Beispiel #1
0
def update_uimetadata(artifact_name,
                      uimetadata_path=KFP_UI_METADATA_FILE_PATH):
    """Update ui-metadata dictionary with a new web-app entry.

    Args:
        artifact_name: Name of the artifact
        uimetadata_path: path to mlpipeline-ui-metadata.json
    """
    try:
        outputs = get_current_uimetadata(uimetadata_path,
                                         default_if_not_exist=True)
    except json.JSONDecodeError:
        log.error("This step will not be able to visualize artifacts in the"
                  " KFP UI")
        return

    pod_name = podutils.get_pod_name()
    namespace = podutils.get_namespace()
    workflow_name = workflowutils.get_workflow_name(pod_name, namespace)
    html_artifact_entry = [{
        'type':
        'web-app',
        'storage':
        'minio',
        'source':
        'minio://mlpipeline/artifacts/{}/{}/{}'.format(workflow_name, pod_name,
                                                       artifact_name + '.tgz')
    }]
    outputs['outputs'] += html_artifact_entry
    with open(uimetadata_path, "w") as f:
        json.dump(outputs, f)
Beispiel #2
0
def update_uimetadata(artifact_name,
                      uimetadata_path='/mlpipeline-ui-metadata.json'):
    """Update ui-metadata dictionary with a new web-app entry.

    Args:
        artifact_name: Name of the artifact
        uimetadata_path: path to mlpipeline-ui-metadata.json
    """
    # Default empty ui-metadata dict
    outputs = {"outputs": []}
    if os.path.exists(uimetadata_path):
        try:
            outputs = json.loads(open(uimetadata_path, 'r').read())
            if not outputs.get('outputs', None):
                outputs['outputs'] = []
        except json.JSONDecodeError as e:
            print("Failed to parse json file {}: {}\n"
                  "This step will not be able to visualize artifacts in the"
                  " KFP UI".format(uimetadata_path, e))

    pod_name = podutils.get_pod_name()
    namespace = podutils.get_namespace()
    workflow_name = workflowutils.get_workflow_name(pod_name, namespace)
    html_artifact_entry = [{
        'type':
        'web-app',
        'storage':
        'minio',
        'source':
        'minio://mlpipeline/artifacts/{}/{}/{}'.format(workflow_name, pod_name,
                                                       artifact_name + '.tgz')
    }]
    outputs['outputs'] += html_artifact_entry
    with open(uimetadata_path, "w") as f:
        json.dump(outputs, f)
Beispiel #3
0
def is_kfp_step() -> bool:
    """Detect if running inside a KFP step.

    The detection involves two steps:

      1. Auto-detect if the current Pod is part of an Argo workflow
      2. Read one of the annotations that the KFP API Server sets in the
         workflow object (one-off runs and recurring ones have different
         annotations).
    """
    log.info("Checking if running inside a KFP step...")
    try:
        namespace = podutils.get_namespace()
        workflow = workflowutils.get_workflow(
            workflowutils.get_workflow_name(podutils.get_pod_name(),
                                            namespace), namespace)
        annotations = workflow["metadata"]["annotations"]
        try:
            _ = annotations[KFP_RUN_NAME_ANNOTATION_KEY]
        except KeyError:
            _ = annotations[KFP_SWF_NAME_ANNOTATION_KEY]
    except Exception:
        log.info("Not in a KFP step.")
        return False
    log.info("Running in a KFP step.")
    return True
Beispiel #4
0
def detect_run_uuid() -> str:
    """Get the workflow's UUID form inside a pipeline step."""
    namespace = podutils.get_namespace()
    workflow = workflowutils.get_workflow(
        workflowutils.get_workflow_name(podutils.get_pod_name(), namespace),
        namespace)
    run_uuid = (workflow["metadata"].get("labels",
                                         {}).get(KFP_RUN_ID_LABEL_KEY, None))

    # KFP api-server adds run UUID as label to workflows for KFP>=0.1.26.
    # Return run UUID if available. Else return workflow UUID to maintain
    # backwards compatibility.
    return run_uuid or workflow["metadata"]["uid"]
Beispiel #5
0
def update_uimetadata(artifact_name,
                      uimetadata_path=KFP_UI_METADATA_FILE_PATH):
    """Update ui-metadata dictionary with a new web-app entry.

    Args:
        artifact_name: Name of the artifact
        uimetadata_path: path to mlpipeline-ui-metadata.json
    """
    log.info("Adding artifact '%s' to KFP UI metadata...", artifact_name)
    try:
        outputs = get_current_uimetadata(uimetadata_path,
                                         default_if_not_exist=True)
    except json.JSONDecodeError:
        log.error("This step will not be able to visualize artifacts in the"
                  " KFP UI")
        return

    pod_name = podutils.get_pod_name()
    namespace = podutils.get_namespace()
    workflow_name = workflowutils.get_workflow_name(pod_name, namespace)
    html_artifact_entry = [{
        'type':
        'web-app',
        'storage':
        'minio',
        'source':
        'minio://mlpipeline/artifacts/{}/{}/{}'.format(workflow_name, pod_name,
                                                       artifact_name + '.tgz')
    }]
    outputs['outputs'] += html_artifact_entry

    try:
        utils.ensure_or_create_dir(uimetadata_path)
    except RuntimeError:
        log.exception(
            "Writing to '%s' failed. This step will not be able to"
            " visualize artifacts in the KFP UI.", uimetadata_path)
        return
    with open(uimetadata_path, "w") as f:
        json.dump(outputs, f)
    log.info("Artifact successfully added")
Beispiel #6
0
def get_run_uuid():
    """Get the Workflow's UUID form inside a pipeline step."""
    # Retrieve the pod
    pod_name = get_pod_name()
    namespace = get_namespace()
    workflow_name = workflowutils.get_workflow_name(pod_name, namespace)

    # Retrieve the Argo workflow
    api_group = "argoproj.io"
    api_version = "v1alpha1"
    co_name = "workflows"
    co_client = _get_k8s_custom_objects_client()
    workflow = co_client.get_namespaced_custom_object(api_group, api_version,
                                                      namespace, co_name,
                                                      workflow_name)
    run_uuid = workflow["metadata"].get("labels", {}).get(KFP_RUN_ID_LABEL_KEY,
                                                          None)

    # KFP api-server adds run UUID as label to workflows for KFP>=0.1.26.
    # Return run UUID if available. Else return workflow UUID to maintain
    # backwards compatibility.
    return run_uuid or workflow["metadata"]["uid"]