Beispiel #1
0
def test_scd():
    """
    Test the SCD procedure.
    """
    graph = nx.newman_watts_strogatz_graph(50, 5, 0.3)

    model = SCD()

    model.fit(graph)
    memberships = model.get_memberships()

    indices = [k for k, v in memberships.items()].sort()
    nodes = [node for node in graph.nodes()].sort()

    assert graph.number_of_nodes() == len(memberships)
    assert indices == nodes
    assert type(memberships) == dict

    graph = nx.newman_watts_strogatz_graph(150, 5, 0.3)

    model = SCD()

    model.fit(graph)
    memberships = model.get_memberships()

    indices = [k for k, v in memberships.items()].sort()
    nodes = [node for node in graph.nodes()].sort()

    assert graph.number_of_nodes() == len(memberships)
    assert indices == nodes
    assert type(memberships) == dict
Beispiel #2
0
        coeff = nx.average_clustering(sub)
        coeffs.append(coeff)
    avg_coeff = sum(coeffs) / len(coeffs)
    d['edmot'] = avg_coeff

    model = GEMSEC()
    comms = run(model, graph)
    coeffs = []
    for key in sorted(comms.keys()):
        sub = graph.subgraph(list(comms[key]))
        coeff = nx.average_clustering(sub)
        coeffs.append(coeff)
    avg_coeff = sum(coeffs) / len(coeffs)
    d['gemsec'] = avg_coeff

    model = SCD()
    comms = run(model, graph)
    coeffs = []
    for key in sorted(comms.keys()):
        sub = graph.subgraph(list(comms[key]))
        coeff = nx.average_clustering(sub)
        coeffs.append(coeff)
    avg_coeff = sum(coeffs) / len(coeffs)
    d['scd'] = avg_coeff
    print(d)
    path = os.getcwd()
    #os.makedirs(str(path)+str(os.sep)+"scores")
    file = open(str(path) + "/scores/cluster_coeff-%s.csv" % num, "w")
    cs = csv.writer(file)
    cs.writerow(['graph', "algo", "cluster_coeff"])
    for key in d.keys():
Beispiel #3
0
from karateclub.node_embedding.neighbourhood import GraRep, DeepWalk, Walklets, NMFADMM, Diff2Vec, BoostNE, NetMF
from karateclub.community_detection.overlapping import EgoNetSplitter, NNSED, DANMF, MNMF, BigClam, SymmNMF
from karateclub.community_detection.non_overlapping import EdMot, LabelPropagation, SCD
from karateclub.graph_embedding import Graph2Vec, FGSD, GL2Vec, SF
from karateclub.node_embedding.attributed import BANE, TENE, TADW, FSCNMF
from karateclub.node_embedding.structural import GraphWave, Role2Vec
from karateclub.dataset import GraphReader, GraphSetReader

#------------------------------------
# SCD example
#------------------------------------

g = nx.newman_watts_strogatz_graph(100, 10, 0.2)

model = SCD()

model.fit(g)

model.get_memberships()

#------------------------------------
# Symm-NMF example
#------------------------------------

g = nx.newman_watts_strogatz_graph(100, 10, 0.2)

model = SymmNMF()

model.fit(g)
Beispiel #4
0
"""SCD example."""

import networkx as nx
from karateclub.community_detection.non_overlapping import SCD

g = nx.newman_watts_strogatz_graph(100, 20, 0.05)

model = SCD()

model.fit(g)