Beispiel #1
0
def save_grasps(grasps, pfcs, obj, dest):
    i = 0
    for grasp, pfc in zip(grasps, pfcs):
        grasp_json = grasp.to_json(quality=pfc, method='PFC')
        grasp_filename = os.path.join(dest, obj.key + '_' + str(i) + '.json')
        with open(grasp_filename, 'w') as grasp_file:
            jsons.dump(grasp_json, grasp_file)
        i += 1
Beispiel #2
0
def save_grasps(grasps, pfcs, obj, dest, num_successes=0, num_failures=0):
    """
    Save grasps as json files with indices
    """
    i = 0
    for grasp, pfc in zip(grasps, pfcs):
        grasp_json = grasp.to_json(quality=pfc, method='PFC', num_successes=num_successes, num_failures=num_failures)
        grasp_filename = os.path.join(dest, obj.key + '_' + str(i) + '.json')
        with open(grasp_filename, 'w') as grasp_file:
            jsons.dump(grasp_json, grasp_file)
        i += 1
Beispiel #3
0
    def save_grasps(self, graspable, grasps):
        """Saves a list of grasps in the database.
        Params:
            graspable - the GraspableObject for the grasps
            grasps - a list of Grasps or a single Grasp to be saved
        """
        if not isinstance(grasps, list):  # only one grasp
            grasps = [grasps]
        graspable_dict = {
            'key': graspable.key,
            'category': graspable.category,
            'grasps': [g.to_json() for g in grasps]
        }

        file_root = os.path.join(self.dataset_root_dir_, graspable.key)
        grasp_filename = Dataset.json_filename(file_root)
        # TODO: what should happen if grasp_filename already exists?
        with open(grasp_filename, 'w') as f:
            jsons.dump(grasps, f)
Beispiel #4
0
    def save_grasps(self, graspable, grasps):
        """Saves a list of grasps in the database.
        Params:
            graspable - the GraspableObject for the grasps
            grasps - a list of Grasps or a single Grasp to be saved
        """
        if not isinstance(grasps, list): # only one grasp
            grasps = [grasps]
        graspable_dict = {
            'key': graspable.key,
            'category': graspable.category,
            'grasps': [g.to_json() for g in grasps]
        }

        file_root = os.path.join(self.dataset_root_dir_, graspable.key)
        grasp_filename = Dataset.json_filename(file_root)
        # TODO: what should happen if grasp_filename already exists?
        with open(grasp_filename, 'w') as f:
            jsons.dump(grasps, f)
Beispiel #5
0
def label_pfc(obj, dataset, output_dir, config):
    """ Label an object with grasps according to probability of force closure """
    # sample intial antipodal grasps
    start = time.clock()
    sampler = ags.AntipodalGraspSampler(config)
        
    start_time = time.clock()
    grasps, alpha_thresh, rho_thresh = sampler.generate_grasps(obj, vis=False)
    end_time = time.clock()
    duration = end_time - start_time
    logging.info('Antipodal grasp candidate generation took %f sec' %(duration))

    # partition grasps
    grasp_partitions = pfc.space_partition_grasps(grasps, config)

    # bandit params
    max_iter = config['bandit_max_iter']
    confidence = config['bandit_confidence']
    snapshot_rate = config['bandit_snapshot_rate']
    tc_list = [tc.MaxIterTerminationCondition(max_iter), tc.ConfidenceTerminationCondition(confidence)]

    # run bandits on each partition
    object_grasps = []
    grasp_qualities = []
    i = 0
    for grasp_partition in grasp_partitions:
        logging.info('Finding highest quality grasp in partition %d' %(i))
        # create random variables
        graspable_rv = pfc.GraspableObjectGaussianPose(obj, config)
        f_rv = scipy.stats.norm(config['friction_coef'], config['sigma_mu']) # friction gaussian random variable
        candidates = []

        for grasp in grasp_partition:
            grasp_rv = pfc.ParallelJawGraspGaussian(grasp, config)
            candidates.append(pfc.ForceClosureRV(grasp_rv, graspable_rv, f_rv, config))

        # run bandits
        objective = objectives.RandomBinaryObjective()
        ts = das.ThompsonSampling(objective, candidates)
        ts_result = ts.solve(termination_condition = tc.OrTerminationCondition(tc_list), snapshot_rate = snapshot_rate)
        object_grasps.extend([c.grasp for c in ts_result.best_candidates])
        grasp_qualities.extend(list(ts_result.best_pred_means))
        i = i+1

    stop = time.clock()
    logging.info('Took %d sec' %(stop - start))

    # get rotated, translated versions of grasps
    delay = 0
    pr2_grasps = []
    pr2_grasp_qualities = []
    theta_res = config['grasp_theta_res'] * np.pi
    grasp_checker = pgc.OpenRaveGraspChecker(view=config['vis_grasps'])
    i = 0
    if config['vis_grasps']:
        delay = config['vis_delay']

    for grasp in object_grasps:
        print 'Grasp', i
        rotated_grasps = grasp.transform(obj.tf, theta_res)
        rotated_grasps = grasp_checker.prune_grasps_in_collision(obj, rotated_grasps, auto_step=True, close_fingers=False, delay=delay) 
        pr2_grasps.extend(rotated_grasps)
        pr2_grasp_qualities.extend([grasp_qualities[i]] * len(rotated_grasps))
        i = i+1                    

    logging.info('Num grasps: %d' %(len(pr2_grasps)))

    # save grasps locally :( Due to problems with sudo
    grasp_filename = os.path.join(output_dir, obj.key + '.json')
    with open(grasp_filename, 'w') as f:
        jsons.dump([pr2_grasps[i].to_json(quality=pr2_grasp_qualities[i]) for i in range(len(pr2_grasps))], f)
Beispiel #6
0
def label_correlated(obj, chunk, dest, config, plot=False):
    """Label an object with grasps according to probability of force closure,
    using correlated bandits."""
    bandit_start = time.clock()

    np.random.seed(100)

    # load grasps from database
    sample_start = time.clock()
    grasps = chunk.load_grasps(obj.key)
    sample_end = time.clock()
    sample_duration = sample_end - sample_start
    logging.info('Loaded %d grasps' %(len(grasps)))
    logging.info('Grasp candidate loading took %f sec' %(sample_duration))

    if not grasps:
        logging.info('Skipping %s' %(obj.key))
        return None

    # load features for all grasps
    feature_start = time.clock()
    feature_loader = ff.GraspableFeatureLoader(obj, chunk.name, config)
    all_features = feature_loader.load_all_features(grasps) # in same order as grasps
    feature_end = time.clock()
    feature_duration = feature_end - feature_start
    logging.info('Loaded %d features' %(len(all_features)))
    logging.info('Grasp feature loading took %f sec' %(feature_duration))

    # bandit params
    brute_force_iter = config['bandit_brute_force_iter']
    max_iter = config['bandit_max_iter']
    confidence = config['bandit_confidence']
    snapshot_rate = config['bandit_snapshot_rate']
    tc_list = [
        tc.MaxIterTerminationCondition(max_iter),
#        tc.ConfidenceTerminationCondition(confidence)
    ]

    # run bandits!
    graspable_rv = pfc.GraspableObjectGaussianPose(obj, config)
    f_rv = scipy.stats.norm(config['friction_coef'], config['sigma_mu']) # friction Gaussian RV

    candidates = []
    for grasp, features in zip(grasps, all_features):
        logging.info('Adding grasp %d' %len(candidates))
        grasp_rv = pfc.ParallelJawGraspGaussian(grasp, config)
        pfc_rv = pfc.ForceClosureRV(grasp_rv, graspable_rv, f_rv, config)
        if features is None:
            logging.info('Could not compute features for grasp.')
        else:
            pfc_rv.set_features(features)
            candidates.append(pfc_rv)

    # feature transform
    def phi(rv):
        return rv.features
    nn = kernels.KDTree(phi=phi)
    kernel = kernels.SquaredExponentialKernel(
        sigma=config['kernel_sigma'], l=config['kernel_l'], phi=phi)

    if config['grasp_symmetry']:
        def swapped_phi(rv):
            return rv.swapped_features
        nn = kernels.SymmetricKDTree(phi=phi, alternate_phi=swapped_phi)
        kernel = kernels.SymmetricSquaredExponentialKernel(
            sigma=config['kernel_sigma'], l=config['kernel_l'],
            phi=phi, alternate_phi=swapped_phi)
    objective = objectives.RandomBinaryObjective()

    # pre-computed pfc values
    estimated_pfc = np.array([c.grasp.quality for c in candidates])

    # uniform allocation baseline
    ua = das.UniformAllocationMean(objective, candidates)
    logging.info('Running uniform allocation.')
    ua_result = ua.solve(termination_condition=tc.OrTerminationCondition(tc_list), snapshot_rate=snapshot_rate)

    # Thompson sampling for faster convergence
    ts = das.ThompsonSampling(objective, candidates)
    logging.info('Running Thompson sampling.')
    ts_result = ts.solve(termination_condition=tc.OrTerminationCondition(tc_list), snapshot_rate=snapshot_rate)

    # correlated Thompson sampling for even faster convergence
    ts_corr = das.CorrelatedThompsonSampling(
        objective, candidates, nn, kernel, tolerance=config['kernel_tolerance'])
    logging.info('Running correlated Thompson sampling.')
    ts_corr_result = ts_corr.solve(termination_condition=tc.OrTerminationCondition(tc_list), snapshot_rate=snapshot_rate)

    object_grasps = [candidates[i].grasp for i in ts_result.best_candidates]
    grasp_qualities = list(ts_result.best_pred_means)

    bandit_stop = time.clock()
    logging.info('Bandits took %f sec' %(bandit_stop - bandit_start))

    # get rotated, translated versions of grasps
    delay = 0
    pr2_grasps = []
    pr2_grasp_qualities = []
    theta_res = config['grasp_theta_res'] * np.pi
#    grasp_checker = pgc.OpenRaveGraspChecker(view=config['vis_grasps'])

    if config['vis_grasps']:
        delay = config['vis_delay']

    for grasp, grasp_quality in zip(object_grasps, grasp_qualities):
        rotated_grasps = grasp.transform(obj.tf, theta_res)
#        rotated_grasps = grasp_checker.prune_grasps_in_collision(obj, rotated_grasps, auto_step=True, close_fingers=False, delay=delay)
        pr2_grasps.extend(rotated_grasps)
        pr2_grasp_qualities.extend([grasp_quality] * len(rotated_grasps))

    logging.info('Num grasps: %d' %(len(pr2_grasps)))

    grasp_filename = os.path.join(dest, obj.key + '.json')
    with open(grasp_filename, 'w') as f:
        jsons.dump([g.to_json(quality=q) for g, q in
                   zip(pr2_grasps, pr2_grasp_qualities)], f)

    ua_normalized_reward = reward_vs_iters(ua_result, estimated_pfc)
    ts_normalized_reward = reward_vs_iters(ts_result, estimated_pfc)
    ts_corr_normalized_reward = reward_vs_iters(ts_corr_result, estimated_pfc)

    return BanditCorrelatedExperimentResult(ua_normalized_reward, ts_normalized_reward, ts_corr_normalized_reward,
                                            estimated_pfc, ua_result.iters, kernel.matrix(candidates), obj_key=obj.key)
Beispiel #7
0
def label_correlated(obj, chunk, dest, config, plot=False):
    """Label an object with grasps according to probability of force closure,
    using correlated bandits."""
    bandit_start = time.clock()

    np.random.seed(100)

    # load grasps from database
    sample_start = time.clock()
    grasps = chunk.load_grasps(obj.key)
    sample_end = time.clock()
    sample_duration = sample_end - sample_start
    logging.info('Loaded %d grasps' % (len(grasps)))
    logging.info('Grasp candidate loading took %f sec' % (sample_duration))

    if not grasps:
        logging.info('Skipping %s' % (obj.key))
        return None

    # load features for all grasps
    feature_start = time.clock()
    feature_loader = ff.GraspableFeatureLoader(obj, chunk.name, config)
    all_features = feature_loader.load_all_features(
        grasps)  # in same order as grasps
    feature_end = time.clock()
    feature_duration = feature_end - feature_start
    logging.info('Loaded %d features' % (len(all_features)))
    logging.info('Grasp feature loading took %f sec' % (feature_duration))

    # bandit params
    brute_force_iter = config['bandit_brute_force_iter']
    max_iter = config['bandit_max_iter']
    confidence = config['bandit_confidence']
    snapshot_rate = config['bandit_snapshot_rate']
    tc_list = [
        tc.MaxIterTerminationCondition(max_iter),
        #        tc.ConfidenceTerminationCondition(confidence)
    ]

    # run bandits!
    graspable_rv = pfc.GraspableObjectGaussianPose(obj, config)
    f_rv = scipy.stats.norm(config['friction_coef'],
                            config['sigma_mu'])  # friction Gaussian RV

    candidates = []
    for grasp, features in zip(grasps, all_features):
        logging.info('Adding grasp %d' % len(candidates))
        grasp_rv = pfc.ParallelJawGraspGaussian(grasp, config)
        pfc_rv = pfc.ForceClosureRV(grasp_rv, graspable_rv, f_rv, config)
        if features is None:
            logging.info('Could not compute features for grasp.')
        else:
            pfc_rv.set_features(features)
            candidates.append(pfc_rv)

    # feature transform
    def phi(rv):
        return rv.features

    nn = kernels.KDTree(phi=phi)
    kernel = kernels.SquaredExponentialKernel(sigma=config['kernel_sigma'],
                                              l=config['kernel_l'],
                                              phi=phi)

    if config['grasp_symmetry']:

        def swapped_phi(rv):
            return rv.swapped_features

        nn = kernels.SymmetricKDTree(phi=phi, alternate_phi=swapped_phi)
        kernel = kernels.SymmetricSquaredExponentialKernel(
            sigma=config['kernel_sigma'],
            l=config['kernel_l'],
            phi=phi,
            alternate_phi=swapped_phi)
    objective = objectives.RandomBinaryObjective()

    # pre-computed pfc values
    estimated_pfc = np.array([c.grasp.quality for c in candidates])

    # uniform allocation baseline
    ua = das.UniformAllocationMean(objective, candidates)
    logging.info('Running uniform allocation.')
    ua_result = ua.solve(
        termination_condition=tc.OrTerminationCondition(tc_list),
        snapshot_rate=snapshot_rate)

    # Thompson sampling for faster convergence
    ts = das.ThompsonSampling(objective, candidates)
    logging.info('Running Thompson sampling.')
    ts_result = ts.solve(
        termination_condition=tc.OrTerminationCondition(tc_list),
        snapshot_rate=snapshot_rate)

    # correlated Thompson sampling for even faster convergence
    ts_corr = das.CorrelatedThompsonSampling(
        objective,
        candidates,
        nn,
        kernel,
        tolerance=config['kernel_tolerance'])
    logging.info('Running correlated Thompson sampling.')
    ts_corr_result = ts_corr.solve(
        termination_condition=tc.OrTerminationCondition(tc_list),
        snapshot_rate=snapshot_rate)

    object_grasps = [candidates[i].grasp for i in ts_result.best_candidates]
    grasp_qualities = list(ts_result.best_pred_means)

    bandit_stop = time.clock()
    logging.info('Bandits took %f sec' % (bandit_stop - bandit_start))

    # get rotated, translated versions of grasps
    delay = 0
    pr2_grasps = []
    pr2_grasp_qualities = []
    theta_res = config['grasp_theta_res'] * np.pi
    #    grasp_checker = pgc.OpenRaveGraspChecker(view=config['vis_grasps'])

    if config['vis_grasps']:
        delay = config['vis_delay']

    for grasp, grasp_quality in zip(object_grasps, grasp_qualities):
        rotated_grasps = grasp.transform(obj.tf, theta_res)
        #        rotated_grasps = grasp_checker.prune_grasps_in_collision(obj, rotated_grasps, auto_step=True, close_fingers=False, delay=delay)
        pr2_grasps.extend(rotated_grasps)
        pr2_grasp_qualities.extend([grasp_quality] * len(rotated_grasps))

    logging.info('Num grasps: %d' % (len(pr2_grasps)))

    grasp_filename = os.path.join(dest, obj.key + '.json')
    with open(grasp_filename, 'w') as f:
        jsons.dump([
            g.to_json(quality=q)
            for g, q in zip(pr2_grasps, pr2_grasp_qualities)
        ], f)

    ua_normalized_reward = reward_vs_iters(ua_result, estimated_pfc)
    ts_normalized_reward = reward_vs_iters(ts_result, estimated_pfc)
    ts_corr_normalized_reward = reward_vs_iters(ts_corr_result, estimated_pfc)

    return BanditCorrelatedExperimentResult(ua_normalized_reward,
                                            ts_normalized_reward,
                                            ts_corr_normalized_reward,
                                            estimated_pfc,
                                            ua_result.iters,
                                            kernel.matrix(candidates),
                                            obj_key=obj.key)
Beispiel #8
0
def extract_features(obj, dest, feature_dest, config):
    # sample grasps
    sample_start = time.clock()
    if config['grasp_sampler'] == 'antipodal':
        logging.info('Using antipodal grasp sampling')
        sampler = ags.AntipodalGraspSampler(config)
        grasps = sampler.generate_grasps(
            obj, check_collisions=config['check_collisions'])

        # pad with gaussian grasps
        num_grasps = len(grasps)
        min_num_grasps = config['min_num_grasps']
        if num_grasps < min_num_grasps:
            target_num_grasps = min_num_grasps - num_grasps
            gaussian_sampler = gs.GaussianGraspSampler(config)
            gaussian_grasps = gaussian_sampler.generate_grasps(
                obj,
                target_num_grasps=target_num_grasps,
                check_collisions=config['check_collisions'])
            grasps.extend(gaussian_grasps)
    else:
        logging.info('Using Gaussian grasp sampling')
        sampler = gs.GaussianGraspSampler(config)
        grasps = sampler.generate_grasps(
            obj, check_collisions=config['check_collisions'])

    sample_end = time.clock()
    sample_duration = sample_end - sample_start
    logging.info('Grasp candidate generation took %f sec' % (sample_duration))

    if not grasps or len(grasps) == 0:
        logging.info('Skipping %s' % (obj.key))
        return

    # compute all features
    feature_start = time.clock()
    feature_extractor = ff.GraspableFeatureExtractor(obj, config)
    all_features = feature_extractor.compute_all_features(grasps)
    feature_end = time.clock()
    feature_duration = feature_end - feature_start
    logging.info('Feature extraction took %f sec' % (feature_duration))

    # generate pfc candidates
    graspable_rv = pfc.GraspableObjectGaussianPose(obj, config)
    f_rv = scipy.stats.norm(config['friction_coef'], config['sigma_mu'])
    candidates = []
    logging.info('%d grasps, %d valid features', len(grasps),
                 len(all_features) - all_features.count(None))
    for grasp, features in zip(grasps, all_features):
        logging.info('Adding grasp %d candidate' % (len(candidates)))
        if features is None:
            logging.info('No features computed.')
            continue
        grasp_rv = pfc.ParallelJawGraspGaussian(grasp, config)
        pfc_rv = pfc.ForceClosureRV(grasp_rv, graspable_rv, f_rv, config)
        pfc_rv.set_features(features)
        candidates.append(pfc_rv)
    logging.info('%d candidates', len(candidates))

    # brute force with uniform allocation
    brute_force_iter = config['bandit_brute_force_iter']
    snapshot_rate = config['bandit_snapshot_rate']

    def phi(rv):
        return rv.features

    objective = objectives.RandomBinaryObjective()

    ua = das.UniformAllocationMean(objective, candidates)
    logging.info('Running uniform allocation for true pfc.')
    bandit_start = time.clock()
    ua_result = ua.solve(
        termination_condition=tc.MaxIterTerminationCondition(brute_force_iter),
        snapshot_rate=snapshot_rate)
    bandit_end = time.clock()
    bandit_duration = bandit_end - bandit_start
    logging.info('Uniform allocation (%d iters) took %f sec' %
                 (brute_force_iter, bandit_duration))

    cand_grasps = [c.grasp for c in candidates]
    cand_features = [c.features_ for c in candidates]
    final_model = ua_result.models[-1]
    estimated_pfc = models.BetaBernoulliModel.beta_mean(
        final_model.alphas, final_model.betas)

    if len(cand_grasps) != len(estimated_pfc):
        logging.warning(
            'Number of grasps does not match estimated pfc results.')
        IPython.embed()

    # write to file
    grasp_filename = os.path.join(dest, obj.key + '.json')
    with open(grasp_filename, 'w') as grasp_file:
        jsons.dump([
            g.to_json(quality=q, num_successes=a, num_failures=b)
            for g, q, a, b in zip(cand_grasps, estimated_pfc,
                                  final_model.alphas, final_model.betas)
        ], grasp_file)

    # HACK to make paths relative
    features_as_json = [f.to_json(feature_dest) for f in cand_features]
    output_dest = os.path.split(dest)[0]
    for feature_as_json in features_as_json:
        feature_as_json = list(feature_as_json.values())[0]
        for wname in ('w1', 'w2'):
            wdata = feature_as_json[wname]
            for k, v in wdata.items():
                wdata[k] = os.path.relpath(
                    v, output_dest)  # relative to output_dest
    feature_filename = os.path.join(feature_dest, obj.key + '.json')
    with open(feature_filename, 'w') as feature_file:
        jsons.dump(features_as_json, feature_file)
Beispiel #9
0
def label_pfc(obj, dataset, output_dir, config):
    """ Label an object with grasps according to probability of force closure """
    # sample intial antipodal grasps
    start = time.clock()
    sampler = ags.AntipodalGraspSampler(config)

    start_time = time.clock()
    grasps, alpha_thresh, rho_thresh = sampler.generate_grasps(obj, vis=False)
    end_time = time.clock()
    duration = end_time - start_time
    logging.info('Antipodal grasp candidate generation took %f sec' %
                 (duration))

    # partition grasps
    grasp_partitions = pfc.space_partition_grasps(grasps, config)

    # bandit params
    max_iter = config['bandit_max_iter']
    confidence = config['bandit_confidence']
    snapshot_rate = config['bandit_snapshot_rate']
    tc_list = [
        tc.MaxIterTerminationCondition(max_iter),
        tc.ConfidenceTerminationCondition(confidence)
    ]

    # run bandits on each partition
    object_grasps = []
    grasp_qualities = []
    i = 0
    for grasp_partition in grasp_partitions:
        logging.info('Finding highest quality grasp in partition %d' % (i))
        # create random variables
        graspable_rv = pfc.GraspableObjectGaussianPose(obj, config)
        f_rv = scipy.stats.norm(
            config['friction_coef'],
            config['sigma_mu'])  # friction gaussian random variable
        candidates = []

        for grasp in grasp_partition:
            grasp_rv = pfc.ParallelJawGraspGaussian(grasp, config)
            candidates.append(
                pfc.ForceClosureRV(grasp_rv, graspable_rv, f_rv, config))

        # run bandits
        objective = objectives.RandomBinaryObjective()
        ts = das.ThompsonSampling(objective, candidates)
        ts_result = ts.solve(
            termination_condition=tc.OrTerminationCondition(tc_list),
            snapshot_rate=snapshot_rate)
        object_grasps.extend([c.grasp for c in ts_result.best_candidates])
        grasp_qualities.extend(list(ts_result.best_pred_means))
        i = i + 1

    stop = time.clock()
    logging.info('Took %d sec' % (stop - start))

    # get rotated, translated versions of grasps
    delay = 0
    pr2_grasps = []
    pr2_grasp_qualities = []
    theta_res = config['grasp_theta_res'] * np.pi
    grasp_checker = pgc.OpenRaveGraspChecker(view=config['vis_grasps'])
    i = 0
    if config['vis_grasps']:
        delay = config['vis_delay']

    for grasp in object_grasps:
        print 'Grasp', i
        rotated_grasps = grasp.transform(obj.tf, theta_res)
        rotated_grasps = grasp_checker.prune_grasps_in_collision(
            obj,
            rotated_grasps,
            auto_step=True,
            close_fingers=False,
            delay=delay)
        pr2_grasps.extend(rotated_grasps)
        pr2_grasp_qualities.extend([grasp_qualities[i]] * len(rotated_grasps))
        i = i + 1

    logging.info('Num grasps: %d' % (len(pr2_grasps)))

    # save grasps locally :( Due to problems with sudo
    grasp_filename = os.path.join(output_dir, obj.key + '.json')
    with open(grasp_filename, 'w') as f:
        jsons.dump([
            pr2_grasps[i].to_json(quality=pr2_grasp_qualities[i])
            for i in range(len(pr2_grasps))
        ], f)
Beispiel #10
0
def extract_features(obj, dest, feature_dest, config):
    # sample grasps
    sample_start = time.clock()
    if config['grasp_sampler'] == 'antipodal':
        logging.info('Using antipodal grasp sampling')
        sampler = ags.AntipodalGraspSampler(config)
        grasps = sampler.generate_grasps(
            obj, check_collisions=config['check_collisions'])

        # pad with gaussian grasps
        num_grasps = len(grasps)
        min_num_grasps = config['min_num_grasps']
        if num_grasps < min_num_grasps:
            target_num_grasps = min_num_grasps - num_grasps
            gaussian_sampler = gs.GaussianGraspSampler(config)
            gaussian_grasps = gaussian_sampler.generate_grasps(
                obj, target_num_grasps=target_num_grasps, check_collisions=config['check_collisions'])
            grasps.extend(gaussian_grasps)
    else:
        logging.info('Using Gaussian grasp sampling')
        sampler = gs.GaussianGraspSampler(config)
        grasps = sampler.generate_grasps(
            obj, check_collisions=config['check_collisions'])

    sample_end = time.clock()
    sample_duration = sample_end - sample_start
    logging.info('Grasp candidate generation took %f sec' %(sample_duration))

    if not grasps or len(grasps) == 0:
        logging.info('Skipping %s' %(obj.key))
        return

    # compute all features
    feature_start = time.clock()
    feature_extractor = ff.GraspableFeatureExtractor(obj, config)
    all_features = feature_extractor.compute_all_features(grasps)
    feature_end = time.clock()
    feature_duration = feature_end - feature_start
    logging.info('Feature extraction took %f sec' %(feature_duration))

    # generate pfc candidates
    graspable_rv = pfc.GraspableObjectGaussianPose(obj, config)
    f_rv = scipy.stats.norm(config['friction_coef'], config['sigma_mu'])
    candidates = []
    logging.info('%d grasps, %d valid features', len(grasps), len(all_features) - all_features.count(None))
    for grasp, features in zip(grasps, all_features):
        logging.info('Adding grasp %d candidate' %(len(candidates)))
        if features is None:
            logging.info('No features computed.')
            continue
        grasp_rv = pfc.ParallelJawGraspGaussian(grasp, config)
        pfc_rv = pfc.ForceClosureRV(grasp_rv, graspable_rv, f_rv, config)
        pfc_rv.set_features(features)
        candidates.append(pfc_rv)
    logging.info('%d candidates', len(candidates))

    # brute force with uniform allocation
    brute_force_iter = config['bandit_brute_force_iter']
    snapshot_rate = config['bandit_snapshot_rate']
    def phi(rv):
        return rv.features
    objective = objectives.RandomBinaryObjective()

    ua = das.UniformAllocationMean(objective, candidates)
    logging.info('Running uniform allocation for true pfc.')
    bandit_start = time.clock()
    ua_result = ua.solve(
        termination_condition=tc.MaxIterTerminationCondition(brute_force_iter),
        snapshot_rate=snapshot_rate)
    bandit_end = time.clock()
    bandit_duration = bandit_end - bandit_start
    logging.info('Uniform allocation (%d iters) took %f sec' %(brute_force_iter, bandit_duration))

    cand_grasps = [c.grasp for c in candidates]
    cand_features = [c.features_ for c in candidates]
    final_model = ua_result.models[-1]
    estimated_pfc = models.BetaBernoulliModel.beta_mean(
        final_model.alphas, final_model.betas)

    if len(cand_grasps) != len(estimated_pfc):
        logging.warning('Number of grasps does not match estimated pfc results.')
        IPython.embed()

    # write to file
    grasp_filename = os.path.join(dest, obj.key + '.json')
    with open(grasp_filename, 'w') as grasp_file:
        jsons.dump([g.to_json(quality=q, num_successes=a, num_failures=b) for g, q, a, b
                    in zip(cand_grasps, estimated_pfc, final_model.alphas, final_model.betas)],
                   grasp_file)

    # HACK to make paths relative
    features_as_json = [f.to_json(feature_dest) for f in cand_features]
    output_dest = os.path.split(dest)[0]
    for feature_as_json in features_as_json:
        feature_as_json = list(feature_as_json.values())[0]
        for wname in ('w1', 'w2'):
            wdata = feature_as_json[wname]
            for k, v in wdata.items():
                wdata[k] = os.path.relpath(v, output_dest) # relative to output_dest
    feature_filename = os.path.join(feature_dest, obj.key + '.json')
    with open(feature_filename, 'w') as feature_file:
        jsons.dump(features_as_json, feature_file)