and process .json into a dict
       input: The file path
       ouput: The analysis of some infos of the whole process
    '''
    files = os.listdir(folder_path)
    max_r_elbow_angle = 0
    min_r_elbow_angle = 200
    max_knee_angle = 0
    min_knee_angle = 200
    max_hip_angle = 0
    min_hip_angle = 10000
    max_hip_distance = 0
    min_hip_distance = 10000
    cnt = 0
    cnt1 = total_elbow_angle = cnt2 = total_hip_distance = 0
    cnt3 = total_knee_angle = cnt4 = total_hip_angle = 0
    elb_ang = []
    hip_dis = []
    knee_ang = []
    hip_ang = []

    for i, file in enumerate(files):
        coor = jp.getJson(folder_path + '\\' + file)
        if not coor:
            continue
        cnt = i
        r_elbow_angle = getValue.getElbowAngle(coor, 'R')
        r_knee_angle = getValue.getKneeAngle(coor, 'R')
        hip_angle = getValue.getHipAngle(coor, 'R')
        hip_distance = getValue.getHipDistance(coor, 'R')

        if r_elbow_angle:
            elb_ang.append(r_elbow_angle)
            total_elbow_angle += r_elbow_angle
            cnt1 += 1
            max_r_elbow_angle = max(max_r_elbow_angle, r_elbow_angle)
            min_r_elbow_angle = min(min_r_elbow_angle, r_elbow_angle)
        else:
            elb_ang.append(0)

        if hip_distance:
            hip_dis.append(hip_distance)
            total_hip_distance += hip_distance
            cnt2 += 1
            max_hip_distance = max(max_hip_distance, hip_distance)
            min_hip_distance = min(min_hip_distance, hip_distance)
        else:
            hip_dis.append(0)

        if r_knee_angle:
            knee_ang.append(r_knee_angle)
            total_knee_angle += r_knee_angle
            cnt3 += 1
            max_knee_angle = max(max_knee_angle, r_knee_angle)
            min_knee_angle = min(min_knee_angle, r_knee_angle)
        else:
            knee_ang.append(0)

        if hip_angle:
            hip_ang.append(hip_angle)
            total_hip_angle += hip_angle
            cnt4 += 1
            max_hip_angle = max(max_hip_angle, hip_angle)
            min_hip_angle = min(min_hip_angle, hip_angle)
        else:
            hip_ang.append(0)

    aver_r_elbow_angle = total_elbow_angle / cnt1
    aver_hip_distance = total_hip_distance / cnt2
    aver_knee_angle = total_knee_angle / cnt3
    aver_hip_angle = total_hip_angle / cnt4
    if is_print:
        print('max elbow angle:', max_r_elbow_angle)
        print('min elbow angle:', min_r_elbow_angle)
        print('aver elbow angle:', aver_r_elbow_angle)

        print('max hip distance:', max_hip_distance)
        print('min hip distance:', min_hip_distance)
        print('aver hip distance:', aver_hip_distance)

        print('max knee angle:', max_knee_angle)
        print('min knee angle:', min_knee_angle)
        print('aver knee angle:', aver_knee_angle)

        print('max hip angle:', max_hip_angle)
        print('min hip angle:', min_hip_angle)
        print('aver hip angle:', aver_hip_angle)

    elb_ang_below_105 = []
    for ans in elb_ang:
        if ans < 105:
            elb_ang_below_105.append(ans)
        else:
            elb_ang_below_105.append(None)
    cnt += 1

    ax1 = plt.subplot(2, 2, 1)
    # plt.hlines(165, )
    # ax1.scatter(range(cnt1), elb_ang, label='elbow angle', s=10)
    # ax1.scatter(range(cnt1), elb_ang_below_105, label='elbow angle', color='r', s=10)
    # actu = [89, 149, 238, 328, 418, 597, 686, 746, 836, 955, 985]
    # region = 0
    ax1.scatter(range(cnt), elb_ang, label='elbow angle', s=2)
    ax1.scatter(range(cnt), elb_ang_below_105, label='elbow angle', color='r', s=2)
    ax1.hlines(165, 0, cnt, colors='c')
    ax1.vlines(region, 0, 180)
    # ax1.vlines(actu, 0, 180, colors='r')
    ax1.set_title('elbow_angle')

    ax2 = plt.subplot(2, 2, 2)
    ax2.scatter(range(cnt), hip_dis, label='hip distance', s=2)
    ax2.set_title('hip_distance')

    ax3 = plt.subplot(2, 2, 3)
    ax3.scatter(range(cnt), knee_ang, label='knee angle', s=2)
    ax3.vlines(region, 0, 180)
    # ax3.vlines(actu, 0, 180, colors='r')
    ax3.set_title('knee_angle')

    ax4 = plt.subplot(2, 2, 4)
    ax4.scatter(range(cnt), hip_ang, label='hip', s=2)
    ax4.vlines(region, 0, 180)
    # ax4.vlines(actu, 0, 180, colors='r')
    ax4.set_title('hip_angle')

    plt.show()
Beispiel #4
0
def getSitUpInfos(folder_path, is_print, region=[]):
    '''Open folder and process .json into a dict
       input: The file path
       ouput: The analysis of some infos of the whole process
    '''
    files = os.listdir(folder_path)
    max_r_waist_angle = 0
    min_r_waist_angle = 200
    max_r_s_knee_angle = 0
    min_r_s_knee_angle = 200
    s_knee_ang = []
    wai_ang = []
    cnt = 0
    cnt1 = cnt2 = 0
    cnt3 = 0
    total_waist_angle = total_s_knee_angle = 0

    for i, file in enumerate(files):
        coor = jp.getJson(folder_path + '\\' + file)
        if not coor:
            continue
        cnt = i
        r_s_knee_angle = getValue.getKneeAngle(coor, 'R')
        r_waist_angle = getValue.getWaistAngle(coor, 'R')

        if r_s_knee_angle:
            s_knee_ang.append(r_s_knee_angle)
            total_s_knee_angle += r_s_knee_angle
            cnt1 += 1
            max_r_s_knee_angle = max(max_r_s_knee_angle, r_s_knee_angle)
            min_r_s_knee_angle = min(min_r_s_knee_angle, r_s_knee_angle)
        else:
            s_knee_ang.append(0)

        if r_waist_angle:
            wai_ang.append(r_waist_angle)
            total_waist_angle += r_waist_angle
            cnt2 += 1
            max_r_waist_angle = max(max_r_waist_angle, r_waist_angle)
            min_r_waist_angle = min(min_r_waist_angle, r_waist_angle)
        else:
            wai_ang.append(0)

    aver_r_s_knee_angle = total_s_knee_angle / cnt1
    aver_r_waist_angle = total_waist_angle / cnt2

    if is_print:
        print('max sit-up knee angle:', max_r_s_knee_angle)
        print('min sit-up knee angle:', min_r_s_knee_angle)
        print('aver sit-up knee angle:', aver_r_s_knee_angle)

        print('max sit-up waist angle:', max_r_waist_angle)
        print('min sit-up waist angle:', min_r_waist_angle)
        print('aver sit-up waist angle:', aver_r_waist_angle)

    s_knee_ang_below_60 = []
    for ans in s_knee_ang:
        if ans < 105:
            s_knee_ang_below_60.append(ans)
        else:
            s_knee_ang_below_60.append(None)
    cnt += 1

    wai_ang_above_140 = []
    for wans in s_knee_ang:
        if wans > 140:
            wai_ang_above_140.append(wans)
        else:
            wai_ang_above_140.append(None)
    cnt3 += 1
    cnt = 0
    for i in s_knee_ang:
        if s_knee_ang[i] is not None:
            cnt += 1
        return cnt

    ax1 = plt.subplot(1, 2, 1)  # 第一行的左图 第一个参数代表子图的行数,第二个参数代表该行图像的列数,第三个参数代表每行的第几个图像
    # plt.hlines(165, )
    # ax1.scatter(range(cnt1), elb_ang, label='elbow angle', s=10)
    # ax1.scatter(range(cnt1), elb_ang_below_105, label='elbow angle', color='r', s=10)
    # actu = [89, 149, 238, 328, 418, 597, 686, 746, 836, 955, 985]
    # region = 0
    ax1.scatter(range(cnt), s_knee_ang, label='s_knee angle', s=2)  # range(cnt)表示绘制散点图的数据点,s_knee_ang:图名,s:一个实数?
    ax1.scatter(range(cnt), s_knee_ang_below_60, label='s_knee_angle', color='r', s=2)  # color表示颜色
    ax1.hlines(70, 0, cnt, colors='c')  # 绘制水平辅助线 70:横坐标,0:ymin,cnt: ymax(辅助线纵坐标的最大最小值) colors:颜色
    ax1.vlines(region, 0, 180)  # 绘制竖直辅助线
    # ax1.vlines(actu, 0, 180, colors='r')
    ax1.set_title('s_knee_angle')

    ax2 = plt.subplot(1, 2, 2)
    ax2.scatter(range(cnt), wai_ang, label='waist angle', s=2)
    ax1.scatter(range(cnt), wai_ang_above_140, label='waist_angle', color='r', s=2)  # color表示颜色
    ax1.hlines(140, 0, cnt, colors='c')  # 绘制水平辅助线 140:横坐标,0:ymin,cnt: ymax(辅助线纵坐标的最大最小值) colors:颜色
    ax2.set_title('waist_angle')
    #fig, ax2 = plt.subplots(figsize=(12, 12))
    #ax2.imshow(ax2, aspect='waist_angle')  # im是要显示的图案
    plt.savefig(r"C:\Users\Lenovo\Desktop\雏燕2019\后端部分所需资料\sit-up.png")
    plt.show()
Beispiel #5
0
def getPullUpInfos(folder_path, is_print, region=[]):
    '''Open folder and process .json into a dict
       input: The file path
       ouput: The analysis of some infos of the whole process
    '''
    files = os.listdir(folder_path)
    max_r_elbow_angle = max_l_elbow_angle = 0
    min_r_elbow_angle = min_l_elbow_angle = 200
    r_elb_ang = []
    l_elb_ang = []
    neck_horizontalbar_distance = []
    eye_wrist_distance_list = []
    cnt1 = cnt2 = 0
    total_r_elbow_angle = total_l_elbow_angle = 0

    for i, file in enumerate(files):
        coor = jp.getJson(folder_path + '\\' + file)
        if not coor:
            continue
        cnt = i
        r_elbow_angle = getValue.getElbowAngle(coor, 'R')
        l_elbow_angle = getValue.getElbowAngle(coor, 'L')
        head_wrist_distance = getValue.getHeadDistance(coor)
        eye_wrist_distance = getValue.getEyeWristDistance(coor)

        if r_elbow_angle:
            r_elb_ang.append(r_elbow_angle)
            total_r_elbow_angle += r_elbow_angle
            cnt1 += 1
            max_r_elbow_angle = max(max_r_elbow_angle, r_elbow_angle)
            min_r_elbow_angle = min(min_r_elbow_angle, r_elbow_angle)
        else:
            r_elb_ang.append(0)

        if l_elbow_angle:
            l_elb_ang.append(l_elbow_angle)
            total_l_elbow_angle += l_elbow_angle
            cnt2 += 1
            max_l_elbow_angle = max(max_l_elbow_angle, l_elbow_angle)
            min_l_elbow_angle = min(min_l_elbow_angle, l_elbow_angle)
        else:
            l_elb_ang.append(0)

        if head_wrist_distance:
            neck_horizontalbar_distance.append(head_wrist_distance)
        else:
            neck_horizontalbar_distance.append(0)

        if eye_wrist_distance:
            eye_wrist_distance_list.append(eye_wrist_distance)
        else:
            eye_wrist_distance_list.append(0)

    aver_r_elbow_angle = total_r_elbow_angle / cnt1
    aver_l_elbow_angle = total_l_elbow_angle / cnt2
    if is_print:
        print('max r_elbow angle:', max_r_elbow_angle)
        print('min r_elbow angle:', min_r_elbow_angle)
        print('aver r_elbow angle:', aver_r_elbow_angle)

        print('max l_elbow angle:', max_l_elbow_angle)
        print('min l_elbow angle:', min_l_elbow_angle)
        print('aver l_elbow angle:', aver_l_elbow_angle)

    # elb_ang_below_105 = []
    # for ans in elb_ang:
    #     if ans < 105:
    #         elb_ang_below_105.append(ans)
    #     else:
    #         elb_ang_below_105.append(None)
    cnt += 1

    ax1 = plt.subplot(2, 2, 1)
    ax1.scatter(range(cnt), r_elb_ang, label='relbow angle', s=2)
    ax1.vlines(region, 0, 180)
    ax1.set_title('relbow_angle')

    ax2 = plt.subplot(2, 2, 2)
    ax2.scatter(range(cnt), l_elb_ang, label='lelbow angle', s=2)
    ax2.set_title('lelbow_angle')

    ax3 = plt.subplot(2, 2, 3)
    ax3.scatter(range(cnt), neck_horizontalbar_distance, label='neck bar distance', s=2)
    ax3.set_title('neck bar distance')

    ax4 = plt.subplot(2, 2, 4)
    ax4.scatter(range(cnt), eye_wrist_distance_list, label='eye bar distance', s=2)
    ax4.set_title('eye bar distance')
    plt.show()
Beispiel #6
0
def sitUpAnalysis(folder_path):
    '''Open folder and process .json into a dict
       input: The file path
       ouput: The times of push-up
    '''
    files = os.listdir(folder_path)

    results = []
    tendency = []
    tick = []
    result = {}
    r_waist_angle_list = []
    l_waist_angle_list = []
    r_s_knee_angle_list = []
    l_s_knee_angle_list = []
    r_elbowtoneck_dist_list = []
    l_elbowtoneck_dist_list = []

    total_r_elbowtoneck_dist = 0
    total_l_elbowtoneck_dist = 0
    cnt = cnt_1 = cnt_2 = 0

    for i, file in enumerate(files):
        coor = jp.getJson(folder_path + '\\' + file)
        if not coor:
            continue

        r_waist_angle = getValue.getWaistAngle(coor, 'R')
        l_waist_angle = getValue.getWaistAngle(coor, 'L')
        r_s_knee_angle = getValue.getKneeAngle(coor, 'R')
        l_s_knee_angle = getValue.getKneeAngle(coor, 'L')
        r_elbowtoneck_dist = getValue.getElbowToNeckDistance(coor, 'R')
        l_elbowtoneck_dist = getValue.getElbowToNeckDistance(coor, 'L')
        tick.append(r_waist_angle)

        if r_waist_angle:
            r_waist_angle_list.append(r_waist_angle)
        if l_waist_angle:
            l_waist_angle_list.append(l_waist_angle)
        if r_s_knee_angle:
            r_s_knee_angle_list.append(r_s_knee_angle)
        if l_s_knee_angle:
            l_s_knee_angle_list.append(l_s_knee_angle)
        if r_elbowtoneck_dist:
            r_elbowtoneck_dist_list.append(r_elbowtoneck_dist)
            cnt_1 += 1
            total_r_elbowtoneck_dist += r_elbowtoneck_dist
        aver_r_elbowtoneck_dist = total_r_elbowtoneck_dist / cnt_1
        if l_elbowtoneck_dist:
            l_elbowtoneck_dist_list.append(l_elbowtoneck_dist)
            cnt_2 += 1
            total_l_elbowtoneck_dist += l_elbowtoneck_dist
        aver_l_elbowtoneck_dist = total_l_elbowtoneck_dist / cnt_2

        if len(tick) == 5:
            tend = analysis.getTendency(tick, 8)  # One tick
            tick = []
            if tend:
                tendency.append(tend)
                if 3 <= len(tendency):
                    if tendency[-1] == 'down':
                        if tendency[
                                -2] == 'upper':  # a period and tendency[-3] == 'upper'
                            cnt += 1
                            result['Num'] = cnt
                            standard = analysis.SitUpPeriodJudge(
                                r_waist_angle_list, l_waist_angle_list,
                                r_s_knee_angle_list, l_s_knee_angle_list,
                                r_elbowtoneck_dist_list,
                                l_elbowtoneck_dist_list,
                                aver_r_elbowtoneck_dist,
                                aver_l_elbowtoneck_dist)
                            result['IsRWaistStandard'], result[
                                'IsLWaistStandard'] = standard
                            result['IsRKneeAngle'], result[
                                'IsLKneeAngle'] = standard
                            result['IsRElbowtoNeckStandard'], result[
                                'IsLElbowtoNeckStandard'] = standard
                            result['Flag'] = i
                            r_waist_angle_list = l_waist_angle_list = []
                            r_s_knee_angle_list = l_s_knee_angle_list = []
                            r_elbowtoneck_dist_list = l_elbowtoneck_dist_list = [
                            ]  #序列置空
                            results.append(result)
                            result = {}

    print(tendency)

    return results