Beispiel #1
0
def test_batcher_clears_value_cache():
    batcher = kayak.Batcher(1, 2)
    X = kayak.Inputs(np.array([[1, 2, 3], [2, 3, 4]]), batcher)
    Y = kayak.MatSum(X)
    correct_vals = [6, 9]
    for ii, batch in enumerate(batcher):
        assert Y.value == correct_vals[ii]
Beispiel #2
0
def test_batcher_clears_shape_cache():
    batcher = kayak.Batcher(2, 3)
    X = kayak.Inputs(np.array([[1, 2, 3], [2, 3, 4], [3, 4, 5]]), batcher)
    Y = kayak.MatSum(X, axis=1)
    correct_shapes = [(2, 1), (1, 1)]
    for ii, batch in enumerate(batcher):
        assert Y.shape == correct_shapes[ii]
Beispiel #3
0
def test_graph_diamond():
    npr.seed(2)

    N  = 10
    D  = 5
    H1 = 6
    H2 = 7

    X   = kayak.Inputs(npr.randn(N,D))
    W1  = kayak.Parameter(npr.randn(D,H1))
    W2a = kayak.Parameter(npr.randn(H1,H2))
    W2b = kayak.Parameter(npr.randn(H1,H2))
    W3  = kayak.Parameter(npr.randn(H2,1))

    U1 = kayak.SoftReLU(kayak.MatMult(X, W1))
    U2a = kayak.SoftReLU(kayak.MatMult(U1, W2a))
    U2b = kayak.SoftReLU(kayak.MatMult(U1, W2b))
    U3a = kayak.SoftReLU(kayak.MatMult(U2a, W3))
    U3b = kayak.SoftReLU(kayak.MatMult(U2b, W3))
    
    out = kayak.MatSum(kayak.MatAdd(U3a, U3b))

    out.value
    print kayak.util.checkgrad(W1, out)
    print kayak.util.checkgrad(W2a, out)
    print kayak.util.checkgrad(W2b, out)
    print kayak.util.checkgrad(W3, out)
    assert kayak.util.checkgrad(W1, out) < MAX_GRAD_DIFF
    assert kayak.util.checkgrad(W2a, out) < MAX_GRAD_DIFF
    assert kayak.util.checkgrad(W2b, out) < MAX_GRAD_DIFF
    assert kayak.util.checkgrad(W3, out) < MAX_GRAD_DIFF
Beispiel #4
0
def test_batcher_updates_dropout():
    batcher = kayak.Batcher(5, 10)
    X = kayak.Inputs(np.random.randn(10,10))
    Y = kayak.Dropout(X, batcher=batcher)
    val1 = Y.value
    batcher.next()
    val2 = Y.value
    assert not np.all(val1 == val2)
Beispiel #5
0
def test_batcher_can_reinstate_dropout_mask():
    batcher = kayak.Batcher(5, 10)
    X = kayak.Inputs(np.ones((10,10)))
    Y = kayak.Dropout(X, batcher=batcher)
    assert not np.all(Y.value == np.ones((10, 10)))
    batcher.test_mode()
    print "Y value", Y.value
    assert np.all(Y.value == np.ones((10, 10)))
Beispiel #6
0
def test_irrelevant_outputs():
    # Having an irrelevant output shouldn't cause problems. Indeed, its
    # gradient and value should not be called.
    class NoValue(kayak.Differentiable):
        def __init__(self, A, *args):
            # Recurse to handle lists of arguments.
            super(NoValue, self).__init__([A])
        def _compute_value(self):
            raise AttributeError("Value should not be called")
        def _local_grad(self, parent, d_out_d_self):
            raise AttributeError("Grad should not be called")

    X = kayak.Inputs(npr.randn(10, 20))
    Y = kayak.Inputs(npr.randn(10, 20))
    Z = X + Y
    bad_output = NoValue(X)
    Z.grad(X) # Will raise AttributeError is W's value or grad is called
Beispiel #7
0
def test_dropout_clears_value_cache():
    X = kayak.Inputs(np.random.randn(10,10))
    Y = kayak.Dropout(X)
    Z = kayak.MatSum(Y, axis=1)
    val1 = Z.value
    Y.draw_new_mask()
    val2 = Z.value
    assert not np.all(val1 == val2)
    assert np.all(Z.value == Z.value)
Beispiel #8
0
def test_irrelevant_outputs_2():
    # As above, with a chain of ouptuts
    class NoValue(kayak.Differentiable):
        def __init__(self, A, *args):
            # Recurse to handle lists of arguments.
            super(NoValue, self).__init__([A])
        def _compute_value(self):
            raise AttributeError("Value should not be called")
        def _local_grad(self, parent, d_out_d_self):
            raise AttributeError("Grad should not be called")

    X = kayak.Inputs(npr.randn(10, 20))
    Y = kayak.Inputs(npr.randn(10, 20))
    Z = X + Y
    bad_pre_output = NoValue(X)
    bad_output = NoValue(bad_pre_output)

    Z.grad(X) # Will raise AttributeError is W's value or grad is called
Beispiel #9
0
def test_batcher_updates_value():
    batcher = kayak.Batcher(12, 20)
    data = npr.randn(20, 7)
    X = kayak.Inputs(data, batcher)
    for i, batch in enumerate(batcher):
        if i == 0:
            assert np.all(X.value == data[:12, :])
        elif i == 1:
            assert np.all(X.value == data[12:, :])
        else:
            assert False
    
    batcher.test_mode()
    assert np.all(X.value == data)
Beispiel #10
0
def test_graph_simple():
    npr.seed(1)

    N  = 1
    D  = 1
    H1 = 1

    X  = kayak.Inputs(npr.randn(N,D))
    W1 = kayak.Parameter(npr.randn(D,H1))
    U3 = kayak.MatMult(W1, X)

    out = U3

    print "Value: ", out.value
    print "Gradient: ", out.grad(W1)
    print "Grad error: ", kayak.util.checkgrad(W1, out)
    assert kayak.util.checkgrad(W1, out) < MAX_GRAD_DIFF
Beispiel #11
0
def test_cache_utility():
    npr.seed(3)

    num_layers = 17
    num_dims   = 3
    
    X = kayak.Inputs(npr.randn(10, num_dims))
    W1 = kayak.Parameter(npr.randn(num_dims, num_dims))
    W2 = kayak.Parameter(npr.randn(num_dims, num_dims))

    Z = kayak.MatMult(X, W1)

    for jj in xrange(num_layers):
        Z = kayak.SoftReLU(kayak.MatAdd(kayak.MatMult(Z, W2),
                                        kayak.MatMult(Z, W2)))

    out = kayak.MatSum(Z)
    assert kayak.util.checkgrad(W1, out) < 1e-4
Beispiel #12
0
def test_graph_chain():
    npr.seed(1)

    N  = 10
    D  = 5
    H1 = 6
    H2 = 7

    X  = kayak.Inputs(npr.randn(N,D))
    W1 = kayak.Parameter(npr.randn(D,H1))
    W2 = kayak.Parameter(npr.randn(H1,H2))
    W3 = kayak.Parameter(npr.randn(H2,1))

    U1 = kayak.SoftReLU(kayak.MatMult(X, W1))
    U2 = kayak.SoftReLU(kayak.MatMult(U1, W2))
    U3 = kayak.SoftReLU(kayak.MatMult(U2, W3))
    
    out = kayak.MatSum(U3)

    out.value
    assert kayak.util.checkgrad(W1, out) < MAX_GRAD_DIFF
    assert kayak.util.checkgrad(W2, out) < MAX_GRAD_DIFF
    assert kayak.util.checkgrad(W3, out) < MAX_GRAD_DIFF
Beispiel #13
0
def test_graph_dag():
    npr.seed(3)

    num_layers = 7
    num_dims   = 5
    
    for ii in xrange(NUM_TRIALS):
        probs = npr.rand()

        X = kayak.Inputs(npr.randn(25,num_dims))

        wts    = []
        layers = []
        for jj in xrange(num_layers):

            U = kayak.Constant(np.zeros((25,num_dims)))

            if npr.rand() < probs:
                W = kayak.Parameter(0.1*npr.randn(num_dims, num_dims))
                wts.append(W)
                U = kayak.MatAdd( U, kayak.SoftReLU(kayak.MatMult(X, W)) )

            for kk in xrange(jj):
                if npr.rand() < probs:
                    W = kayak.Parameter(0.1*npr.randn(num_dims, num_dims))
                    wts.append(W)
                    U = kayak.MatAdd( U, kayak.SoftReLU(kayak.MatMult(layers[kk], W)) )
            
            layers.append(U)
            
        out = kayak.MatSum(layers[-1])

        out.value
        for jj, wt in enumerate(wts):
            diff = kayak.util.checkgrad(wt, out, 1e-4)
            print diff
            assert diff < 1e-4
Beispiel #14
0
def test_data_update_clears_value_cache():
    X = kayak.Inputs(np.array([[1, 2, 3], [2, 3, 4], [3, 4, 5]]))
    assert np.all(X.value == [[1, 2, 3], [2, 3, 4], [3, 4, 5]])
    X.data = [1,2]
    assert X._value is None
    assert np.all(X.value == [1, 2])
def kayak_mlp(X, y):
    """
    Kayak implementation of a mlp with relu hidden layers and dropout
    """
    # Create a batcher object.
    batcher = kayak.Batcher(batch_size, X.shape[0])

    # count number of rows and columns
    num_examples, num_features = np.shape(X)

    X = kayak.Inputs(X, batcher)
    T = kayak.Targets(y, batcher)

    # ----------------------------- first hidden layer -------------------------------

    # set up weights for our input layer
    # use the same scheme as our numpy mlp
    input_range = 1.0 / num_features**(1 / 2)
    weights_1 = kayak.Parameter(0.1 * np.random.randn(X.shape[1], layer1_size))
    bias_1 = kayak.Parameter(0.1 * np.random.randn(1, layer1_size))

    # linear combination of weights and inputs
    hidden_1_input = kayak.ElemAdd(kayak.MatMult(X, weights_1), bias_1)

    # apply activation function to hidden layer
    hidden_1_activation = kayak.HardReLU(hidden_1_input)

    # apply a dropout for regularization
    hidden_1_out = kayak.Dropout(hidden_1_activation,
                                 layer1_dropout,
                                 batcher=batcher)

    # ----------------------------- output layer -----------------------------------

    weights_out = kayak.Parameter(0.1 * np.random.randn(layer1_size, 9))
    bias_out = kayak.Parameter(0.1 * np.random.randn(1, 9))

    # linear combination of layer2 output and output weights
    out = kayak.ElemAdd(kayak.MatMult(hidden_1_out, weights_out), bias_out)

    # apply activation function to output
    yhat = kayak.SoftMax(out)

    # ----------------------------- loss function -----------------------------------

    loss = kayak.MatAdd(kayak.MatSum(kayak.L2Loss(yhat, T)),
                        kayak.L2Norm(weights_1, layer1_l2))

    # Use momentum for the gradient-based optimization.
    mom_grad_W1 = np.zeros(weights_1.shape)
    mom_grad_W2 = np.zeros(weights_out.shape)

    # Loop over epochs.
    plot_loss = np.ones((iterations, 2))
    for epoch in xrange(iterations):

        # Track the total loss.
        total_loss = 0.0

        for batch in batcher:
            # Compute the loss of this minibatch by asking the Kayak
            # object for its value and giving it reset=True.
            total_loss += loss.value

            # Now ask the loss for its gradient in terms of the
            # weights and the biases -- the two things we're trying to
            # learn here.
            grad_W1 = loss.grad(weights_1)
            grad_B1 = loss.grad(bias_1)
            grad_W2 = loss.grad(weights_out)
            grad_B2 = loss.grad(bias_out)

            # Use momentum on the weight gradients.
            mom_grad_W1 = momentum * mom_grad_W1 + (1.0 - momentum) * grad_W1
            mom_grad_W2 = momentum * mom_grad_W2 + (1.0 - momentum) * grad_W2

            # Now make the actual parameter updates.
            weights_1.value -= learn_rate * mom_grad_W1
            bias_1.value -= learn_rate * grad_B1
            weights_out.value -= learn_rate * mom_grad_W2
            bias_out.value -= learn_rate * grad_B2

        # save values into table to print learning curve at the end of trianing
        plot_loss[epoch, 0] = epoch
        plot_loss[epoch, 1] = total_loss
        print epoch, total_loss

    #pyplot.plot(plot_loss[:,0], plot_loss[:,1], linewidth=2.0)
    #pyplot.show()

    def compute_predictions(x):
        X.data = x
        batcher.test_mode()
        return yhat.value

    return compute_predictions
Beispiel #16
0
N = 10000
D = 5
P = 1
learn = 0.00001
batch_size = 500

# Random inputs.
X = npr.randn(N, D)
true_W = npr.randn(D, P)
lam = np.exp(np.dot(X, true_W))
Y = npr.poisson(lam)

kyk_batcher = kayak.Batcher(batch_size, N)

# Build network.
kyk_inputs = kayak.Inputs(X, kyk_batcher)

# Labels.
kyk_targets = kayak.Targets(Y, kyk_batcher)

# Weights.
W = 0.01 * npr.randn(D, P)
kyk_W = kayak.Parameter(W)

# Linear layer.
kyk_activation = kayak.MatMult(kyk_inputs, kyk_W)

# Exponential inverse-link function.
kyk_lam = kayak.ElemExp(kyk_activation)

# Poisson negative log likelihood.
Beispiel #17
0
def train(inputs, targets):
    # Create a batcher object.
    batcher = kayak.Batcher(batch_size, inputs.shape[0])

    # Inputs and targets need access to the batcher.
    X = kayak.Inputs(inputs, batcher)
    T = kayak.Targets(targets, batcher)

    # First-layer weights and biases, with random initializations.
    W1 = kayak.Parameter(0.1 * npr.randn(inputs.shape[1], layer1_sz))
    B1 = kayak.Parameter(0.1 * npr.randn(1, layer1_sz))

    # First hidden layer: ReLU + Dropout
    H1 = kayak.Dropout(kayak.HardReLU(kayak.ElemAdd(kayak.MatMult(X, W1), B1)),
                       layer1_dropout,
                       batcher=batcher)

    # Second-layer weights and biases, with random initializations.
    W2 = kayak.Parameter(0.1 * npr.randn(layer1_sz, layer2_sz))
    B2 = kayak.Parameter(0.1 * npr.randn(1, layer2_sz))

    # Second hidden layer: ReLU + Dropout
    H2 = kayak.Dropout(kayak.HardReLU(kayak.ElemAdd(kayak.MatMult(H1, W2),
                                                    B2)),
                       layer2_dropout,
                       batcher=batcher)

    # Output layer weights and biases, with random initializations.
    W3 = kayak.Parameter(0.1 * npr.randn(layer2_sz, 10))
    B3 = kayak.Parameter(0.1 * npr.randn(1, 10))

    # Output layer.
    Y = kayak.LogSoftMax(kayak.ElemAdd(kayak.MatMult(H2, W3), B3))

    # The training loss is negative multinomial log likelihood.
    loss = kayak.MatSum(kayak.LogMultinomialLoss(Y, T))

    # Use momentum for the gradient-based optimization.
    mom_grad_W1 = np.zeros(W1.shape)
    mom_grad_W2 = np.zeros(W2.shape)
    mom_grad_W3 = np.zeros(W3.shape)

    # Loop over epochs.
    for epoch in xrange(10):

        # Track the total loss.
        total_loss = 0.0

        # Loop over batches -- using batcher as iterator.
        for batch in batcher:
            # Compute the loss of this minibatch by asking the Kayak
            # object for its value and giving it reset=True.
            total_loss += loss.value

            # Now ask the loss for its gradient in terms of the
            # weights and the biases -- the two things we're trying to
            # learn here.
            grad_W1 = loss.grad(W1)
            grad_B1 = loss.grad(B1)
            grad_W2 = loss.grad(W2)
            grad_B2 = loss.grad(B2)
            grad_W3 = loss.grad(W3)
            grad_B3 = loss.grad(B3)

            # Use momentum on the weight gradients.
            mom_grad_W1 = momentum * mom_grad_W1 + (1.0 - momentum) * grad_W1
            mom_grad_W2 = momentum * mom_grad_W2 + (1.0 - momentum) * grad_W2
            mom_grad_W3 = momentum * mom_grad_W3 + (1.0 - momentum) * grad_W3

            # Now make the actual parameter updates.
            W1.value -= learn_rate * mom_grad_W1
            B1.value -= learn_rate * grad_B1
            W2.value -= learn_rate * mom_grad_W2
            B2.value -= learn_rate * grad_B2
            W3.value -= learn_rate * mom_grad_W3
            B3.value -= learn_rate * grad_B3

        print epoch, total_loss

    # After we've trained, we return a sugary little function handle
    # that makes things easy.  Basically, what we're doing here is
    # handing the output object (not the loss!) a dictionary where the
    # key is the Kayak input object 'X' (that is the features being
    # used here for logistic regression) and the value in that
    # dictionary is being determined by the argument to the lambda
    # expression.  The point here is that we wind up with a function
    # handle the can be called with a numpy object and it produces the
    # target values for novel data, using the parameters we just learned.

    def compute_predictions(x):
        X.data = x
        batcher.test_mode()
        return Y.value

    return compute_predictions
Beispiel #18
0
def train(inputs, targets, batch_size, learn_rate, momentum, l1_weight,
          l2_weight, dropout, improvement_thresh):

    # Create a batcher object.
    batcher = kayak.Batcher(batch_size, inputs.shape[0])

    # Inputs and targets need access to the batcher.
    X = kayak.Inputs(inputs, batcher)
    T = kayak.Targets(targets, batcher)

    # Put some dropout regularization on the inputs
    H = kayak.Dropout(X, dropout)

    # Weights and biases, with random initializations.
    W = kayak.Parameter(0.1 * npr.randn(inputs.shape[1], 10))
    B = kayak.Parameter(0.1 * npr.randn(1, 10))

    # Nothing fancy here: inputs times weights, plus bias, then softmax.
    Y = kayak.LogSoftMax(kayak.ElemAdd(kayak.MatMult(H, W), B))

    # The training loss is negative multinomial log likelihood.
    loss = kayak.MatAdd(kayak.MatSum(kayak.LogMultinomialLoss(Y, T)),
                        kayak.L2Norm(W, l2_weight), kayak.L1Norm(W, l1_weight))

    # Use momentum for the gradient-based optimization.
    mom_grad_W = np.zeros(W.shape)

    best_loss = np.inf
    best_epoch = -1

    # Loop over epochs.
    for epoch in range(100):

        # Track the total loss.
        total_loss = 0.0

        # Loop over batches -- using batcher as iterator.
        for batch in batcher:

            # Draw new random dropouts
            H.draw_new_mask()

            # Compute the loss of this minibatch by asking the Kayak
            # object for its value and giving it reset=True.
            total_loss += loss.value

            # Now ask the loss for its gradient in terms of the
            # weights and the biases -- the two things we're trying to
            # learn here.
            grad_W = loss.grad(W)
            grad_B = loss.grad(B)

            # Use momentum on the weight gradient.
            mom_grad_W *= momentum
            mom_grad_W += (1.0 - momentum) * grad_W

            # Now make the actual parameter updates.
            W.value -= learn_rate * mom_grad_W
            B.value -= learn_rate * grad_B

        print("Epoch: %d, total loss: %f" % (epoch, total_loss))

        if not np.isfinite(total_loss):
            print("Training diverged. Returning constraint violation.")
            break

        if total_loss < best_loss:
            best_epoch = epoch
        else:
            if (epoch - best_epoch) > improvement_thresh:
                print("Has been %d epochs without improvement. Aborting." %
                      (epoch - best_epoch))
                break

    # After we've trained, we return a sugary little function handle
    # that makes things easy.  Basically, what we're doing here is
    # simply replacing the inputs in the above defined graph and then
    # running through it to produce the outputs.
    # The point here is that we wind up with a function
    # handle the can be called with a numpy object and it produces the
    # target values for novel data, using the parameters we just learned.
    def predict(x):
        X.value = x
        H.reinstate_units()
        return Y.value

    return predict
Beispiel #19
0
def train(inputs, targets, batch_size, learn_rate, momentum, l1_weight, l2_weight, dropout):

    # Create a batcher object.
    batcher = kayak.Batcher(batch_size, inputs.shape[0])

    # Inputs and targets need access to the batcher.
    X    = kayak.Inputs(inputs, batcher)
    T    = kayak.Targets(targets, batcher)

    # Weights and biases, with random initializations.
    W    = kayak.Parameter( 0.1*npr.randn( inputs.shape[1], 10 ))
    B    = kayak.Parameter( 0.1*npr.randn(1,10) )

    # Nothing fancy here: inputs times weights, plus bias, then softmax.
    dropout_layer = kayak.Dropout(X, dropout, batcher=batcher)
    Y    = kayak.LogSoftMax( kayak.ElemAdd( kayak.MatMult(dropout_layer, W), B ) )

    # The training loss is negative multinomial log likelihood.
    loss = kayak.MatAdd(kayak.MatSum(kayak.LogMultinomialLoss(Y, T)),
                        kayak.L2Norm(W, l2_weight),
                        kayak.L1Norm(W, l1_weight))

    # Use momentum for the gradient-based optimization.
    mom_grad_W = np.zeros(W.shape)

    # Loop over epochs.
    for epoch in xrange(10):

        # Track the total loss and the overall gradient.
        total_loss   = 0.0
        total_grad_W = np.zeros(W.shape)

        # Loop over batches -- using batcher as iterator.
        for batch in batcher:
            # Compute the loss of this minibatch by asking the Kayak
            # object for its value and giving it reset=True.
            total_loss += loss.value

            # Now ask the loss for its gradient in terms of the
            # weights and the biases -- the two things we're trying to
            # learn here.
            grad_W = loss.grad(W)
            grad_B = loss.grad(B)
            
            # Use momentum on the weight gradient.
            mom_grad_W = momentum*mom_grad_W + (1.0-momentum)*grad_W

            # Now make the actual parameter updates.
            W.value -= learn_rate * mom_grad_W
            B.value -= learn_rate * grad_B

            # Keep track of the gradient to see if we're converging.
            total_grad_W += grad_W

        #print epoch, total_loss, np.sum(total_grad_W**2)

    # After we've trained, we return a sugary little function handle
    # that makes things easy.  Basically, what we're doing here is
    # handing the output object (not the loss!) a dictionary where the
    # key is the Kayak input object 'X' (that is the features being
    # used here for logistic regression) and the value in that
    # dictionary is being determined by the argument to the lambda
    # expression.  The point here is that we wind up with a function
    # handle the can be called with a numpy object and it produces the
    # target values for novel data, using the parameters we just learned.
    
    def compute_predictions(x):
        X.data = x
        batcher.test_mode()
        return Y.value

    return compute_predictions