Beispiel #1
0
    opts['log_label_min'] = 0
    real_data_min = 13.76
    real_data_max = -19.35

    dis_opts = {}
    if adversarial_loss == "wgangp_loss":
        dis_opts["alpha"] = 10.
    elif adversarial_loss == "hinge_loss":
        dis_opts["margin"] = 1.

    if args.feature_domain.lower() == "mel":
        from kaldi_fbank_dataset import FbankDataloader, FrameDataset
    else:
        from kaldi_fft_dataset import FbankDataloader, FrameDataset

    train_dataset = FrameDataset([-6, -3, 0, 3, 6, 9], NOISE_LIST, TR05_SIMU_LIST, args.clean_type, True, None, args.data_augment)
    train_dataloader = FbankDataloader(train_dataset, opts, BATCH_SIZE, True, num_workers=4, drop_last=True)
    valid_dataset = FrameDataset([-6, -3, 0, 3, 6, 9], NOISE_LIST, DT05_SIMU_LIST, args.clean_type, False, None, args.data_augment)
    valid_dataloader = FbankDataloader(valid_dataset, opts, BATCH_SIZE, True, num_workers=4, drop_last=True)
    logger.info("Done.")

    logger.info("Start to construct model...")
    device = torch.device('cuda')

    Generator, Discriminator = get_model(gen_model, dis_model)
    if adversarial_loss:
        disc_d_loss, disc_g_loss = get_disc_loss(adversarial_loss)
    reconstruction_loss = get_recon_loss(reconstruction_loss)

    calc_target = get_target(args.target_type)
Beispiel #2
0
    if "gp" in args.adversarial_loss:
        dis_opts["gp_alpha"] = 0.
    if args.adversarial_loss == "hinge":
        dis_opts["hinge_margin"] = 1.
    dis_opts["l1_alpha"] = args.l1_alpha
    dis_opts["l2_alpha"] = args.l2_alpha

    if args.feature_domain.lower() == "mel":
        from kaldi_fbank_dataset import FbankDataloader, FrameDataset
    elif args.feature_domain.lower() == "waveform":
        from segan_dataset import FbankDataloader, FrameDataset
    else:
        from kaldi_fft_dataset import FbankDataloader, FrameDataset

    train_dataset = FrameDataset([-6, -3, 0, 3, 6, 9], NOISE_LIST,
                                 TR05_SIMU_LIST, args.clean_type, True,
                                 "value_norm", args.data_augment)
    train_dataloader = FbankDataloader(train_dataset,
                                       opts,
                                       BATCH_SIZE,
                                       True,
                                       num_workers=4,
                                       drop_last=True)
    valid_dataset = FrameDataset([-6, -3, 0, 3, 6, 9], NOISE_LIST,
                                 DT05_SIMU_LIST, args.clean_type, False,
                                 "value_norm", "None")
    valid_dataloader = FbankDataloader(valid_dataset,
                                       opts,
                                       BATCH_SIZE,
                                       True,
                                       num_workers=4,
Beispiel #3
0
    opts['clip_low'] = 0.
    opts['clip_high'] = 1.
    opts['log_power_offset'] = 10.

    dis_opts = {}
    if adversarial_loss == "wgangp_loss":
        dis_opts["alpha"] = 10.
    elif adversarial_loss == "hinge_loss":
        dis_opts["margin"] = 1.

    if args.feature_domain.lower() == "mel":
        from kaldi_fbank_dataset import FbankDataloader, FrameDataset
    else:
        from kaldi_fft_dataset import FbankDataloader, FrameDataset

    train_dataset = FrameDataset([0, 3, 6], NOISE_LIST, TR05_SIMU_LIST,
                                 args.clean_type, True, None)
    train_dataloader = FbankDataloader(train_dataset,
                                       opts,
                                       BATCH_SIZE,
                                       True,
                                       num_workers=4,
                                       drop_last=True)
    valid_dataset = FrameDataset([0, 3, 6], NOISE_LIST, DT05_SIMU_LIST,
                                 args.clean_type, False, None)
    valid_dataloader = FbankDataloader(valid_dataset,
                                       opts,
                                       BATCH_SIZE,
                                       True,
                                       num_workers=4,
                                       drop_last=True)
    logger.info("Done.")