def kepprfphot(infile,outroot,columns,rows,fluxes,border,background,focus,prfdir,ranges, tolerance,ftolerance,qualflags,plt,clobber,verbose,logfile,status,cmdLine=False): # input arguments status = 0 seterr(all="ignore") # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPPRFPHOT -- ' call += 'infile='+infile+' ' call += 'outroot='+outroot+' ' call += 'columns='+columns+' ' call += 'rows='+rows+' ' call += 'fluxes='+fluxes+' ' call += 'border='+str(border)+' ' bground = 'n' if (background): bground = 'y' call += 'background='+bground+' ' focs = 'n' if (focus): focs = 'y' call += 'focus='+focs+' ' call += 'prfdir='+prfdir+' ' call += 'ranges='+ranges+' ' call += 'xtol='+str(tolerance)+' ' call += 'ftol='+str(ftolerance)+' ' quality = 'n' if (qualflags): quality = 'y' call += 'qualflags='+quality+' ' plotit = 'n' if (plt): plotit = 'y' call += 'plot='+plotit+' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # test log file logfile = kepmsg.test(logfile) # start time kepmsg.clock('KEPPRFPHOT started at',logfile,verbose) # number of sources if status == 0: work = fluxes.strip() work = re.sub(' ',',',work) work = re.sub(';',',',work) nsrc = len(work.split(',')) # construct inital guess vector for fit if status == 0: guess = [] try: f = fluxes.strip().split(',') x = columns.strip().split(',') y = rows.strip().split(',') for i in xrange(len(f)): f[i] = float(f[i]) except: f = fluxes x = columns y = rows nsrc = len(f) for i in xrange(nsrc): try: guess.append(float(f[i])) except: message = 'ERROR -- KEPPRF: Fluxes must be floating point numbers' status = kepmsg.err(logfile,message,verbose) if status == 0: if len(x) != nsrc or len(y) != nsrc: message = 'ERROR -- KEPFIT:FITMULTIPRF: Guesses for rows, columns and ' message += 'fluxes must have the same number of sources' status = kepmsg.err(logfile,message,verbose) if status == 0: for i in xrange(nsrc): try: guess.append(float(x[i])) except: message = 'ERROR -- KEPPRF: Columns must be floating point numbers' status = kepmsg.err(logfile,message,verbose) if status == 0: for i in xrange(nsrc): try: guess.append(float(y[i])) except: message = 'ERROR -- KEPPRF: Rows must be floating point numbers' status = kepmsg.err(logfile,message,verbose) if status == 0 and background: if border == 0: guess.append(0.0) else: for i in range((border+1)*2): guess.append(0.0) if status == 0 and focus: guess.append(1.0); guess.append(1.0); guess.append(0.0) # clobber output file for i in range(nsrc): outfile = '%s_%d.fits' % (outroot, i) if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPPRFPHOT: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile,message,verbose) # open TPF FITS file if status == 0: try: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, barytime, status = \ kepio.readTPF(infile,'TIME',logfile,verbose) except: message = 'ERROR -- KEPPRFPHOT: is %s a Target Pixel File? ' % infile status = kepmsg.err(logfile,message,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, tcorr, status = \ kepio.readTPF(infile,'TIMECORR',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, cadno, status = \ kepio.readTPF(infile,'CADENCENO',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, fluxpixels, status = \ kepio.readTPF(infile,'FLUX',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, errpixels, status = \ kepio.readTPF(infile,'FLUX_ERR',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, poscorr1, status = \ kepio.readTPF(infile,'POS_CORR1',logfile,verbose) if status != 0: poscorr1 = numpy.zeros((len(barytime)),dtype='float32') poscorr1[:] = numpy.nan status = 0 if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, poscorr2, status = \ kepio.readTPF(infile,'POS_CORR2',logfile,verbose) if status != 0: poscorr2 = numpy.zeros((len(barytime)),dtype='float32') poscorr2[:] = numpy.nan status = 0 if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, qual, status = \ kepio.readTPF(infile,'QUALITY',logfile,verbose) if status == 0: struct, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(struct,infile,logfile,verbose,status) # input file keywords and mask map if status == 0: cards0 = struct[0].header.cards cards1 = struct[1].header.cards cards2 = struct[2].header.cards maskmap = copy(struct[2].data) npix = numpy.size(numpy.nonzero(maskmap)[0]) # print target data if status == 0 and verbose: print '' print ' KepID: %s' % kepid print ' RA (J2000): %s' % ra print 'Dec (J2000): %s' % dec print ' KepMag: %s' % kepmag print ' SkyGroup: %2s' % skygroup print ' Season: %2s' % str(season) print ' Channel: %2s' % channel print ' Module: %2s' % module print ' Output: %1s' % output print '' # determine suitable PRF calibration file if status == 0: if int(module) < 10: prefix = 'kplr0' else: prefix = 'kplr' prfglob = prfdir + '/' + prefix + str(module) + '.' + str(output) + '*' + '_prf.fits' try: prffile = glob.glob(prfglob)[0] except: message = 'ERROR -- KEPPRFPHOT: No PRF file found in ' + prfdir status = kepmsg.err(logfile,message,verbose) # read PRF images if status == 0: prfn = [0,0,0,0,0] crpix1p = numpy.zeros((5),dtype='float32') crpix2p = numpy.zeros((5),dtype='float32') crval1p = numpy.zeros((5),dtype='float32') crval2p = numpy.zeros((5),dtype='float32') cdelt1p = numpy.zeros((5),dtype='float32') cdelt2p = numpy.zeros((5),dtype='float32') for i in range(5): prfn[i], crpix1p[i], crpix2p[i], crval1p[i], crval2p[i], cdelt1p[i], cdelt2p[i], status \ = kepio.readPRFimage(prffile,i+1,logfile,verbose) PRFx = arange(0.5,shape(prfn[0])[1]+0.5) PRFy = arange(0.5,shape(prfn[0])[0]+0.5) PRFx = (PRFx - size(PRFx) / 2) * cdelt1p[0] PRFy = (PRFy - size(PRFy) / 2) * cdelt2p[0] # interpolate the calibrated PRF shape to the target position if status == 0: prf = zeros(shape(prfn[0]),dtype='float32') prfWeight = zeros((5),dtype='float32') for i in xrange(5): prfWeight[i] = sqrt((column - crval1p[i])**2 + (row - crval2p[i])**2) if prfWeight[i] == 0.0: prfWeight[i] = 1.0e6 prf = prf + prfn[i] / prfWeight[i] prf = prf / nansum(prf) prf = prf / cdelt1p[0] / cdelt2p[0] # location of the data image centered on the PRF image (in PRF pixel units) if status == 0: prfDimY = ydim / cdelt1p[0] prfDimX = xdim / cdelt2p[0] PRFy0 = (shape(prf)[0] - prfDimY) / 2 PRFx0 = (shape(prf)[1] - prfDimX) / 2 # construct input pixel image if status == 0: DATx = arange(column,column+xdim) DATy = arange(row,row+ydim) # interpolation function over the PRF if status == 0: splineInterpolation = scipy.interpolate.RectBivariateSpline(PRFx,PRFy,prf,kx=3,ky=3) # construct mesh for background model if status == 0: bx = numpy.arange(1.,float(xdim+1)) by = numpy.arange(1.,float(ydim+1)) xx, yy = numpy.meshgrid(numpy.linspace(bx.min(), bx.max(), xdim), numpy.linspace(by.min(), by.max(), ydim)) # Get time ranges for new photometry, flag good data if status == 0: barytime += bjdref tstart,tstop,status = kepio.timeranges(ranges,logfile,verbose) incl = numpy.zeros((len(barytime)),dtype='int') for rownum in xrange(len(barytime)): for winnum in xrange(len(tstart)): if barytime[rownum] >= tstart[winnum] and \ barytime[rownum] <= tstop[winnum] and \ (qual[rownum] == 0 or qualflags) and \ numpy.isfinite(barytime[rownum]) and \ numpy.isfinite(numpy.nansum(fluxpixels[rownum,:])): incl[rownum] = 1 if not numpy.in1d(1,incl): message = 'ERROR -- KEPPRFPHOT: No legal data within the range ' + ranges status = kepmsg.err(logfile,message,verbose) # filter out bad data if status == 0: n = 0 nincl = (incl == 1).sum() tim = zeros((nincl),'float64') tco = zeros((nincl),'float32') cad = zeros((nincl),'float32') flu = zeros((nincl,len(fluxpixels[0])),'float32') fer = zeros((nincl,len(fluxpixels[0])),'float32') pc1 = zeros((nincl),'float32') pc2 = zeros((nincl),'float32') qua = zeros((nincl),'float32') for rownum in xrange(len(barytime)): if incl[rownum] == 1: tim[n] = barytime[rownum] tco[n] = tcorr[rownum] cad[n] = cadno[rownum] flu[n,:] = fluxpixels[rownum] fer[n,:] = errpixels[rownum] pc1[n] = poscorr1[rownum] pc2[n] = poscorr2[rownum] qua[n] = qual[rownum] n += 1 barytime = tim * 1.0 tcorr = tco * 1.0 cadno = cad * 1.0 fluxpixels = flu * 1.0 errpixels = fer * 1.0 poscorr1 = pc1 * 1.0 poscorr2 = pc2 * 1.0 qual = qua * 1.0 # initialize plot arrays if status == 0: t = numpy.array([],dtype='float64') fl = []; dx = []; dy = []; bg = []; fx = []; fy = []; fa = []; rs = []; ch = [] for i in range(nsrc): fl.append(numpy.array([],dtype='float32')) dx.append(numpy.array([],dtype='float32')) dy.append(numpy.array([],dtype='float32')) # Preparing fit data message if status == 0: progress = numpy.arange(nincl) if verbose: txt = 'Preparing...' sys.stdout.write(txt) sys.stdout.flush() # single processor version if status == 0:# and not cmdLine: oldtime = 0.0 for rownum in xrange(numpy.min([80,len(barytime)])): try: if barytime[rownum] - oldtime > 0.5: ftol = 1.0e-10; xtol = 1.0e-10 except: pass args = (fluxpixels[rownum,:],errpixels[rownum,:],DATx,DATy,nsrc,border,xx,yy,PRFx,PRFy,splineInterpolation, guess,ftol,xtol,focus,background,rownum,80,float(x[i]),float(y[i]),False) guess = PRFfits(args) ftol = ftolerance; xtol = tolerance; oldtime = barytime[rownum] # Fit the time series: multi-processing if status == 0 and cmdLine: anslist = [] cad1 = 0; cad2 = 50 for i in range(int(nincl/50) + 1): try: fluxp = fluxpixels[cad1:cad2,:] errp = errpixels[cad1:cad2,:] progress = numpy.arange(cad1,cad2) except: fluxp = fluxpixels[cad1:nincl,:] errp = errpixels[cad1:nincl,:] progress = numpy.arange(cad1,nincl) try: args = itertools.izip(fluxp,errp,itertools.repeat(DATx),itertools.repeat(DATy), itertools.repeat(nsrc),itertools.repeat(border),itertools.repeat(xx), itertools.repeat(yy),itertools.repeat(PRFx),itertools.repeat(PRFy), itertools.repeat(splineInterpolation),itertools.repeat(guess), itertools.repeat(ftolerance),itertools.repeat(tolerance), itertools.repeat(focus),itertools.repeat(background),progress, itertools.repeat(numpy.arange(cad1,nincl)[-1]), itertools.repeat(float(x[0])), itertools.repeat(float(y[0])),itertools.repeat(True)) p = multiprocessing.Pool() model = [0.0] model = p.imap(PRFfits,args,chunksize=1) p.close() p.join() cad1 += 50; cad2 += 50 ans = array([array(item) for item in zip(*model)]) try: anslist = numpy.concatenate((anslist,ans.transpose()),axis=0) except: anslist = ans.transpose() guess = anslist[-1] ans = anslist.transpose() except: pass # single processor version if status == 0 and not cmdLine: oldtime = 0.0; ans = [] # for rownum in xrange(1,10): for rownum in xrange(nincl): proctime = time.time() try: if barytime[rownum] - oldtime > 0.5: ftol = 1.0e-10; xtol = 1.0e-10 except: pass args = (fluxpixels[rownum,:],errpixels[rownum,:],DATx,DATy,nsrc,border,xx,yy,PRFx,PRFy,splineInterpolation, guess,ftol,xtol,focus,background,rownum,nincl,float(x[0]),float(y[0]),True) guess = PRFfits(args) ans.append(guess) ftol = ftolerance; xtol = tolerance; oldtime = barytime[rownum] ans = array(ans).transpose() # unpack the best fit parameters if status == 0: flux = []; OBJx = []; OBJy = [] na = shape(ans)[1] for i in range(nsrc): flux.append(ans[i,:]) OBJx.append(ans[nsrc+i,:]) OBJy.append(ans[nsrc*2+i,:]) try: bterms = border + 1 if bterms == 1: b = ans[nsrc*3,:] else: b = array([]) bkg = [] for i in range(na): bcoeff = array([ans[nsrc*3:nsrc*3+bterms,i],ans[nsrc*3+bterms:nsrc*3+bterms*2,i]]) bkg.append(kepfunc.polyval2d(xx,yy,bcoeff)) b = numpy.append(b,nanmean(bkg[-1].reshape(bkg[-1].size))) except: b = zeros((na)) if focus: wx = ans[-3,:]; wy = ans[-2,:]; angle = ans[-1,:] else: wx = ones((na)); wy = ones((na)); angle = zeros((na)) # constuct model PRF in detector coordinates if status == 0: residual = []; chi2 = [] for i in range(na): f = empty((nsrc)) x = empty((nsrc)) y = empty((nsrc)) for j in range(nsrc): f[j] = flux[j][i] x[j] = OBJx[j][i] y[j] = OBJy[j][i] PRFfit = kepfunc.PRF2DET(f,x,y,DATx,DATy,wx[i],wy[i],angle[i],splineInterpolation) if background and bterms == 1: PRFfit = PRFfit + b[i] if background and bterms > 1: PRFfit = PRFfit + bkg[i] # calculate residual of DATA - FIT xdim = shape(xx)[1] ydim = shape(yy)[0] DATimg = numpy.empty((ydim,xdim)) n = 0 for k in range(ydim): for j in range(xdim): DATimg[k,j] = fluxpixels[i,n] n += 1 PRFres = DATimg - PRFfit residual.append(numpy.nansum(PRFres) / npix) # calculate the sum squared difference between data and model chi2.append(abs(numpy.nansum(numpy.square(DATimg - PRFfit) / PRFfit))) # load the output arrays if status == 0: otime = barytime - bjdref otimecorr = tcorr ocadenceno = cadno opos_corr1 = poscorr1 opos_corr2 = poscorr2 oquality = qual opsf_bkg = b opsf_focus1 = wx opsf_focus2 = wy opsf_rotation = angle opsf_residual = residual opsf_chi2 = chi2 opsf_flux_err = numpy.empty((na)); opsf_flux_err.fill(numpy.nan) opsf_centr1_err = numpy.empty((na)); opsf_centr1_err.fill(numpy.nan) opsf_centr2_err = numpy.empty((na)); opsf_centr2_err.fill(numpy.nan) opsf_bkg_err = numpy.empty((na)); opsf_bkg_err.fill(numpy.nan) opsf_flux = [] opsf_centr1 = [] opsf_centr2 = [] for i in range(nsrc): opsf_flux.append(flux[i]) opsf_centr1.append(OBJx[i]) opsf_centr2.append(OBJy[i]) # load the plot arrays if status == 0: t = barytime for i in range(nsrc): fl[i] = flux[i] dx[i] = OBJx[i] dy[i] = OBJy[i] bg = b fx = wx fy = wy fa = angle rs = residual ch = chi2 # construct output primary extension if status == 0: for j in range(nsrc): hdu0 = pyfits.PrimaryHDU() for i in range(len(cards0)): if cards0[i].key not in hdu0.header.keys(): hdu0.header.update(cards0[i].key, cards0[i].value, cards0[i].comment) else: hdu0.header.cards[cards0[i].key].comment = cards0[i].comment status = kepkey.history(call,hdu0,outfile,logfile,verbose) outstr = HDUList(hdu0) # construct output light curve extension col1 = Column(name='TIME',format='D',unit='BJD - 2454833',array=otime) col2 = Column(name='TIMECORR',format='E',unit='d',array=otimecorr) col3 = Column(name='CADENCENO',format='J',array=ocadenceno) col4 = Column(name='PSF_FLUX',format='E',unit='e-/s',array=opsf_flux[j]) col5 = Column(name='PSF_FLUX_ERR',format='E',unit='e-/s',array=opsf_flux_err) col6 = Column(name='PSF_BKG',format='E',unit='e-/s/pix',array=opsf_bkg) col7 = Column(name='PSF_BKG_ERR',format='E',unit='e-/s',array=opsf_bkg_err) col8 = Column(name='PSF_CENTR1',format='E',unit='pixel',array=opsf_centr1[j]) col9 = Column(name='PSF_CENTR1_ERR',format='E',unit='pixel',array=opsf_centr1_err) col10 = Column(name='PSF_CENTR2',format='E',unit='pixel',array=opsf_centr2[j]) col11 = Column(name='PSF_CENTR2_ERR',format='E',unit='pixel',array=opsf_centr2_err) col12 = Column(name='PSF_FOCUS1',format='E',array=opsf_focus1) col13 = Column(name='PSF_FOCUS2',format='E',array=opsf_focus2) col14 = Column(name='PSF_ROTATION',format='E',unit='deg',array=opsf_rotation) col15 = Column(name='PSF_RESIDUAL',format='E',unit='e-/s',array=opsf_residual) col16 = Column(name='PSF_CHI2',format='E',array=opsf_chi2) col17 = Column(name='POS_CORR1',format='E',unit='pixel',array=opos_corr1) col18 = Column(name='POS_CORR2',format='E',unit='pixel',array=opos_corr2) col19 = Column(name='SAP_QUALITY',format='J',array=oquality) cols = ColDefs([col1,col2,col3,col4,col5,col6,col7,col8,col9,col10,col11, col12,col13,col14,col15,col16,col17,col18,col19]) hdu1 = new_table(cols) for i in range(len(cards1)): if (cards1[i].key not in hdu1.header.keys() and cards1[i].key[:4] not in ['TTYP','TFOR','TUNI','TDIS','TDIM','WCAX','1CTY', '2CTY','1CRP','2CRP','1CRV','2CRV','1CUN','2CUN', '1CDE','2CDE','1CTY','2CTY','1CDL','2CDL','11PC', '12PC','21PC','22PC']): hdu1.header.update(cards1[i].key, cards1[i].value, cards1[i].comment) outstr.append(hdu1) # construct output mask bitmap extension hdu2 = ImageHDU(maskmap) for i in range(len(cards2)): if cards2[i].key not in hdu2.header.keys(): hdu2.header.update(cards2[i].key, cards2[i].value, cards2[i].comment) else: hdu2.header.cards[cards2[i].key].comment = cards2[i].comment outstr.append(hdu2) # write output file outstr.writeto(outroot + '_' + str(j) + '.fits',checksum=True) # close input structure status = kepio.closefits(struct,logfile,verbose) # clean up x-axis unit if status == 0: barytime0 = float(int(t[0] / 100) * 100.0) t -= barytime0 t = numpy.insert(t,[0],[t[0]]) t = numpy.append(t,[t[-1]]) xlab = 'BJD $-$ %d' % barytime0 # plot the light curves if status == 0: bg = numpy.insert(bg,[0],[-1.0e10]) bg = numpy.append(bg,-1.0e10) fx = numpy.insert(fx,[0],[fx[0]]) fx = numpy.append(fx,fx[-1]) fy = numpy.insert(fy,[0],[fy[0]]) fy = numpy.append(fy,fy[-1]) fa = numpy.insert(fa,[0],[fa[0]]) fa = numpy.append(fa,fa[-1]) rs = numpy.insert(rs,[0],[-1.0e10]) rs = numpy.append(rs,-1.0e10) ch = numpy.insert(ch,[0],[-1.0e10]) ch = numpy.append(ch,-1.0e10) for i in range(nsrc): # clean up y-axis units nrm = math.ceil(math.log10(numpy.nanmax(fl[i]))) - 1.0 fl[i] /= 10**nrm if nrm == 0: ylab1 = 'e$^-$ s$^{-1}$' else: ylab1 = '10$^{%d}$ e$^-$ s$^{-1}$' % nrm xx = copy(dx[i]) yy = copy(dy[i]) ylab2 = 'offset (pixels)' # data limits xmin = numpy.nanmin(t) xmax = numpy.nanmax(t) ymin1 = numpy.nanmin(fl[i]) ymax1 = numpy.nanmax(fl[i]) ymin2 = numpy.nanmin(xx) ymax2 = numpy.nanmax(xx) ymin3 = numpy.nanmin(yy) ymax3 = numpy.nanmax(yy) ymin4 = numpy.nanmin(bg[1:-1]) ymax4 = numpy.nanmax(bg[1:-1]) ymin5 = numpy.nanmin([numpy.nanmin(fx),numpy.nanmin(fy)]) ymax5 = numpy.nanmax([numpy.nanmax(fx),numpy.nanmax(fy)]) ymin6 = numpy.nanmin(fa[1:-1]) ymax6 = numpy.nanmax(fa[1:-1]) ymin7 = numpy.nanmin(rs[1:-1]) ymax7 = numpy.nanmax(rs[1:-1]) ymin8 = numpy.nanmin(ch[1:-1]) ymax8 = numpy.nanmax(ch[1:-1]) xr = xmax - xmin yr1 = ymax1 - ymin1 yr2 = ymax2 - ymin2 yr3 = ymax3 - ymin3 yr4 = ymax4 - ymin4 yr5 = ymax5 - ymin5 yr6 = ymax6 - ymin6 yr7 = ymax7 - ymin7 yr8 = ymax8 - ymin8 fl[i] = numpy.insert(fl[i],[0],[0.0]) fl[i] = numpy.append(fl[i],0.0) # plot style try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': 24, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': 12, 'ytick.labelsize': 12} pylab.rcParams.update(params) except: pass # define size of plot on monitor screen pylab.figure(str(i+1) + ' ' + str(time.asctime(time.localtime())),figsize=[12,16]) # delete any fossil plots in the matplotlib window pylab.clf() # position first axes inside the plotting window ax = pylab.axes([0.11,0.523,0.78,0.45]) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) # no x-label pylab.setp(pylab.gca(),xticklabels=[]) # plot flux vs time ltime = numpy.array([],dtype='float64') ldata = numpy.array([],dtype='float32') dt = 0 work1 = 2.0 * cadence / 86400 for j in range(1,len(t)-1): dt = t[j] - t[j-1] if dt < work1: ltime = numpy.append(ltime,t[j]) ldata = numpy.append(ldata,fl[i][j]) else: pylab.plot(ltime,ldata,color='#0000ff',linestyle='-',linewidth=1.0) ltime = numpy.array([],dtype='float64') ldata = numpy.array([],dtype='float32') pylab.plot(ltime,ldata,color='#0000ff',linestyle='-',linewidth=1.0) # plot the fill color below data time series, with no data gaps pylab.fill(t,fl[i],fc='#ffff00',linewidth=0.0,alpha=0.2) # define plot x and y limits pylab.xlim(xmin - xr * 0.01, xmax + xr * 0.01) if ymin1 - yr1 * 0.01 <= 0.0: pylab.ylim(1.0e-10, ymax1 + yr1 * 0.01) else: pylab.ylim(ymin1 - yr1 * 0.01, ymax1 + yr1 * 0.01) # plot labels # pylab.xlabel(xlab, {'color' : 'k'}) try: pylab.ylabel('Source (' + ylab1 + ')', {'color' : 'k'}) except: ylab1 = '10**%d e-/s' % nrm pylab.ylabel('Source (' + ylab1 + ')', {'color' : 'k'}) # make grid on plot pylab.grid() # plot centroid tracks - position second axes inside the plotting window if focus and background: axs = [0.11,0.433,0.78,0.09] elif background or focus: axs = [0.11,0.388,0.78,0.135] else: axs = [0.11,0.253,0.78,0.27] ax1 = pylab.axes(axs) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.setp(pylab.gca(),xticklabels=[]) # plot dx vs time ltime = numpy.array([],dtype='float64') ldata = numpy.array([],dtype='float32') dt = 0 work1 = 2.0 * cadence / 86400 for j in range(1,len(t)-1): dt = t[j] - t[j-1] if dt < work1: ltime = numpy.append(ltime,t[j]) ldata = numpy.append(ldata,xx[j-1]) else: ax1.plot(ltime,ldata,color='r',linestyle='-',linewidth=1.0) ltime = numpy.array([],dtype='float64') ldata = numpy.array([],dtype='float32') ax1.plot(ltime,ldata,color='r',linestyle='-',linewidth=1.0) # define plot x and y limits pylab.xlim(xmin - xr * 0.01, xmax + xr * 0.01) pylab.ylim(ymin2 - yr2 * 0.03, ymax2 + yr2 * 0.03) # plot labels ax1.set_ylabel('X-' + ylab2, color='k', fontsize=11) # position second axes inside the plotting window ax2 = ax1.twinx() # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.setp(pylab.gca(),xticklabels=[]) # plot dy vs time ltime = numpy.array([],dtype='float64') ldata = numpy.array([],dtype='float32') dt = 0 work1 = 2.0 * cadence / 86400 for j in range(1,len(t)-1): dt = t[j] - t[j-1] if dt < work1: ltime = numpy.append(ltime,t[j]) ldata = numpy.append(ldata,yy[j-1]) else: ax2.plot(ltime,ldata,color='g',linestyle='-',linewidth=1.0) ltime = numpy.array([],dtype='float64') ldata = numpy.array([],dtype='float32') ax2.plot(ltime,ldata,color='g',linestyle='-',linewidth=1.0) # define plot y limits pylab.xlim(xmin - xr * 0.01, xmax + xr * 0.01) pylab.ylim(ymin3 - yr3 * 0.03, ymax3 + yr3 * 0.03) # plot labels ax2.set_ylabel('Y-' + ylab2, color='k',fontsize=11) # background - position third axes inside the plotting window if background and focus: axs = [0.11,0.343,0.78,0.09] if background and not focus: axs = [0.11,0.253,0.78,0.135] if background: ax1 = pylab.axes(axs) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.setp(pylab.gca(),xticklabels=[]) # plot background vs time ltime = numpy.array([],dtype='float64') ldata = numpy.array([],dtype='float32') dt = 0 work1 = 2.0 * cadence / 86400 for j in range(1,len(t)-1): dt = t[j] - t[j-1] if dt < work1: ltime = numpy.append(ltime,t[j]) ldata = numpy.append(ldata,bg[j]) else: ax1.plot(ltime,ldata,color='#0000ff',linestyle='-',linewidth=1.0) ltime = numpy.array([],dtype='float64') ldata = numpy.array([],dtype='float32') ax1.plot(ltime,ldata,color='#0000ff',linestyle='-',linewidth=1.0) # plot the fill color below data time series, with no data gaps pylab.fill(t,bg,fc='#ffff00',linewidth=0.0,alpha=0.2) # define plot x and y limits pylab.xlim(xmin - xr * 0.01, xmax + xr * 0.01) pylab.ylim(ymin4 - yr4 * 0.03, ymax4 + yr4 * 0.03) # plot labels ax1.set_ylabel('Background \n(e$^-$ s$^{-1}$ pix$^{-1}$)', multialignment='center', color='k',fontsize=11) # make grid on plot pylab.grid() # position focus axes inside the plotting window if focus and background: axs = [0.11,0.253,0.78,0.09] if focus and not background: axs = [0.11,0.253,0.78,0.135] if focus: ax1 = pylab.axes(axs) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.setp(pylab.gca(),xticklabels=[]) # plot x-axis PSF width vs time ltime = numpy.array([],dtype='float64') ldata = numpy.array([],dtype='float32') dt = 0 work1 = 2.0 * cadence / 86400 for j in range(1,len(t)-1): dt = t[j] - t[j-1] if dt < work1: ltime = numpy.append(ltime,t[j]) ldata = numpy.append(ldata,fx[j]) else: ax1.plot(ltime,ldata,color='r',linestyle='-',linewidth=1.0) ltime = numpy.array([],dtype='float64') ldata = numpy.array([],dtype='float32') ax1.plot(ltime,ldata,color='r',linestyle='-',linewidth=1.0) # plot y-axis PSF width vs time ltime = numpy.array([],dtype='float64') ldata = numpy.array([],dtype='float32') dt = 0 work1 = 2.0 * cadence / 86400 for j in range(1,len(t)-1): dt = t[j] - t[j-1] if dt < work1: ltime = numpy.append(ltime,t[j]) ldata = numpy.append(ldata,fy[j]) else: ax1.plot(ltime,ldata,color='g',linestyle='-',linewidth=1.0) ltime = numpy.array([],dtype='float64') ldata = numpy.array([],dtype='float32') ax1.plot(ltime,ldata,color='g',linestyle='-',linewidth=1.0) # define plot x and y limits pylab.xlim(xmin - xr * 0.01, xmax + xr * 0.01) pylab.ylim(ymin5 - yr5 * 0.03, ymax5 + yr5 * 0.03) # plot labels ax1.set_ylabel('Pixel Scale\nFactor', multialignment='center', color='k',fontsize=11) # Focus rotation - position second axes inside the plotting window ax2 = ax1.twinx() # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.setp(pylab.gca(),xticklabels=[]) # plot dy vs time ltime = numpy.array([],dtype='float64') ldata = numpy.array([],dtype='float32') dt = 0 work1 = 2.0 * cadence / 86400 for j in range(1,len(t)-1): dt = t[j] - t[j-1] if dt < work1: ltime = numpy.append(ltime,t[j]) ldata = numpy.append(ldata,fa[j]) else: ax2.plot(ltime,ldata,color='#000080',linestyle='-',linewidth=1.0) ltime = numpy.array([],dtype='float64') ldata = numpy.array([],dtype='float32') ax2.plot(ltime,ldata,color='#000080',linestyle='-',linewidth=1.0) # define plot y limits pylab.xlim(xmin - xr * 0.01, xmax + xr * 0.01) pylab.ylim(ymin6 - yr6 * 0.03, ymax6 + yr6 * 0.03) # plot labels ax2.set_ylabel('Rotation (deg)', color='k',fontsize=11) # fit residuals - position fifth axes inside the plotting window axs = [0.11,0.163,0.78,0.09] ax1 = pylab.axes(axs) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.setp(pylab.gca(),xticklabels=[]) # plot residual vs time ltime = numpy.array([],dtype='float64') ldata = numpy.array([],dtype='float32') dt = 0 work1 = 2.0 * cadence / 86400 for j in range(1,len(t)-1): dt = t[j] - t[j-1] if dt < work1: ltime = numpy.append(ltime,t[j]) ldata = numpy.append(ldata,rs[j]) else: ax1.plot(ltime,ldata,color='b',linestyle='-',linewidth=1.0) ltime = numpy.array([],dtype='float64') ldata = numpy.array([],dtype='float32') ax1.plot(ltime,ldata,color='b',linestyle='-',linewidth=1.0) # plot the fill color below data time series, with no data gaps pylab.fill(t,rs,fc='#ffff00',linewidth=0.0,alpha=0.2) # define plot x and y limits pylab.xlim(xmin - xr * 0.01, xmax + xr * 0.01) pylab.ylim(ymin7 - yr7 * 0.03, ymax7 + yr7 * 0.03) # plot labels ax1.set_ylabel('Residual \n(e$^-$ s$^{-1}$)', multialignment='center', color='k',fontsize=11) # make grid on plot pylab.grid() # fit chi square - position sixth axes inside the plotting window axs = [0.11,0.073,0.78,0.09] ax1 = pylab.axes(axs) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) # plot background vs time ltime = numpy.array([],dtype='float64') ldata = numpy.array([],dtype='float32') dt = 0 work1 = 2.0 * cadence / 86400 for j in range(1,len(t)-1): dt = t[j] - t[j-1] if dt < work1: ltime = numpy.append(ltime,t[j]) ldata = numpy.append(ldata,ch[j]) else: ax1.plot(ltime,ldata,color='b',linestyle='-',linewidth=1.0) ltime = numpy.array([],dtype='float64') ldata = numpy.array([],dtype='float32') ax1.plot(ltime,ldata,color='b',linestyle='-',linewidth=1.0) # plot the fill color below data time series, with no data gaps pylab.fill(t,ch,fc='#ffff00',linewidth=0.0,alpha=0.2) # define plot x and y limits pylab.xlim(xmin - xr * 0.01, xmax + xr * 0.01) pylab.ylim(ymin8 - yr8 * 0.03, ymax8 + yr8 * 0.03) # plot labels ax1.set_ylabel('$\chi^2$ (%d dof)' % (npix-len(guess)-1),color='k',fontsize=11) pylab.xlabel(xlab, {'color' : 'k'}) # make grid on plot pylab.grid() # render plot if status == 0: pylab.savefig(outroot + '_' + str(i) + '.png') if status == 0 and plt: if cmdLine: pylab.show(block=True) else: pylab.ion() pylab.plot([]) pylab.ioff() # stop time kepmsg.clock('\n\nKEPPRFPHOT ended at',logfile,verbose) return
def kepmask(infile, mfile, pfile, tabrow, imin, imax, iscale, cmap, verbose, logfile, status, cLine=False): global pimg, zscale, zmin, zmax, xmin, xmax, ymin, ymax, quarter global pxdim, pydim, kepmag, skygroup, season, channel global module, output, row, column, maskfile, plotfile global pkepid, pkepmag, pra, pdec, colmap, cmdLine # input arguments status = 0 numpy.seterr(all="ignore") zmin = imin zmax = imax zscale = iscale colmap = cmap maskfile = mfile plotfile = pfile cmdLine = cLine # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPMASK -- ' call += 'infile=' + infile + ' ' call += 'maskfile=' + mfile + ' ' call += 'plotfile=' + pfile + ' ' call += 'tabrow=' + str(tabrow) + ' ' call += 'imin=' + str(imin) + ' ' call += 'imax=' + str(imax) + ' ' call += 'iscale=' + str(iscale) + ' ' call += 'cmap=' + str(cmap) + ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose=' + chatter + ' ' call += 'logfile=' + logfile kepmsg.log(logfile, call + '\n', verbose) # start time kepmsg.clock('KEPMASK started at', logfile, verbose) # reference color map if cmap == 'browse': status = cmap_plot() # open TPF FITS file and check tabrow exists if status == 0: tpf, status = kepio.openfits(infile, 'readonly', logfile, verbose) if status == 0: try: naxis2 = tpf['TARGETTABLES'].header['NAXIS2'] except: txt = 'ERROR -- KEPMASK: No NAXIS2 keyword in ' + infile + '[TARGETTABLES]' status = kepmsg.err(logfile, txt, True) if status == 0 and tabrow > naxis2: txt = 'ERROR -- KEPMASK: tabrow is too large. There are ' + str( naxis2) + ' rows in the table.' status = kepmsg.err(logfile, txt, True) if status == 0: status = kepio.closefits(tpf, logfile, verbose) # read TPF data pixel image if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, pixels, status = \ kepio.readTPF(infile,'FLUX',logfile,verbose) img = pixels[tabrow] pkepid = copy(kepid) pra = copy(ra) pdec = copy(dec) pkepmag = copy(kepmag) pxdim = copy(xdim) pydim = copy(ydim) pimg = copy(img) # print target data if status == 0: print '' print ' KepID: %s' % kepid print ' RA (J2000): %s' % ra print 'Dec (J2000): %s' % dec print ' KepMag: %s' % kepmag print ' SkyGroup: %2s' % skygroup print ' Season: %2s' % str(season) print ' Channel: %2s' % channel print ' Module: %2s' % module print ' Output: %1s' % output print '' # subimage of channel for plot if status == 0: ymin = copy(row) ymax = ymin + ydim xmin = copy(column) xmax = xmin + xdim # intensity scale if status == 0: pimg, imin, imax = kepplot.intScale1D(pimg, zscale) if zmin and zmax and 'log' in zscale: zmin = log10(zmin) zmax = log10(zmax) elif zmin and zmax and 'sq' in zscale: zmin = sqrt(zmin) zmax = sqrt(zmax) elif zmin and zmax and 'li' in zscale: zmin *= 1.0 zmax *= 1.0 else: zmin = copy(imin) zmax = copy(imax) # nstat = 2; pixels = [] # work = array(sort(img),dtype=float32) # for i in range(len(work)): # if 'nan' not in str(work[i]): # pixels.append(work[i]) # pixels = array(pixels,dtype=float32) # if int(float(len(pixels)) / 10 + 0.5) > nstat: # nstat = int(float(len(pixels)) / 10 + 0.5) # if not zmin: # zmin = median(pixels[:nstat]) # if not zmax: # zmax = median(pixels[-nstat:]) # if 'log' in zscale: # pimg = log10(pimg) # if 'sq' in zscale: # pimg = sqrt(pimg) # plot limits ymin = float(ymin) - 0.5 ymax = float(ymax) - 0.5 xmin = float(xmin) - 0.5 xmax = float(xmax) - 0.5 # plot style try: params = { 'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': 24, 'axes.font': 'sans-serif', 'axes.fontweight': 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': 14, 'ytick.labelsize': 14 } pylab.rcParams.update(params) except: pass if status == 0: pylab.figure(figsize=[10, 7]) plotimage(cmdLine) return
def kepdraw(infile,outfile,datacol,ploterr,errcol,quality, lcolor,lwidth,fcolor,falpha,labelsize,ticksize, xsize,ysize,fullrange,chooserange,y1,y2,plotgrid, ylabel,plottype,verbose,logfile,status,cmdLine=False): # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPDRAW -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+datacol+' ' perr = 'n' if (ploterr): perr = 'y' call += 'ploterr='+perr+ ' ' call += 'errcol='+errcol+' ' qual = 'n' if (quality): qual = 'y' call += 'quality='+qual+ ' ' call += 'lcolor='+str(lcolor)+' ' call += 'lwidth='+str(lwidth)+' ' call += 'fcolor='+str(fcolor)+' ' call += 'falpha='+str(falpha)+' ' call += 'labelsize='+str(labelsize)+' ' call += 'ticksize='+str(ticksize)+' ' call += 'xsize='+str(xsize)+' ' call += 'ysize='+str(ysize)+' ' frange = 'n' if (fullrange): frange = 'y' call += 'fullrange='+frange+ ' ' crange = 'n' if (chooserange): crange = 'y' call += 'chooserange='+crange+ ' ' call += 'ymin='+str(y1)+' ' call += 'ymax='+str(y2)+' ' pgrid = 'n' if (plotgrid): pgrid = 'y' call += 'plotgrid='+pgrid+ ' ' call += 'ylabel='+str(ylabel)+' ' call += 'plottype='+plottype+' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPDRAW started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # open input file if status == 0: struct, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(struct,infile,logfile,verbose,status) # read table structure if status == 0: table, status = kepio.readfitstab(infile,struct[1],logfile,verbose) # read table columns if status == 0: intime, status = kepio.readtimecol(infile,table,logfile,verbose) intime += bjdref indata, status = kepio.readfitscol(infile,table,datacol,logfile,verbose) indataerr, status = kepio.readfitscol(infile,table,errcol,logfile,verbose) qualty, status = kepio.readfitscol(infile,table,'SAP_QUALITY',logfile,verbose) # close infile if status == 0: status = kepio.closefits(struct,logfile,verbose) # remove infinities and bad data if status == 0: if numpy.isnan(numpy.nansum(indataerr)): indataerr[:] = 1.0e-5 work1 = numpy.array([intime, indata, indataerr, qualty],dtype='float64') work1 = numpy.rot90(work1,3) work1 = work1[~numpy.isnan(work1).any(1)] work1 = work1[~numpy.isinf(work1).any(1)] if quality: work1 = work1[work1[:,0] == 0.0] barytime = numpy.array(work1[:,3],dtype='float64') data = numpy.array(work1[:,2],dtype='float32') dataerr = numpy.array(work1[:,1],dtype='float32') if len(barytime) == 0: message = 'ERROR -- KEPDRAW: Plotting arrays are full of NaN' status = kepmsg.err(logfile,message,verbose) # clean up x-axis unit if status == 0: barytime0 = float(int(tstart / 100) * 100.0) barytime -= barytime0 xlab = 'BJD $-$ %d' % barytime0 # clean up y-axis units nrm = 0 try: nrm = len(str(int(numpy.nanmax(data))))-1 except: nrm = 0 data = data / 10**nrm if 'e$^-$ s$^{-1}$' in ylabel or 'default' in ylabel: if nrm == 0: ylab1 = 'e$^-$ s$^{-1}$' else: ylab1 = '10$^{%d}$ e$^-$ s$^{-1}$' % nrm else: ylab1 = re.sub('_','-',ylabel) # data limits xmin = numpy.nanmin(barytime) xmax = numpy.nanmax(barytime) ymin = numpy.nanmin(data) ymax = numpy.nanmax(data) xr = xmax - xmin yr = ymax - ymin barytime = insert(barytime,[0],[barytime[0]]) barytime = append(barytime,[barytime[-1]]) data = insert(data,[0],[-10000.0]) data = append(data,-10000.0) # define plot formats try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} pylab.rcParams.update(params) except: pass # define size of plot on monitor screen pylab.figure(figsize=[xsize,ysize]) # delete any fossil plots in the matplotlib window pylab.clf() # position axes inside the plotting window # ax = pylab.axes([0.1,0.11,0.89,0.87]) ax = pylab.subplot(111) pylab.subplots_adjust(0.06,0.15,0.92,0.83) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) ax.yaxis.set_major_locator(MaxNLocator(5)) # rotate y labels by 90 deg labels = ax.get_yticklabels() setp(labels, 'rotation', 90, fontsize=ticksize) # if plot type is 'fast' plot data time series as points if plottype == 'fast': pylab.plot(barytime,data,'o',color=lcolor) # if plot type is 'pretty' plot data time series as an unbroken line, retaining data gaps else: ltime = numpy.array([],dtype='float64') ldata = numpy.array([],dtype='float32') dt = 0 work1 = 2.0 * cadence / 86400 for i in range(1,len(data)-1): dt = barytime[i] - barytime[i-1] if dt < work1: ltime = numpy.append(ltime,barytime[i]) ldata = numpy.append(ldata,data[i]) else: pylab.plot(ltime,ldata,color=lcolor,linestyle='-',linewidth=lwidth) ltime = numpy.array([],dtype='float64') ldata = numpy.array([],dtype='float32') pylab.plot(ltime,ldata,color=lcolor,linestyle='-',linewidth=lwidth) # plot the fill color below data time series, with no data gaps pylab.fill(barytime,data,fc=fcolor,linewidth=0.0,alpha=falpha) # define plot x and y limits pylab.xlim(xmin-xr*0.01,xmax+xr*0.01) if ymin-yr*0.01 <= 0.0 or fullrange: pylab.ylim(1.0e-10,ymax+yr*0.01) else: pylab.ylim(ymin-yr*0.01,ymax+yr*0.01) if chooserange: pylab.ylim(y1,y2) # plot labels pylab.xlabel(xlab, {'color' : 'k'}) try: pylab.ylabel(ylab1, {'color' : 'k'}) except: ylab1 = '10**%d e-/s' % nrm pylab.ylabel(ylab1, {'color' : 'k'}) # make grid on plot # if plotgrid: pylab.grid() # TEMPORARY !!!!!!!!!!!!!!!!!!! # btime = numpy.arange(barytime[0],barytime[-1],0.25) + 0.125 # bflux = numpy.zeros((len(btime))) # j = 0 # work = numpy.array([]) # for i in range(1,len(barytime)-1): # if barytime[i] >= btime[j] - 0.125 and barytime[i] < btime[j] + 0.125: # work = numpy.append(work,data[i]) # else: # bflux[j] = numpy.mean(work) # work = numpy.array([]) # j += 1 # bflux[j] = numpy.mean(work) # # pylab.plot(btime,bflux,color='r',linestyle='',marker='D',markersize=20) # print numpy.std(bflux) # # pylab.plot([0.0,10000.0],[-49.5,-49.5],color='k',linestyle='--',linewidth=2.0) # pylab.plot([0.0,10000.0],[49.5,49.5],color='k',linestyle='--',linewidth=2.0) ## pylab.plot([0.0,10000.0],[15.5,15.5],color='k',linestyle=':',linewidth=4.0) ## pylab.plot([0.0,10000.0],[-15.5,-15.5],color='k',linestyle=':',linewidth=4.0) ## pylab.plot([0.0,10000.0],[-202,-202],color='k',linestyle='--',linewidth=2.0) ## pylab.plot([0.0,10000.0],[202,202],color='k',linestyle='--',linewidth=2.0) ## pylab.plot([0.0,10000.0],[0,0],color='k',linestyle=':',linewidth=4.0) ## pylab.plot([0.0,10000.0],[-81.*12.3,-81.*12.3],color='k',linestyle=':',linewidth=4.0) ax.minorticks_on() ax.tick_params('both', length=20, width=2, which='major') ax.tick_params('both', length=10, width=1, which='minor') # save plot to file if status == 0 and outfile.lower() != 'none': pylab.savefig(outfile) # render plot if cmdLine: pylab.show(block=True) else: pylab.ion() pylab.plot([]) pylab.ioff() # end time if (status == 0): message = 'KEPDRAW completed at' else: message = '\nKEPDRAW aborted at' kepmsg.clock(message,logfile,verbose)
def keptimefix(infile, outfile, clobber, verbose, logfile, status, cmdLine=False): """ All Kepler light curve and target pixel files with version numbers 5.0 contain an error in the time stamps. This was fixed in the light curve with version 5.0 (at MAST after May 2013). The timescale for fixing the target pixel files is unclear but in the mean time this script will fix the target pixel file time stamps and make the times consistent with the light curve files. The error in Q0-13 can be corrected by adding 66.184s. During Q14 there was a leap second added Q15+ can be corrected by adding 67.184s. This tool fixes the time stamp accordingly. inputs infile - the name of the input target pixel file output - the name of the output target pixel file optional clobber (default=False) - overwrite a file with the stame name as outfile. """ # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPTIMEFIX -- ' call += 'infile=' + infile + ' ' call += 'outfile=' + outfile + ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber=' + overwrite + ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose=' + chatter + ' ' call += 'logfile=' + logfile kepmsg.log(logfile, call + '\n', verbose) # start time kepmsg.clock('KEPTIMEFIX started at', logfile, verbose) # test log file logfile = kepmsg.test(logfile) if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPTIMEFIX: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile, message, verbose) instr, status = kepio.openfits(infile, 'readonly', logfile, verbose) creator = instr[0].header['CREATOR'] if creator.find('TargetPixelExporterPipelineModule') < 0: message = 'ERROR -- KEPTIMEFIX: this file is not a target pixel file' status = kepmsg.err(logfile, message, verbose) if status == 0: header_ext1 = instr[1].header.cards data_ext1 = instr[1].data fileversion = instr[0].header['FILEVER'] if float(fileversion) > 4.0: message = 'ERROR -- KEPTIMEFIX: no time fix needed for this file. FILEVER > 4.0' status = kepmsg.err(logfile, message, verbose) sys.exit(0) quarter = instr[0].header['QUARTER'] if instr[0].header['OBSMODE'] == 'long cadence': cadencetype = 'L' elif instr[0].header['OBSMODE'] == 'short cadence': cadencetype = 'S' TIME_wrong = data_ext1.field('TIME') CADNUM = data_ext1.field('CADENCENO') TIMECORR_old = data_ext1.field('TIMECORR') ## update headers ##TSTART, TSTART, EXPOSURE, TELAPSE, LIVETIME ##DATE-OBS, DATE-END if cadencetype == 'L': offset = np.where(CADNUM <= 57139, 66.184, 67.184) / 86400. elif cadencetype == 'S': offset = np.where(CADNUM <= 1702663, 66.184, 67.184) / 86400. TIME_right = TIME_wrong + offset TIMECORR_new = TIMECORR_old + offset #tcol = pyfits.Column(name='TIME',format='D14.7', # array=TIME_right, unit = 'BJD - 2454833', disp='D14.7') #instr[1].columns.change_attrib('TIME',array,TIME_right) #cols = instr[1].data.columns + tcol instr[1].data['TIME'][:] = TIME_right #we decided not to use the updated timecorr because #it is different from the LC FITS files by ~1 ms. instr[1].data['TIMECORR'][:] = np.nan * np.empty(len(TIMECORR_old)) #instr[1] = pyfits.new_table(cols,header=instr[1].header) #now to fix the header tstart_right = instr[1].header['TSTART'] + offset[0] tstop_right = instr[1].header['TSTOP'] + offset[-1] telapse_right = tstop_right - tstart_right instr[1].header['TSTART'] = tstart_right instr[1].header['TSTOP'] = tstop_right instr[1].header['TELAPSE'] = telapse_right deadc = instr[1].header['DEADC'] instr[1].header['LIVETIME'] = telapse_right * deadc #get the date-obs dstart = instr[1].header['DATE-OBS'] dend = instr[1].header['DATE-END'] ## This datetime stuff is not nessessary!!!! #dts = datetime.datetime.strptime(dstart, "%Y-%m-%dT%H:%M:%S.%fZ") #dte = datetime.datetime.strptime(dend, "%Y-%m-%dT%H:%M:%S.%fZ") #offset_s1 = datetime.timedelta(seconds=66.184) #offset_s2 = datetime.timedelta(seconds=67.184) #if quarter <14: # date_obs_new = dts + offset_s1 # date_end_new = dte + offset_s1 #if quarter > 14: # date_obs_new = dts + offset_s2 # date_end_new = dte + offset_s2 #if quarter == 14: # date_obs_new = dts + offset_s1 # date_end_new = dte + offset_s2 #instr[1].header['DATE-OBS'] = str(date_obs_new)[:-3] + 'Z' #instr[1].header['DATE-END'] = str(date_end_new)[:-3] + 'Z' instr.writeto(outfile) #if quarter == 14: # livtime = instr[1].header['LIVTIME'] # livtime += 1. # exposure += 1. # end time if (status == 0): message = 'KEPTIMEFIX completed at' else: message = '\nKEPTIMEFIX aborted at' kepmsg.clock(message, logfile, verbose)
def kepoutlier(infile,outfile,datacol,nsig,stepsize,npoly,niter, operation,ranges,plot,plotfit,clobber,verbose,logfile,status, cmdLine=False): # startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 16 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPOUTLIER -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+str(datacol)+' ' call += 'nsig='+str(nsig)+' ' call += 'stepsize='+str(stepsize)+' ' call += 'npoly='+str(npoly)+' ' call += 'niter='+str(niter)+' ' call += 'operation='+str(operation)+' ' call += 'ranges='+str(ranges)+' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' plotf = 'n' if (plotfit): plotf = 'y' call += 'plotfit='+plotf+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPOUTLIER started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPOUTLIER: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile,message,verbose) # open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # read table structure if status == 0: table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) # filter input data table if status == 0: try: nanclean = instr[1].header['NANCLEAN'] except: naxis2 = 0 try: for i in range(len(table.field(0))): if numpy.isfinite(table.field('barytime')[i]) and \ numpy.isfinite(table.field(datacol)[i]): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] except: for i in range(len(table.field(0))): if numpy.isfinite(table.field('time')[i]) and \ numpy.isfinite(table.field(datacol)[i]): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] comment = 'NaN cadences removed from data' status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose) # read table columns if status == 0: try: intime = instr[1].data.field('barytime') + 2.4e6 except: intime, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose) indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose) if status == 0: intime = intime + bjdref indata = indata / cadenom # time ranges for region to be corrected if status == 0: t1, t2, status = kepio.timeranges(ranges,logfile,verbose) cadencelis, status = kepstat.filterOnRange(intime,t1,t2) # find limits of each time step if status == 0: tstep1 = []; tstep2 = [] work = intime[0] while work < intime[-1]: tstep1.append(work) tstep2.append(array([work+stepsize,intime[-1]],dtype='float64').min()) work += stepsize # find cadence limits of each time step if status == 0: cstep1 = []; cstep2 = [] work1 = 0; work2 = 0 for i in range(len(intime)): if intime[i] >= intime[work1] and intime[i] < intime[work1] + stepsize: work2 = i else: cstep1.append(work1) cstep2.append(work2) work1 = i; work2 = i cstep1.append(work1) cstep2.append(work2) outdata = indata * 1.0 # comment keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) # clean up x-axis unit if status == 0: intime0 = float(int(tstart / 100) * 100.0) ptime = intime - intime0 xlab = 'BJD $-$ %d' % intime0 # clean up y-axis units if status == 0: pout = indata * 1.0 nrm = len(str(int(pout.max())))-1 pout = pout / 10**nrm ylab = '10$^%d$ e$^-$ s$^{-1}$' % nrm # data limits xmin = ptime.min() xmax = ptime.max() ymin = pout.min() ymax = pout.max() xr = xmax - xmin yr = ymax - ymin ptime = insert(ptime,[0],[ptime[0]]) ptime = append(ptime,[ptime[-1]]) pout = insert(pout,[0],[0.0]) pout = append(pout,0.0) # plot light curve if status == 0 and plot: plotLatex = True try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} rcParams.update(params) except: plotLatex = False if status == 0 and plot: pylab.figure(figsize=[xsize,ysize]) pylab.clf() # plot data ax = pylab.axes([0.06,0.1,0.93,0.87]) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) # rotate y labels by 90 deg labels = ax.get_yticklabels() setp(labels, 'rotation', 90, fontsize=12) pylab.plot(ptime,pout,color=lcolor,linestyle='-',linewidth=lwidth) fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha) xlabel(xlab, {'color' : 'k'}) if not plotLatex: ylab = '10**%d electrons/sec' % nrm ylabel(ylab, {'color' : 'k'}) grid() # loop over each time step, fit data, determine rms if status == 0: masterfit = indata * 0.0 mastersigma = zeros(len(masterfit)) functype = 'poly' + str(npoly) for i in range(len(cstep1)): pinit = [indata[cstep1[i]:cstep2[i]+1].mean()] if npoly > 0: for j in range(npoly): pinit.append(0.0) pinit = array(pinit,dtype='float32') try: coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip(functype,pinit,intime[cstep1[i]:cstep2[i]+1]-intime[cstep1[i]], indata[cstep1[i]:cstep2[i]+1],None,nsig,nsig,niter,logfile, verbose) for j in range(len(coeffs)): masterfit[cstep1[i]:cstep2[i]+1] += coeffs[j] * \ (intime[cstep1[i]:cstep2[i]+1] - intime[cstep1[i]])**j for j in range(cstep1[i],cstep2[i]+1): mastersigma[j] = sigma if plotfit: pylab.plot(plotx+intime[cstep1[i]]-intime0,ploty / 10**nrm, 'g',lw='3') except: for j in range(cstep1[i],cstep2[i]+1): masterfit[j] = indata[j] mastersigma[j] = 1.0e10 message = 'WARNING -- KEPOUTLIER: could not fit range ' message += str(intime[cstep1[i]]) + '-' + str(intime[cstep2[i]]) kepmsg.warn(None,message) # reject outliers if status == 0: rejtime = []; rejdata = []; naxis2 = 0 for i in range(len(masterfit)): if abs(indata[i] - masterfit[i]) > nsig * mastersigma[i] and i in cadencelis: rejtime.append(intime[i]) rejdata.append(indata[i]) if operation == 'replace': [rnd] = kepstat.randarray([masterfit[i]],[mastersigma[i]]) table[naxis2] = table[i] table.field(datacol)[naxis2] = rnd naxis2 += 1 else: table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] rejtime = array(rejtime,dtype='float64') rejdata = array(rejdata,dtype='float32') pylab.plot(rejtime-intime0,rejdata / 10**nrm,'ro') # plot ranges xlim(xmin-xr*0.01,xmax+xr*0.01) if ymin >= 0.0: ylim(ymin-yr*0.01,ymax+yr*0.01) else: ylim(1.0e-10,ymax+yr*0.01) # render plot if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() # write output file if status == 0: instr.writeto(outfile) # close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) ## end time if (status == 0): message = 'KEPOUTLIER completed at' else: message = '\nKEPOUTLIER aborted at' kepmsg.clock(message,logfile,verbose)
def keppixseries(infile,outfile,plotfile,plottype,filter,function,cutoff,clobber,verbose,logfile,status, cmdLine=False): # input arguments status = 0 seterr(all="ignore") # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPPIXSERIES -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'plotfile='+plotfile+' ' call += 'plottype='+plottype+' ' filt = 'n' if (filter): filt = 'y' call += 'filter='+filt+ ' ' call += 'function='+function+' ' call += 'cutoff='+str(cutoff)+' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPPIXSERIES started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPPIXSERIES: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile,message,verbose) # open TPF FITS file if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, barytime, status = \ kepio.readTPF(infile,'TIME',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, tcorr, status = \ kepio.readTPF(infile,'TIMECORR',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, cadno, status = \ kepio.readTPF(infile,'CADENCENO',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, fluxpixels, status = \ kepio.readTPF(infile,'FLUX',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, errpixels, status = \ kepio.readTPF(infile,'FLUX_ERR',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, qual, status = \ kepio.readTPF(infile,'QUALITY',logfile,verbose) # read mask defintion data from TPF file if status == 0: maskimg, pixcoord1, pixcoord2, status = kepio.readMaskDefinition(infile,logfile,verbose) # print target data if status == 0: print '' print ' KepID: %s' % kepid print ' RA (J2000): %s' % ra print 'Dec (J2000): %s' % dec print ' KepMag: %s' % kepmag print ' SkyGroup: %2s' % skygroup print ' Season: %2s' % str(season) print ' Channel: %2s' % channel print ' Module: %2s' % module print ' Output: %1s' % output print '' # how many quality = 0 rows? if status == 0: npts = 0 nrows = len(fluxpixels) for i in range(nrows): if qual[i] == 0 and \ numpy.isfinite(barytime[i]) and \ numpy.isfinite(fluxpixels[i,ydim*xdim/2]): npts += 1 time = empty((npts)) timecorr = empty((npts)) cadenceno = empty((npts)) quality = empty((npts)) pixseries = empty((ydim,xdim,npts)) errseries = empty((ydim,xdim,npts)) # construct output light curves if status == 0: np = 0 for i in range(ydim): for j in range(xdim): npts = 0 for k in range(nrows): if qual[k] == 0 and \ numpy.isfinite(barytime[k]) and \ numpy.isfinite(fluxpixels[k,ydim*xdim/2]): time[npts] = barytime[k] timecorr[npts] = tcorr[k] cadenceno[npts] = cadno[k] quality[npts] = qual[k] pixseries[i,j,npts] = fluxpixels[k,np] errseries[i,j,npts] = errpixels[k,np] npts += 1 np += 1 # define data sampling if status == 0 and filter: tpf, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0 and filter: cadence, status = kepkey.cadence(tpf[1],infile,logfile,verbose) tr = 1.0 / (cadence / 86400) timescale = 1.0 / (cutoff / tr) # define convolution function if status == 0 and filter: if function == 'boxcar': filtfunc = numpy.ones(numpy.ceil(timescale)) elif function == 'gauss': timescale /= 2 dx = numpy.ceil(timescale * 10 + 1) filtfunc = kepfunc.gauss() filtfunc = filtfunc([1.0,dx/2-1.0,timescale],linspace(0,dx-1,dx)) elif function == 'sinc': dx = numpy.ceil(timescale * 12 + 1) fx = linspace(0,dx-1,dx) fx = fx - dx / 2 + 0.5 fx /= timescale filtfunc = numpy.sinc(fx) filtfunc /= numpy.sum(filtfunc) # pad time series at both ends with noise model if status == 0 and filter: for i in range(ydim): for j in range(xdim): ave, sigma = kepstat.stdev(pixseries[i,j,:len(filtfunc)]) padded = numpy.append(kepstat.randarray(numpy.ones(len(filtfunc)) * ave, \ numpy.ones(len(filtfunc)) * sigma), pixseries[i,j,:]) ave, sigma = kepstat.stdev(pixseries[i,j,-len(filtfunc):]) padded = numpy.append(padded, kepstat.randarray(numpy.ones(len(filtfunc)) * ave, \ numpy.ones(len(filtfunc)) * sigma)) # convolve data if status == 0: convolved = convolve(padded,filtfunc,'same') # remove padding from the output array if status == 0: outdata = convolved[len(filtfunc):-len(filtfunc)] # subtract low frequencies if status == 0: outmedian = median(outdata) pixseries[i,j,:] = pixseries[i,j,:] - outdata + outmedian # construct output file if status == 0 and ydim*xdim < 1000: instruct, status = kepio.openfits(infile,'readonly',logfile,verbose) status = kepkey.history(call,instruct[0],outfile,logfile,verbose) hdulist = HDUList(instruct[0]) cols = [] cols.append(Column(name='TIME',format='D',unit='BJD - 2454833',disp='D12.7',array=time)) cols.append(Column(name='TIMECORR',format='E',unit='d',disp='E13.6',array=timecorr)) cols.append(Column(name='CADENCENO',format='J',disp='I10',array=cadenceno)) cols.append(Column(name='QUALITY',format='J',array=quality)) for i in range(ydim): for j in range(xdim): colname = 'COL%d_ROW%d' % (i+column,j+row) cols.append(Column(name=colname,format='E',disp='E13.6',array=pixseries[i,j,:])) hdu1 = new_table(ColDefs(cols)) try: hdu1.header.update('INHERIT',True,'inherit the primary header') except: status = 0 try: hdu1.header.update('EXTNAME','PIXELSERIES','name of extension') except: status = 0 try: hdu1.header.update('EXTVER',instruct[1].header['EXTVER'],'extension version number (not format version)') except: status = 0 try: hdu1.header.update('TELESCOP',instruct[1].header['TELESCOP'],'telescope') except: status = 0 try: hdu1.header.update('INSTRUME',instruct[1].header['INSTRUME'],'detector type') except: status = 0 try: hdu1.header.update('OBJECT',instruct[1].header['OBJECT'],'string version of KEPLERID') except: status = 0 try: hdu1.header.update('KEPLERID',instruct[1].header['KEPLERID'],'unique Kepler target identifier') except: status = 0 try: hdu1.header.update('RADESYS',instruct[1].header['RADESYS'],'reference frame of celestial coordinates') except: status = 0 try: hdu1.header.update('RA_OBJ',instruct[1].header['RA_OBJ'],'[deg] right ascension from KIC') except: status = 0 try: hdu1.header.update('DEC_OBJ',instruct[1].header['DEC_OBJ'],'[deg] declination from KIC') except: status = 0 try: hdu1.header.update('EQUINOX',instruct[1].header['EQUINOX'],'equinox of celestial coordinate system') except: status = 0 try: hdu1.header.update('TIMEREF',instruct[1].header['TIMEREF'],'barycentric correction applied to times') except: status = 0 try: hdu1.header.update('TASSIGN',instruct[1].header['TASSIGN'],'where time is assigned') except: status = 0 try: hdu1.header.update('TIMESYS',instruct[1].header['TIMESYS'],'time system is barycentric JD') except: status = 0 try: hdu1.header.update('BJDREFI',instruct[1].header['BJDREFI'],'integer part of BJD reference date') except: status = 0 try: hdu1.header.update('BJDREFF',instruct[1].header['BJDREFF'],'fraction of the day in BJD reference date') except: status = 0 try: hdu1.header.update('TIMEUNIT',instruct[1].header['TIMEUNIT'],'time unit for TIME, TSTART and TSTOP') except: status = 0 try: hdu1.header.update('TSTART',instruct[1].header['TSTART'],'observation start time in BJD-BJDREF') except: status = 0 try: hdu1.header.update('TSTOP',instruct[1].header['TSTOP'],'observation stop time in BJD-BJDREF') except: status = 0 try: hdu1.header.update('LC_START',instruct[1].header['LC_START'],'mid point of first cadence in MJD') except: status = 0 try: hdu1.header.update('LC_END',instruct[1].header['LC_END'],'mid point of last cadence in MJD') except: status = 0 try: hdu1.header.update('TELAPSE',instruct[1].header['TELAPSE'],'[d] TSTOP - TSTART') except: status = 0 try: hdu1.header.update('LIVETIME',instruct[1].header['LIVETIME'],'[d] TELAPSE multiplied by DEADC') except: status = 0 try: hdu1.header.update('EXPOSURE',instruct[1].header['EXPOSURE'],'[d] time on source') except: status = 0 try: hdu1.header.update('DEADC',instruct[1].header['DEADC'],'deadtime correction') except: status = 0 try: hdu1.header.update('TIMEPIXR',instruct[1].header['TIMEPIXR'],'bin time beginning=0 middle=0.5 end=1') except: status = 0 try: hdu1.header.update('TIERRELA',instruct[1].header['TIERRELA'],'[d] relative time error') except: status = 0 try: hdu1.header.update('TIERABSO',instruct[1].header['TIERABSO'],'[d] absolute time error') except: status = 0 try: hdu1.header.update('INT_TIME',instruct[1].header['INT_TIME'],'[s] photon accumulation time per frame') except: status = 0 try: hdu1.header.update('READTIME',instruct[1].header['READTIME'],'[s] readout time per frame') except: status = 0 try: hdu1.header.update('FRAMETIM',instruct[1].header['FRAMETIM'],'[s] frame time (INT_TIME + READTIME)') except: status = 0 try: hdu1.header.update('NUM_FRM',instruct[1].header['NUM_FRM'],'number of frames per time stamp') except: status = 0 try: hdu1.header.update('TIMEDEL',instruct[1].header['TIMEDEL'],'[d] time resolution of data') except: status = 0 try: hdu1.header.update('DATE-OBS',instruct[1].header['DATE-OBS'],'TSTART as UTC calendar date') except: status = 0 try: hdu1.header.update('DATE-END',instruct[1].header['DATE-END'],'TSTOP as UTC calendar date') except: status = 0 try: hdu1.header.update('BACKAPP',instruct[1].header['BACKAPP'],'background is subtracted') except: status = 0 try: hdu1.header.update('DEADAPP',instruct[1].header['DEADAPP'],'deadtime applied') except: status = 0 try: hdu1.header.update('VIGNAPP',instruct[1].header['VIGNAPP'],'vignetting or collimator correction applied') except: status = 0 try: hdu1.header.update('GAIN',instruct[1].header['GAIN'],'[electrons/count] channel gain') except: status = 0 try: hdu1.header.update('READNOIS',instruct[1].header['READNOIS'],'[electrons] read noise') except: status = 0 try: hdu1.header.update('NREADOUT',instruct[1].header['NREADOUT'],'number of read per cadence') except: status = 0 try: hdu1.header.update('TIMSLICE',instruct[1].header['TIMSLICE'],'time-slice readout sequence section') except: status = 0 try: hdu1.header.update('MEANBLCK',instruct[1].header['MEANBLCK'],'[count] FSW mean black level') except: status = 0 hdulist.append(hdu1) hdulist.writeto(outfile) status = kepkey.new('EXTNAME','APERTURE','name of extension',instruct[2],outfile,logfile,verbose) pyfits.append(outfile,instruct[2].data,instruct[2].header) status = kepio.closefits(instruct,logfile,verbose) else: message = 'WARNING -- KEPPIXSERIES: output FITS file requires > 999 columns. Non-compliant with FITS convention.' kepmsg.warn(logfile,message) # plot style if status == 0: try: params = {'backend': 'png', 'axes.linewidth': 2.0, 'axes.labelsize': 32, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 8, 'legend.fontsize': 8, 'xtick.labelsize': 12, 'ytick.labelsize': 12} pylab.rcParams.update(params) except: pass # plot pixel array fmin = 1.0e33 fmax = -1.033 if status == 0: pylab.figure(num=None,figsize=[12,12]) pylab.clf() dx = 0.93 / xdim dy = 0.94 / ydim ax = pylab.axes([0.06,0.05,0.93,0.94]) pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(integer=True)) pylab.gca().yaxis.set_major_locator(matplotlib.ticker.MaxNLocator(integer=True)) labels = ax.get_yticklabels() setp(labels, 'rotation', 90, fontsize=12) pylab.xlim(numpy.min(pixcoord1) - 0.5,numpy.max(pixcoord1) + 0.5) pylab.ylim(numpy.min(pixcoord2) - 0.5,numpy.max(pixcoord2) + 0.5) pylab.xlabel('time', {'color' : 'k'}) pylab.ylabel('arbitrary flux', {'color' : 'k'}) for i in range(ydim): for j in range(xdim): tmin = amin(time) tmax = amax(time) try: numpy.isfinite(amin(pixseries[i,j,:])) numpy.isfinite(amin(pixseries[i,j,:])) fmin = amin(pixseries[i,j,:]) fmax = amax(pixseries[i,j,:]) except: ugh = 1 xmin = tmin - (tmax - tmin) / 40 xmax = tmax + (tmax - tmin) / 40 ymin = fmin - (fmax - fmin) / 20 ymax = fmax + (fmax - fmin) / 20 if kepstat.bitInBitmap(maskimg[i,j],2): pylab.axes([0.06+float(j)*dx,0.05+i*dy,dx,dy],axisbg='lightslategray') elif maskimg[i,j] == 0: pylab.axes([0.06+float(j)*dx,0.05+i*dy,dx,dy],axisbg='black') else: pylab.axes([0.06+float(j)*dx,0.05+i*dy,dx,dy]) if j == int(xdim / 2) and i == 0: pylab.setp(pylab.gca(),xticklabels=[],yticklabels=[]) elif j == 0 and i == int(ydim / 2): pylab.setp(pylab.gca(),xticklabels=[],yticklabels=[]) else: pylab.setp(pylab.gca(),xticklabels=[],yticklabels=[]) ptime = time * 1.0 ptime = numpy.insert(ptime,[0],ptime[0]) ptime = numpy.append(ptime,ptime[-1]) pflux = pixseries[i,j,:] * 1.0 pflux = numpy.insert(pflux,[0],-1000.0) pflux = numpy.append(pflux,-1000.0) pylab.plot(time,pixseries[i,j,:],color='#0000ff',linestyle='-',linewidth=0.5) if not kepstat.bitInBitmap(maskimg[i,j],2): pylab.fill(ptime,pflux,fc='lightslategray',linewidth=0.0,alpha=1.0) pylab.fill(ptime,pflux,fc='#FFF380',linewidth=0.0,alpha=1.0) if 'loc' in plottype: pylab.xlim(xmin,xmax) pylab.ylim(ymin,ymax) if 'glob' in plottype: pylab.xlim(xmin,xmax) pylab.ylim(1.0e-10,numpy.nanmax(pixseries) * 1.05) if 'full' in plottype: pylab.xlim(xmin,xmax) pylab.ylim(1.0e-10,ymax * 1.05) # render plot if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() if plotfile.lower() != 'none': pylab.savefig(plotfile) # stop time if status == 0: kepmsg.clock('KEPPIXSERIES ended at',logfile,verbose) return
def kepdiffim(infile, outfile, plotfile, imscale, colmap, filter, function, cutoff, clobber, verbose, logfile, status, cmdLine=False): # input arguments status = 0 seterr(all="ignore") # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPDIFFIM -- ' call += 'infile=' + infile + ' ' call += 'outfile=' + outfile + ' ' call += 'plotfile=' + plotfile + ' ' call += 'imscale=' + imscale + ' ' call += 'colmap=' + colmap + ' ' filt = 'n' if (filter): filt = 'y' call += 'filter=' + filt + ' ' call += 'function=' + function + ' ' call += 'cutoff=' + str(cutoff) + ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber=' + overwrite + ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose=' + chatter + ' ' call += 'logfile=' + logfile kepmsg.log(logfile, call + '\n', verbose) # start time kepmsg.clock('KEPDIFFIM started at: ', logfile, verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPDIFFIM: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile, message, verbose) # reference color map if colmap == 'browse': status = cmap_plot() # open TPF FITS file if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, barytime, status = \ kepio.readTPF(infile,'TIME',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, tcorr, status = \ kepio.readTPF(infile,'TIMECORR',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, cadno, status = \ kepio.readTPF(infile,'CADENCENO',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, fluxpixels, status = \ kepio.readTPF(infile,'FLUX',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, errpixels, status = \ kepio.readTPF(infile,'FLUX_ERR',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, qual, status = \ kepio.readTPF(infile,'QUALITY',logfile,verbose) # read mask defintion data from TPF file if status == 0: maskimg, pixcoord1, pixcoord2, status = kepio.readMaskDefinition( infile, logfile, verbose) # print target data if status == 0: print('') print(' KepID: %s' % kepid) print(' RA (J2000): %s' % ra) print('Dec (J2000): %s' % dec) print(' KepMag: %s' % kepmag) print(' SkyGroup: %2s' % skygroup) print(' Season: %2s' % str(season)) print(' Channel: %2s' % channel) print(' Module: %2s' % module) print(' Output: %1s' % output) print('') # how many quality = 0 rows? if status == 0: npts = 0 nrows = len(fluxpixels) for i in range(nrows): if qual[i] == 0 and \ numpy.isfinite(barytime[i]) and \ numpy.isfinite(fluxpixels[i,ydim*xdim/2]): npts += 1 time = empty((npts)) timecorr = empty((npts)) cadenceno = empty((npts)) quality = empty((npts)) pixseries = empty((ydim * xdim, npts)) errseries = empty((ydim * xdim, npts)) # construct output light curves if status == 0: np = 0 for i in range(ydim * xdim): npts = 0 for k in range(nrows): if qual[k] == 0 and \ numpy.isfinite(barytime[k]) and \ numpy.isfinite(fluxpixels[k,ydim*xdim/2]): time[npts] = barytime[k] timecorr[npts] = tcorr[k] cadenceno[npts] = cadno[k] quality[npts] = qual[k] pixseries[i, npts] = fluxpixels[k, np] errseries[i, npts] = errpixels[k, np] npts += 1 np += 1 # define data sampling if status == 0 and filter: tpf, status = kepio.openfits(infile, 'readonly', logfile, verbose) if status == 0 and filter: cadence, status = kepkey.cadence(tpf[1], infile, logfile, verbose) tr = 1.0 / (cadence / 86400) timescale = 1.0 / (cutoff / tr) # define convolution function if status == 0 and filter: if function == 'boxcar': filtfunc = numpy.ones(numpy.ceil(timescale)) elif function == 'gauss': timescale /= 2 dx = numpy.ceil(timescale * 10 + 1) filtfunc = kepfunc.gauss() filtfunc = filtfunc([1.0, dx / 2 - 1.0, timescale], linspace(0, dx - 1, dx)) elif function == 'sinc': dx = numpy.ceil(timescale * 12 + 1) fx = linspace(0, dx - 1, dx) fx = fx - dx / 2 + 0.5 fx /= timescale filtfunc = numpy.sinc(fx) filtfunc /= numpy.sum(filtfunc) # pad time series at both ends with noise model if status == 0 and filter: for i in range(ydim * xdim): ave, sigma = kepstat.stdev(pixseries[i, :len(filtfunc)]) padded = numpy.append(kepstat.randarray(numpy.ones(len(filtfunc)) * ave, \ numpy.ones(len(filtfunc)) * sigma), pixseries[i,:]) ave, sigma = kepstat.stdev(pixseries[i, -len(filtfunc):]) padded = numpy.append(padded, kepstat.randarray(numpy.ones(len(filtfunc)) * ave, \ numpy.ones(len(filtfunc)) * sigma)) # convolve data if status == 0: convolved = convolve(padded, filtfunc, 'same') # remove padding from the output array if status == 0: outdata = convolved[len(filtfunc):-len(filtfunc)] # subtract low frequencies if status == 0: outmedian = median(outdata) pixseries[i, :] = pixseries[i, :] - outdata + outmedian # sum pixels over cadence if status == 0: np = 0 nrows = len(fluxpixels) pixsum = zeros((ydim * xdim)) errsum = zeros((ydim * xdim)) for i in range(npts): if quality[i] == 0: pixsum += pixseries[:, i] errsum += errseries[:, i]**2 np += 1 pixsum /= np errsum = sqrt(errsum) / np # calculate standard deviation pixels if status == 0: pixvar = zeros((ydim * xdim)) for i in range(npts): if quality[i] == 0: pixvar += (pixsum - pixseries[:, i] / errseries[:, i])**2 pixvar = numpy.sqrt(pixvar) # median pixel errors if status == 0: errmed = empty((ydim * xdim)) for i in range(ydim * xdim): errmed[i] = numpy.median(errseries[:, i]) # calculate chi distribution pixels if status == 0: pixdev = zeros((ydim * xdim)) for i in range(npts): if quality[i] == 0: pixdev += ((pixsum - pixseries[:, i]) / pixsum)**2 pixdev = numpy.sqrt(pixdev) # pixdev = numpy.sqrt(pixvar) / errsum #errmed # image scale and intensity limits if status == 0: pixsum_pl, zminsum, zmaxsum = kepplot.intScale1D(pixsum, imscale) pixvar_pl, zminvar, zmaxvar = kepplot.intScale1D(pixvar, imscale) pixdev_pl, zmindev, zmaxdev = kepplot.intScale1D(pixdev, imscale) # construct output summed image if status == 0: imgsum = empty((ydim, xdim)) imgvar = empty((ydim, xdim)) imgdev = empty((ydim, xdim)) imgsum_pl = empty((ydim, xdim)) imgvar_pl = empty((ydim, xdim)) imgdev_pl = empty((ydim, xdim)) n = 0 for i in range(ydim): for j in range(xdim): imgsum[i, j] = pixsum[n] imgvar[i, j] = pixvar[n] imgdev[i, j] = pixdev[n] imgsum_pl[i, j] = pixsum_pl[n] imgvar_pl[i, j] = pixvar_pl[n] imgdev_pl[i, j] = pixdev_pl[n] n += 1 # construct output file if status == 0: instruct, status = kepio.openfits(infile, 'readonly', logfile, verbose) status = kepkey.history(call, instruct[0], outfile, logfile, verbose) hdulist = HDUList(instruct[0]) hdulist.writeto(outfile) status = kepkey.new('EXTNAME', 'FLUX', 'name of extension', instruct[2], outfile, logfile, verbose) pyfits.append(outfile, imgsum, instruct[2].header) status = kepkey.new('EXTNAME', 'CHI', 'name of extension', instruct[2], outfile, logfile, verbose) pyfits.append(outfile, imgvar, instruct[2].header) status = kepkey.new('EXTNAME', 'STDDEV', 'name of extension', instruct[2], outfile, logfile, verbose) pyfits.append(outfile, imgdev, instruct[2].header) status = kepkey.new('EXTNAME', 'APERTURE', 'name of extension', instruct[2], outfile, logfile, verbose) pyfits.append(outfile, instruct[2].data, instruct[2].header) status = kepio.closefits(instruct, logfile, verbose) # pixel limits of the subimage if status == 0: ymin = row ymax = ymin + ydim xmin = column xmax = xmin + xdim # plot limits for summed image ymin = float(ymin) - 0.5 ymax = float(ymax) - 0.5 xmin = float(xmin) - 0.5 xmax = float(xmax) - 0.5 # plot style try: params = { 'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': 24, 'axes.font': 'sans-serif', 'axes.fontweight': 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': 10, 'ytick.labelsize': 10 } pylab.rcParams.update(params) except: 'ERROR -- KEPDIFFIM: install latex for scientific plotting' status = 1 if status == 0: plotimage(imgsum_pl, imgvar_pl, imgdev_pl, zminsum, zminvar, zmindev, zmaxsum, zmaxvar, zmaxdev, xmin, xmax, ymin, ymax, colmap, plotfile, cmdLine) # stop time kepmsg.clock('KEPDIFFIM ended at: ', logfile, verbose) return
def kepsmooth(infile,outfile,datacol,function,fscale,plot,plotlab, clobber,verbose,logfile,status, cmdLine=False): ## startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 18 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 ## log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPSMOOTH -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+str(datacol)+' ' call += 'function='+str(function)+' ' call += 'fscale='+str(fscale)+' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' call += 'plotlab='+str(plotlab)+' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) ## start time kepmsg.clock('KEPSMOOTH started at',logfile,verbose) ## test log file logfile = kepmsg.test(logfile) ## clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPSMOOTH: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile,message,verbose) ## open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if cadence == 0.0: tstart, tstop, ncad, cadence, status = kepio.cadence(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence ## fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) ## read table structure if status == 0: table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) # read time and flux columns if status == 0: barytime, status = kepio.readtimecol(infile,table,logfile,verbose) if status == 0: flux, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose) # filter input data table if status == 0: try: nanclean = instr[1].header['NANCLEAN'] except: naxis2 = 0 for i in range(len(table.field(0))): if (numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i]) and flux[i] != 0.0): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] comment = 'NaN cadences removed from data' status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose) ## read table columns if status == 0: try: intime = instr[1].data.field('barytime') except: intime, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose) indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose) if status == 0: intime = intime + bjdref indata = indata / cadenom ## smooth data if status == 0: outdata = kepfunc.smooth(indata,fscale/(cadence/86400),function) ## comment keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) ## clean up x-axis unit if status == 0: intime0 = float(int(tstart / 100) * 100.0) if intime0 < 2.4e6: intime0 += 2.4e6 ptime = intime - intime0 xlab = 'BJD $-$ %d' % intime0 ## clean up y-axis units if status == 0: pout = indata * 1.0 pout2 = outdata * 1.0 nrm = len(str(int(numpy.nanmax(pout))))-1 pout = pout / 10**nrm pout2 = pout2 / 10**nrm ylab = '10$^%d$ %s' % (nrm, re.sub('_','-',plotlab)) ## data limits xmin = numpy.nanmin(ptime) xmax = numpy.nanmax(ptime) ymin = numpy.min(pout) ymax = numpy.nanmax(pout) xr = xmax - xmin yr = ymax - ymin ptime = insert(ptime,[0],[ptime[0]]) ptime = append(ptime,[ptime[-1]]) pout = insert(pout,[0],[0.0]) pout = append(pout,0.0) pout2 = insert(pout2,[0],[0.0]) pout2 = append(pout2,0.0) ## plot light curve if status == 0 and plot: try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} rcParams.update(params) except: print('ERROR -- KEPSMOOTH: install latex for scientific plotting') status = 1 if status == 0 and plot: pylab.figure(1,figsize=[xsize,ysize]) # delete any fossil plots in the matplotlib window pylab.clf() # position axes inside the plotting window ax = pylab.subplot(111) pylab.subplots_adjust(0.06,0.1,0.93,0.88) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) # rotate y labels by 90 deg labels = ax.get_yticklabels() setp(labels, 'rotation', 90) pylab.plot(ptime[1:-1],pout[1:-1],color='#ff9900',linestyle='-',linewidth=lwidth) fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha) pylab.plot(ptime,pout2,color=lcolor,linestyle='-',linewidth=lwidth*4.0) pylab.xlabel(xlab, {'color' : 'k'}) pylab.ylabel(ylab, {'color' : 'k'}) xlim(xmin-xr*0.01,xmax+xr*0.01) if ymin >= 0.0: ylim(ymin-yr*0.01,ymax+yr*0.01) else: ylim(1.0e-10,ymax+yr*0.01) pylab.grid() # render plot if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() ## write output file if status == 0: for i in range(len(outdata)): instr[1].data.field(datacol)[i] = outdata[i] instr.writeto(outfile) ## close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) ## end time if (status == 0): message = 'KEPSMOOTH completed at' else: message = '\nKEPSMOOTH aborted at' kepmsg.clock(message,logfile,verbose)
def keptransitmodel(inputfile, datacol, errorcol, period_d, rprs, T0, Ecc, ars, inc, omega, LDparams, sec, norm=False, verbose=0, logfile='logfile.dat', status=0, cmdLine=False): #write to a logfile hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPTRANSIT -- ' call += 'inputfile=' + inputfile + ' ' call += 'datacol=' + str(datacol) + ' ' call += 'errorcol=' + str(errorcol) + ' ' call += 'period_d=' + str(period_d) + ' ' call += 'rprs=' + str(rprs) + ' ' call += 'T0=' + str(T0) + ' ' call += 'Ecc=' + str(Ecc) + ' ' call += 'ars=' + str(ars) + ' ' call += 'inc=' + str(inc) + ' ' call += 'omega=' + str(omega) + ' ' call += 'LDparams=' + str(LDparams) + ' ' call += 'sec=' + str(sec) + ' ' #to finish # open input file if status == 0: instr, status = kepio.openfits(inputfile, 'readonly', logfile, verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys( instr, inputfile, logfile, verbose, status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr, file, logfile, verbose) # read table structure if status == 0: table, status = kepio.readfitstab(inputfile, instr[1], logfile, verbose) # filter input data table if status == 0: try: nanclean = instr[1].header['NANCLEAN'] except: naxis2 = 0 try: for i in range(len(table.field(0))): if np.isfinite(table.field('barytime')[i]) and \ np.isfinite(table.field(datacol)[i]): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] except: for i in range(len(table.field(0))): if np.isfinite(table.field('time')[i]) and \ np.isfinite(table.field(datacol)[i]): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] # comment = 'NaN cadences removed from data' # status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose) # read table columns if status == 0: try: intime = instr[1].data.field('barytime') + 2.4e6 except: intime, status = kepio.readfitscol(inputfile, instr[1].data, 'time', logfile, verbose) indata, status = kepio.readfitscol(inputfile, instr[1].data, datacol, logfile, verbose) inerr, status = kepio.readfitscol(inputfile, instr[1].data, errorcol, logfile, verbose) if status == 0: intime = intime + bjdref indata = indata / cadenom inerr = inerr / cadenom if status == 0 and norm: #first remove outliers before normalizing threesig = 3. * np.std(indata) mask = np.logical_and(indata < indata + threesig, indata > indata - threesig) #now normalize indata = indata / np.median(indata[mask]) if status == 0: #need to check if LD params are sensible and in right format LDparams = [float(i) for i in LDparams.split()] inc = inc * np.pi / 180. if status == 0: modelfit = tmod.lightcurve(intime, period_d, rprs, T0, Ecc, ars, inc, omega, LDparams, sec) if status == 0: phi, fluxfold, modelfold, errorfold, phiNotFold = fold_data( intime, modelfit, indata, inerr, period_d, T0) if status == 0: do_plot(intime, modelfit, indata, inerr, period_d, T0, cmdLine)
def kepclip(infile,outfile,ranges,plot,plotcol,clobber,verbose,logfile,status,cmdLine=False): # startup parameters status = 0 labelsize = 32 ticksize = 24 xsize = 18 ysize = 10 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPCLIP -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'ranges='+ranges + ' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' call += 'plotcol='+plotcol+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPCLIP started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPCLIP: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile,message,verbose) # time ranges for region if status == 0: t1 = []; t2 = [] t1, t2, status = kepio.timeranges(ranges,logfile,verbose) # open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # input data if status == 0: table = instr[1].data # read time and flux columns if status == 0: barytime, status = kepio.readtimecol(infile,table,logfile,verbose) if status == 0: flux, status = kepio.readfitscol(infile,table,plotcol,logfile,verbose) if status == 0: barytime = barytime + bjdref if 'flux' in plotcol.lower(): flux = flux / cadenom # filter input data table if status == 0: naxis2 = 0 work1 = array([],'float64') work2 = array([],'float32') for i in range(len(barytime)): if (numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i]) and flux[i] != 0.0): reject = False for j in range(len(t1)): if (barytime[i] >= t1[j] and barytime[i] <= t2[j]): reject = True if not reject: table[naxis2] = table[i] work1 = append(work1,barytime[i]) work2 = append(work2,flux[i]) naxis2 += 1 # comment keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) # write output file if status == 0: instr[1].data = table[:naxis2] comment = 'NaN cadences removed from data' status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose) instr.writeto(outfile) # clean up x-axis unit if status == 0: barytime0 = float(int(tstart / 100) * 100.0) barytime = work1 - barytime0 xlab = 'BJD $-$ %d' % barytime0 # clean up y-axis units if status == 0: try: nrm = len(str(int(work2.max())))-1 except: nrm = 0 flux = work2 / 10**nrm ylab = '10$^%d$ e$^-$ s$^{-1}$' % nrm # data limits xmin = barytime.min() xmax = barytime.max() ymin = flux.min() ymax = flux.max() xr = xmax - xmin yr = ymax - ymin # plotting arguments if status == 0 and plot: try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} rcParams.update(params) except: print 'ERROR -- KEPCLIP: install latex for scientific plotting' status = 1 # clear window, plot box if status == 0 and plot: pylab.figure(figsize=[xsize,ysize]) pylab.clf() ax = pylab.axes([0.05,0.1,0.94,0.88]) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) # rotate y labels by 90 deg labels = ax.get_yticklabels() setp(labels, 'rotation', 90, fontsize=12) # plot line data ltime = [barytime[0]]; ldata = [flux[0]] for i in range(1,len(flux)): if (barytime[i-1] > barytime[i] - 0.025): ltime.append(barytime[i]) ldata.append(flux[i]) else: ltime = array(ltime, dtype=float64) ldata = array(ldata, dtype=float64) pylab.plot(ltime,ldata,color=lcolor,linestyle='-',linewidth=lwidth) ltime = []; ldata = [] ltime = array(ltime, dtype=float64) ldata = array(ldata, dtype=float64) pylab.plot(ltime,ldata,color=lcolor,linestyle='-',linewidth=lwidth) # plot fill data barytime = insert(barytime,[0],[barytime[0]]) barytime = append(barytime,[barytime[-1]]) flux = insert(flux,[0],[0.0]) flux = append(flux,[0.0]) fill(barytime,flux,fc=fcolor,linewidth=0.0,alpha=falpha) xlim(xmin-xr*0.01,xmax+xr*0.01) if ymin-yr*0.01 <= 0.0: ylim(1.0e-10,ymax+yr*0.01) else: ylim(ymin-yr*0.01,ymax+yr*0.01) xlabel(xlab, {'color' : 'k'}) ylabel(ylab, {'color' : 'k'}) grid() # render plot if status == 0 and plot: if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() # close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) # end time if (status == 0): message = 'KEPCLIP completed at' else: message = '\nKEPCLIP aborted at' kepmsg.clock(message,logfile,verbose)
def kepoutlier(infile,outfile,datacol,nsig,stepsize,npoly,niter, operation,ranges,plot,plotfit,clobber,verbose,logfile,status, cmdLine=False): # startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 16 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPOUTLIER -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+str(datacol)+' ' call += 'nsig='+str(nsig)+' ' call += 'stepsize='+str(stepsize)+' ' call += 'npoly='+str(npoly)+' ' call += 'niter='+str(niter)+' ' call += 'operation='+str(operation)+' ' call += 'ranges='+str(ranges)+' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' plotf = 'n' if (plotfit): plotf = 'y' call += 'plotfit='+plotf+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPOUTLIER started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPOUTLIER: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile,message,verbose) # open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # read table structure if status == 0: table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) # filter input data table if status == 0: try: nanclean = instr[1].header['NANCLEAN'] except: naxis2 = 0 try: for i in range(len(table.field(0))): if numpy.isfinite(table.field('barytime')[i]) and \ numpy.isfinite(table.field(datacol)[i]): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] except: for i in range(len(table.field(0))): if numpy.isfinite(table.field('time')[i]) and \ numpy.isfinite(table.field(datacol)[i]): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] comment = 'NaN cadences removed from data' status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose) # read table columns if status == 0: try: intime = instr[1].data.field('barytime') + 2.4e6 except: intime, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose) indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose) if status == 0: intime = intime + bjdref indata = indata / cadenom # time ranges for region to be corrected if status == 0: t1, t2, status = kepio.timeranges(ranges,logfile,verbose) cadencelis, status = kepstat.filterOnRange(intime,t1,t2) # find limits of each time step if status == 0: tstep1 = []; tstep2 = [] work = intime[0] while work < intime[-1]: tstep1.append(work) tstep2.append(array([work+stepsize,intime[-1]],dtype='float64').min()) work += stepsize # find cadence limits of each time step if status == 0: cstep1 = []; cstep2 = [] work1 = 0; work2 = 0 for i in range(len(intime)): if intime[i] >= intime[work1] and intime[i] < intime[work1] + stepsize: work2 = i else: cstep1.append(work1) cstep2.append(work2) work1 = i; work2 = i cstep1.append(work1) cstep2.append(work2) outdata = indata * 1.0 # comment keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) # clean up x-axis unit if status == 0: intime0 = float(int(tstart / 100) * 100.0) ptime = intime - intime0 xlab = 'BJD $-$ %d' % intime0 # clean up y-axis units if status == 0: pout = indata * 1.0 nrm = len(str(int(pout.max())))-1 pout = pout / 10**nrm ylab = '10$^%d$ e$^-$ s$^{-1}$' % nrm # data limits xmin = ptime.min() xmax = ptime.max() ymin = pout.min() ymax = pout.max() xr = xmax - xmin yr = ymax - ymin ptime = insert(ptime,[0],[ptime[0]]) ptime = append(ptime,[ptime[-1]]) pout = insert(pout,[0],[0.0]) pout = append(pout,0.0) # plot light curve if status == 0 and plot: plotLatex = True try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} rcParams.update(params) except: plotLatex = False if status == 0 and plot: pylab.figure(figsize=[xsize,ysize]) pylab.clf() # plot data ax = pylab.axes([0.06,0.1,0.93,0.87]) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) # rotate y labels by 90 deg labels = ax.get_yticklabels() setp(labels, 'rotation', 90, fontsize=12) pylab.plot(ptime,pout,color=lcolor,linestyle='-',linewidth=lwidth) fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha) xlabel(xlab, {'color' : 'k'}) if not plotLatex: ylab = '10**%d electrons/sec' % nrm ylabel(ylab, {'color' : 'k'}) grid() # loop over each time step, fit data, determine rms if status == 0: masterfit = indata * 0.0 mastersigma = zeros(len(masterfit)) functype = 'poly' + str(npoly) for i in range(len(cstep1)): pinit = [indata[cstep1[i]:cstep2[i]+1].mean()] if npoly > 0: for j in range(npoly): pinit.append(0.0) pinit = array(pinit,dtype='float32') try: coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip(functype,pinit,intime[cstep1[i]:cstep2[i]+1]-intime[cstep1[i]], indata[cstep1[i]:cstep2[i]+1],None,nsig,nsig,niter,logfile, verbose) for j in range(len(coeffs)): masterfit[cstep1[i]:cstep2[i]+1] += coeffs[j] * \ (intime[cstep1[i]:cstep2[i]+1] - intime[cstep1[i]])**j for j in range(cstep1[i],cstep2[i]+1): mastersigma[j] = sigma if plotfit: pylab.plot(plotx+intime[cstep1[i]]-intime0,ploty / 10**nrm, 'g',lw='3') except: for j in range(cstep1[i],cstep2[i]+1): masterfit[j] = indata[j] mastersigma[j] = 1.0e10 message = 'WARNING -- KEPOUTLIER: could not fit range ' message += str(intime[cstep1[i]]) + '-' + str(intime[cstep2[i]]) kepmsg.warn(None,message) # reject outliers if status == 0: rejtime = []; rejdata = []; naxis2 = 0 for i in range(len(masterfit)): if abs(indata[i] - masterfit[i]) > nsig * mastersigma[i] and i in cadencelis: rejtime.append(intime[i]) rejdata.append(indata[i]) if operation == 'replace': [rnd] = kepstat.randarray([masterfit[i]],[mastersigma[i]]) table[naxis2] = table[i] table.field(datacol)[naxis2] = rnd naxis2 += 1 else: table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] rejtime = array(rejtime,dtype='float64') rejdata = array(rejdata,dtype='float32') pylab.plot(rejtime-intime0,rejdata / 10**nrm,'ro') # plot ranges xlim(xmin-xr*0.01,xmax+xr*0.01) if ymin >= 0.0: ylim(ymin-yr*0.01,ymax+yr*0.01) else: ylim(1.0e-10,ymax+yr*0.01) # render plot if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() # write output file if status == 0: instr.writeto(outfile) # close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) # end time if (status == 0): message = 'KEPOUTLIER completed at' else: message = '\nKEPOUTLIER aborted at' kepmsg.clock(message,logfile,verbose)
def kepft(infile,outfile,fcol,pmin,pmax,nfreq,plot,clobber,verbose,logfile,status, cmdLine=False): ## startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 18 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 ## log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPFT -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'fcol='+fcol+' ' call += 'pmin='+str(pmin)+' ' call += 'pmax='+str(pmax)+' ' call += 'nfreq='+str(nfreq)+' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) ## start time kepmsg.clock('Start time is',logfile,verbose) ## test log file logfile = kepmsg.test(logfile) ## clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPFT: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile,message,verbose) ## open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) ## fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) ## read table columns if status == 0: try: barytime = instr[1].data.field('barytime') except: barytime, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose) signal, status = kepio.readfitscol(infile,instr[1].data,fcol,logfile,verbose) if status == 0: barytime = barytime + bjdref ## remove infinite data from time series if status == 0: incols = [barytime, signal] outcols = kepstat.removeinfinlc(signal, incols) barytime = outcols[0] signal = outcols[1] - median(outcols[1]) ## period to frequency conversion fmin = 1.0 / pmax fmax = 1.0 / pmin deltaf = (fmax - fmin) / nfreq ## loop through frequency steps; determine FT power if status == 0: fr, power = kepfourier.ft(barytime,signal,fmin,fmax,deltaf,True) ## write output file if status == 0: col1 = Column(name='FREQUENCY',format='E',unit='1/day',array=fr) col2 = Column(name='POWER',format='E',array=power) cols = ColDefs([col1,col2]) instr.append(new_table(cols)) instr[-1].header.update('EXTNAME','POWER SPECTRUM','extension name') instr.writeto(outfile) ## history keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) ## close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) ## data limits if status == 0: nrm = int(log10(power.max())) power = power / 10**nrm ylab = 'Power (x10$^{%d}$)' % nrm xmin = fr.min() xmax = fr.max() ymin = power.min() ymax = power.max() xr = xmax - xmin yr = ymax - ymin fr = insert(fr,[0],fr[0]) fr = append(fr,fr[-1]) power = insert(power,[0],0.0) power = append(power,0.0) ## plot power spectrum if status == 0 and plot: try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} rcParams.update(params) except: print 'ERROR -- KEPFT: install latex for scientific plotting' status = 1 if status == 0 and plot: pylab.figure(1,figsize=[xsize,ysize]) pylab.clf() pylab.axes([0.06,0.113,0.93,0.86]) pylab.plot(fr,power,color=lcolor,linestyle='-',linewidth=lwidth) fill(fr,power,color=fcolor,linewidth=0.0,alpha=falpha) xlim(xmin-xr*0.01,xmax+xr*0.01) if ymin-yr*0.01 <= 0.0: ylim(1.0e-10,ymax+yr*0.01) else: ylim(ymin-yr*0.01,ymax+yr*0.01) xlabel(r'Frequency (d$^{-1}$)', {'color' : 'k'}) ylabel(ylab, {'color' : 'k'}) grid() # render plot if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() ## end time if (status == 0): message = 'KEPFT completed at' else: message = '\nKEPFT aborted at' kepmsg.clock(message,logfile,verbose)
def kepsmooth(infile,outfile,datacol,function,fscale,plot,plotlab, clobber,verbose,logfile,status, cmdLine=False): ## startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 18 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 ## log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPSMOOTH -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+str(datacol)+' ' call += 'function='+str(function)+' ' call += 'fscale='+str(fscale)+' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' call += 'plotlab='+str(plotlab)+' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) ## start time kepmsg.clock('KEPSMOOTH started at',logfile,verbose) ## test log file logfile = kepmsg.test(logfile) ## clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPSMOOTH: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile,message,verbose) ## open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if cadence == 0.0: tstart, tstop, ncad, cadence, status = kepio.cadence(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence ## fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) ## read table structure if status == 0: table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) # read time and flux columns if status == 0: barytime, status = kepio.readtimecol(infile,table,logfile,verbose) if status == 0: flux, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose) # filter input data table if status == 0: try: nanclean = instr[1].header['NANCLEAN'] except: naxis2 = 0 for i in range(len(table.field(0))): if (numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i]) and flux[i] != 0.0): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] comment = 'NaN cadences removed from data' status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose) ## read table columns if status == 0: try: intime = instr[1].data.field('barytime') except: intime, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose) indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose) if status == 0: intime = intime + bjdref indata = indata / cadenom ## smooth data if status == 0: outdata = kepfunc.smooth(indata,fscale/(cadence/86400),function) ## comment keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) ## clean up x-axis unit if status == 0: intime0 = float(int(tstart / 100) * 100.0) if intime0 < 2.4e6: intime0 += 2.4e6 ptime = intime - intime0 xlab = 'BJD $-$ %d' % intime0 ## clean up y-axis units if status == 0: pout = indata * 1.0 pout2 = outdata * 1.0 nrm = len(str(int(numpy.nanmax(pout))))-1 pout = pout / 10**nrm pout2 = pout2 / 10**nrm ylab = '10$^%d$ %s' % (nrm, re.sub('_','-',plotlab)) ## data limits xmin = numpy.nanmin(ptime) xmax = numpy.nanmax(ptime) ymin = numpy.min(pout) ymax = numpy.nanmax(pout) xr = xmax - xmin yr = ymax - ymin ptime = insert(ptime,[0],[ptime[0]]) ptime = append(ptime,[ptime[-1]]) pout = insert(pout,[0],[0.0]) pout = append(pout,0.0) pout2 = insert(pout2,[0],[0.0]) pout2 = append(pout2,0.0) ## plot light curve if status == 0 and plot: try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} rcParams.update(params) except: print 'ERROR -- KEPSMOOTH: install latex for scientific plotting' status = 1 if status == 0 and plot: pylab.figure(1,figsize=[xsize,ysize]) # delete any fossil plots in the matplotlib window pylab.clf() # position axes inside the plotting window ax = pylab.subplot(111) pylab.subplots_adjust(0.06,0.1,0.93,0.88) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) # rotate y labels by 90 deg labels = ax.get_yticklabels() setp(labels, 'rotation', 90) pylab.plot(ptime[1:-1],pout[1:-1],color='#ff9900',linestyle='-',linewidth=lwidth) fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha) pylab.plot(ptime,pout2,color=lcolor,linestyle='-',linewidth=lwidth*4.0) pylab.xlabel(xlab, {'color' : 'k'}) pylab.ylabel(ylab, {'color' : 'k'}) xlim(xmin-xr*0.01,xmax+xr*0.01) if ymin >= 0.0: ylim(ymin-yr*0.01,ymax+yr*0.01) else: ylim(1.0e-10,ymax+yr*0.01) pylab.grid() # render plot if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() ## write output file if status == 0: for i in range(len(outdata)): instr[1].data.field(datacol)[i] = outdata[i] instr.writeto(outfile) ## close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) ## end time if (status == 0): message = 'KEPSMOOTH completed at' else: message = '\nKEPSMOOTH aborted at' kepmsg.clock(message,logfile,verbose)
def keptest(infile,outfile,datacol,ploterr,errcol,quality, lcolor,lwidth,fcolor,falpha,labelsize,ticksize, xsize,ysize,fullrange,plotgrid,verbose,logfile,status): # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPTEST -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+datacol+' ' perr = 'n' if (ploterr): perr = 'y' call += 'ploterr='+perr+ ' ' call += 'errcol='+errcol+' ' qual = 'n' if (quality): qual = 'y' call += 'quality='+qual+ ' ' call += 'lcolor='+str(lcolor)+' ' call += 'lwidth='+str(lwidth)+' ' call += 'fcolor='+str(fcolor)+' ' call += 'falpha='+str(falpha)+' ' call += 'labelsize='+str(labelsize)+' ' call += 'ticksize='+str(ticksize)+' ' call += 'xsize='+str(xsize)+' ' call += 'ysize='+str(ysize)+' ' frange = 'n' if (fullrange): frange = 'y' call += 'fullrange='+frange+ ' ' pgrid = 'n' if (plotgrid): pgrid = 'y' call += 'plotgrid='+pgrid+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPTEST started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # open input file if status == 0: struct, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(struct,infile,logfile,verbose,status) # read table structure if status == 0: table, status = kepio.readfitstab(infile,struct[1],logfile,verbose) # read table columns if status == 0: intime, status = kepio.readtimecol(infile,table,logfile,verbose) #intime += bjdref indata, status = kepio.readfitscol(infile,table,datacol,logfile,verbose) if (ploterr): indataerr, status = kepio.readfitscol(infile,table,errcol,logfile,verbose) if status == 0: gaps = zeros(len(indata)) # read table quality column if status == 0 and quality: try: qualtest = table.field('SAP_QUALITY') except: message = 'ERROR -- KEPTEST: no SAP_QUALITY column found in file ' + infile message += '. Use keptest quality=n' status = kepmsg.err(logfile,message,verbose) if status == 0 and quality: gaps, status = kepio.readfitscol(infile,table,'SAP_QUALITY',logfile,verbose) # close infile if status == 0: status = kepio.closefits(struct,logfile,verbose) # remove infinities and bad data if status == 0: barytime = []; data = []; dataerr = [] if 'ap_raw' in datacol or 'ap_corr' in datacol: cadenom = cadence else: cadenom = 1.0 for i in range(len(intime)): if numpy.isfinite(indata[i]) and indata[i] != 0.0 and gaps[i] == 0: barytime.append(intime[i]) data.append(indata[i] / cadenom) if (ploterr): dataerr.append(indataerr[i]) barytime = numpy.array(barytime,dtype='float64') data = numpy.array(data,dtype='float64') if (ploterr): dataerr = numpy.array(dataerr,dtype='float64') # clean up x-axis unit if status == 0: barytime0 = float(int(tstart / 100) * 100.0) barytime -= barytime0 xlab = 'BJD $-$ %d' % barytime0 # clean up y-axis units try: nrm = len(str(int(data.max())))-1 except: nrm = 0 data = data / 10**nrm ylab1 = '10$^%d$ e$^-$ s$^{-1}$' % nrm # data limits xmin = barytime.min() xmax = barytime.max() ymin = data.min() ymax = data.max() xr = xmax - xmin yr = ymax - ymin data[0] = ymin - yr * 2.0 data[-1] = ymin - yr * 2.0 if fullrange: data[0] = 0.0 data[-1] = 0.0 # define plot formats try: rc('text', usetex=True) rc('font',**{'family':'sans-serif','sans-serif':['sans-serif']}) params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} pylab.rcParams.update(params) except: pass # define size of plot on monitor screen pylab.figure(figsize=[xsize,ysize]) # delete any fossil plots in the matplotlib window pylab.clf() # position axes inside the plotting window ax = pylab.axes([0.06,0.1,0.93,0.88]) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) # rotate y labels by 90 deg labels = ax.get_yticklabels() setp(labels, 'rotation', 90, fontsize=12) # plot data time series as an unbroken line, retaining data gaps ltime = []; ldata = []; ldataerr = []; ldatagaps = [] dt = 0 # SVR svr_rbf = SVR(kernel='rbf', C=1, gamma=0.1) svr_lin = SVR(kernel='linear', C=1) svr_poly = SVR(kernel='poly', C=1, degree=2) svr_ltime = []; svr_ldata = [] for i in range(len(indata)): if i > 0: if numpy.isfinite(indata[i]) and indata[i] != 0.0 : # print intime[i], " ", indata[i] ltime.append(intime[i]) ldata.append(indata[i]) svr_ltime.append([intime[i]]) ltime = array(ltime, dtype=float64) ldata = array(ldata, dtype=float64) if len(ldata) > 0 and len(ltime) > 0 : pylab.scatter (ltime, ldata, s=1, color=lcolor, label='Data:Input lightcurve') svr_ltime = array(svr_ltime, dtype='float64') svr_ldata = array(ldata, dtype='float64') svr_ldata_rbf = svr_rbf.fit(svr_ltime, svr_ldata).predict(svr_ltime) ## Get the transits! # Identify the difference of data min. and the regression line # = An approximate initial dip value. ldata_min = min(ldata) ldata_min_i = ldata.tolist().index(ldata_min) fluxdip = svr_ldata_rbf[ldata_min_i] - ldata_min # fluxthresh = (svr_ldata_rbf[ldata_min_i] + ldata_min ) / 2.0 print "ldata min = ", ldata_min, "fluxdip =", fluxdip thresh_x = []; thresh_y = []; # Sequentially scan the inputs, look for y-points below the # initial mean. Group the points i = 0 while i < len(ldata): # print intime[i], " ", indata[i] fluxmin = fluxthresh = svr_ldata_rbf[i] - fluxdip/2.0 if ldata[i] < fluxthresh: thresh_y.append(fluxthresh); thresh_x.append(ltime[i]) # Identify the local min, calculate difference with regression line. while i < len(ldata) and ldata[i] < fluxthresh : if ldata[i] < fluxmin: fluxmin = ldata[i] fluxmin_i = i i += 1 # We got the local min, now plot the line, # converge the dip value with the newly calculated one. pylab.plot([ ltime[fluxmin_i], ltime[fluxmin_i] ], [ ldata[fluxmin_i], svr_ldata_rbf[fluxmin_i] ], 'r-', linewidth=1) fluxdip = (fluxdip + svr_ldata_rbf[fluxmin_i] - fluxmin)/2.0 i += 1 pylab.plot(thresh_x, thresh_y, c='c', label='Adapted transit threshold') pylab.scatter(thresh_x, thresh_y, c='k', s=1) pylab.plot(svr_ltime, svr_ldata_rbf, c='g', label='Cum. RBF model') if (ploterr): ldataerr = numpy.array(ldataerr,dtype='float32') # plot labels pylab.xlabel(xlab, {'color' : 'k'}) try: pylab.ylabel(ylab1, {'color' : 'k'}) except: ylab1 = '10**%d e-/s' % nrm pylab.ylabel(ylab1, {'color' : 'k'}) # make grid on plot if plotgrid: pylab.grid() # paint plot into window pylab.legend() pylab.draw() # save plot to file if status == 0 and outfile.lower() != 'none': pylab.savefig(outfile)
def kepsff(infile,outfile,datacol,cenmethod,stepsize,npoly_cxcy,sigma_cxcy,npoly_ardx, npoly_dsdt,sigma_dsdt,npoly_arfl,sigma_arfl,plotres,clobber,verbose,logfile, status,cmdLine=False): # startup parameters status = 0 labelsize = 16 ticksize = 14 xsize = 20 ysize = 8 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 seterr(all="ignore") # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPSFF -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+datacol+' ' call += 'cenmethod='+cenmethod+' ' call += 'stepsize='+str(stepsize)+' ' call += 'npoly_cxcy='+str(npoly_cxcy)+' ' call += 'sigma_cxcy='+str(sigma_cxcy)+' ' call += 'npoly_ardx='+str(npoly_ardx)+' ' call += 'npoly_dsdt='+str(npoly_dsdt)+' ' call += 'sigma_dsdt='+str(sigma_dsdt)+' ' call += 'npoly_arfl='+str(npoly_arfl)+' ' call += 'sigma_arfl='+str(sigma_arfl)+' ' savep = 'n' if (plotres): savep = 'y' call += 'plotres='+savep+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPSFF started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPSFF: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile,message,verbose) # open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # read table structure if status == 0: table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) # determine sequence of windows in time if status == 0: frametim = instr[1].header['FRAMETIM'] num_frm = instr[1].header['NUM_FRM'] exptime = frametim * num_frm / 86400 tstart = table.field('TIME')[0] tstop = table.field('TIME')[-1] winedge = arange(tstart,tstop,stepsize) if tstop > winedge[-1] + stepsize / 2: winedge = append(winedge,tstop) else: winedge[-1] = tstop winedge = (winedge - tstart) / exptime winedge = winedge.astype(int) if len(table.field('TIME')) > winedge[-1] + 1: winedge = append(winedge,len(table.field('TIME'))) elif len(table.field('TIME')) < winedge[-1]: winedge[-1] = len(table.field('TIME')) # step through the time windows if status == 0: for iw in range(1,len(winedge)): t1 = winedge[iw-1] t2 = winedge[iw] # filter input data table work1 = numpy.array([table.field('TIME')[t1:t2], table.field('CADENCENO')[t1:t2], table.field(datacol)[t1:t2], table.field('MOM_CENTR1')[t1:t2], table.field('MOM_CENTR2')[t1:t2], table.field('PSF_CENTR1')[t1:t2], table.field('PSF_CENTR2')[t1:t2], table.field('SAP_QUALITY')[t1:t2]],'float64') work1 = numpy.rot90(work1,3) work2 = work1[~numpy.isnan(work1).any(1)] work2 = work2[(work2[:,0] == 0.0) | (work2[:,0] > 1e5)] # assign table columns intime = work2[:,7] + bjdref cadenceno = work2[:,6].astype(int) indata = work2[:,5] mom_centr1 = work2[:,4] mom_centr2 = work2[:,3] psf_centr1 = work2[:,2] psf_centr2 = work2[:,1] sap_quality = work2[:,0] if cenmethod == 'moments': centr1 = copy(mom_centr1) centr2 = copy(mom_centr2) else: centr1 = copy(psf_centr1) centr2 = copy(psf_centr2) # fit centroid data with low-order polynomial cfit = zeros((len(centr2))) csig = zeros((len(centr2))) functype = 'poly' + str(npoly_cxcy) pinit = array([nanmean(centr2)]) if npoly_cxcy > 0: for j in range(npoly_cxcy): pinit = append(pinit,0.0) try: coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip(functype,pinit,centr1,centr2,None,sigma_cxcy,sigma_cxcy,10,logfile,verbose) for j in range(len(coeffs)): cfit += coeffs[j] * numpy.power(centr1,j) csig[:] = sigma except: message = 'ERROR -- KEPSFF: could not fit centroid data with polynomial. There are no data points within the range of input rows %d - %d. Either increase the stepsize (with an appreciation of the effects on light curve quality this will have!), or better yet - cut the timeseries up to remove large gaps in the input light curve using kepclip.' % (t1,t2) status = kepmsg.err(logfile,message,verbose) # sys.exit('') os._exit(1) # reject outliers time_good = array([],'float64') centr1_good = array([],'float32') centr2_good = array([],'float32') flux_good = array([],'float32') cad_good = array([],'int') for i in range(len(cfit)): if abs(centr2[i] - cfit[i]) < sigma_cxcy * csig[i]: time_good = append(time_good,intime[i]) centr1_good = append(centr1_good,centr1[i]) centr2_good = append(centr2_good,centr2[i]) flux_good = append(flux_good,indata[i]) cad_good = append(cad_good,cadenceno[i]) # covariance matrix for centroid time series centr = concatenate([[centr1_good] - mean(centr1_good), [centr2_good] - mean(centr2_good)]) covar = cov(centr) # eigenvector eigenvalues of covariance matrix [eval, evec] = numpy.linalg.eigh(covar) ex = arange(-10.0,10.0,0.1) epar = evec[1,1] / evec[0,1] * ex enor = evec[1,0] / evec[0,0] * ex ex = ex + mean(centr1) epar = epar + mean(centr2_good) enor = enor + mean(centr2_good) # rotate centroid data centr_rot = dot(evec.T,centr) # fit polynomial to rotated centroids rfit = zeros((len(centr2))) rsig = zeros((len(centr2))) functype = 'poly' + str(npoly_ardx) pinit = array([nanmean(centr_rot[0,:])]) pinit = array([1.0]) if npoly_ardx > 0: for j in range(npoly_ardx): pinit = append(pinit,0.0) try: coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip(functype,pinit,centr_rot[1,:],centr_rot[0,:],None,100.0,100.0,1, logfile,verbose) except: message = 'ERROR -- KEPSFF: could not fit rotated centroid data with polynomial' status = kepmsg.err(logfile,message,verbose) rx = linspace(nanmin(centr_rot[1,:]),nanmax(centr_rot[1,:]),100) ry = zeros((len(rx))) for i in range(len(coeffs)): ry = ry + coeffs[i] * numpy.power(rx,i) # calculate arclength of centroids s = zeros((len(rx))) for i in range(1,len(s)): work3 = ((ry[i] - ry[i-1]) / (rx[i] - rx[i-1]))**2 s[i] = s[i-1] + math.sqrt(1.0 + work3) * (rx[i] - rx[i-1]) # fit arclength as a function of strongest eigenvector sfit = zeros((len(centr2))) ssig = zeros((len(centr2))) functype = 'poly' + str(npoly_ardx) pinit = array([nanmean(s)]) if npoly_ardx > 0: for j in range(npoly_ardx): pinit = append(pinit,0.0) try: acoeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip(functype,pinit,rx,s,None,100.0,100.0,100,logfile,verbose) except: message = 'ERROR -- KEPSFF: could not fit rotated centroid data with polynomial' status = kepmsg.err(logfile,message,verbose) # correlate arclength with detrended flux t = copy(time_good) c = copy(cad_good) y = copy(flux_good) z = centr_rot[1,:] x = zeros((len(z))) for i in range(len(acoeffs)): x = x + acoeffs[i] * numpy.power(z,i) # calculate time derivative of arclength s dx = zeros((len(x))) for i in range(1,len(x)): dx[i] = (x[i] - x[i-1]) / (t[i] - t[i-1]) dx[0] = dx[1] # fit polynomial to derivative and flag outliers (thruster firings) dfit = zeros((len(dx))) dsig = zeros((len(dx))) functype = 'poly' + str(npoly_dsdt) pinit = array([nanmean(dx)]) if npoly_dsdt > 0: for j in range(npoly_dsdt): pinit = append(pinit,0.0) try: dcoeffs, errors, covar, iiter, dsigma, chi2, dof, fit, dumx, dumy, status = \ kepfit.lsqclip(functype,pinit,t,dx,None,3.0,3.0,10,logfile,verbose) except: message = 'ERROR -- KEPSFF: could not fit rotated centroid data with polynomial' status = kepmsg.err(logfile,message,verbose) for i in range(len(dcoeffs)): dfit = dfit + dcoeffs[i] * numpy.power(t,i) centr1_pnt = array([],'float32') centr2_pnt = array([],'float32') time_pnt = array([],'float64') flux_pnt = array([],'float32') dx_pnt = array([],'float32') s_pnt = array([],'float32') time_thr = array([],'float64') flux_thr = array([],'float32') dx_thr = array([],'float32') thr_cadence = [] for i in range(len(t)): if dx[i] < dfit[i] + sigma_dsdt * dsigma and dx[i] > dfit[i] - sigma_dsdt * dsigma: time_pnt = append(time_pnt,time_good[i]) flux_pnt = append(flux_pnt,flux_good[i]) dx_pnt = append(dx_pnt,dx[i]) s_pnt = append(s_pnt,x[i]) centr1_pnt = append(centr1_pnt,centr1_good[i]) centr2_pnt = append(centr2_pnt,centr2_good[i]) else: time_thr = append(time_thr,time_good[i]) flux_thr = append(flux_thr,flux_good[i]) dx_thr = append(dx_thr,dx[i]) thr_cadence.append(cad_good[i]) # fit arclength-flux correlation cfit = zeros((len(time_pnt))) csig = zeros((len(time_pnt))) functype = 'poly' + str(npoly_arfl) pinit = array([nanmean(flux_pnt)]) if npoly_arfl > 0: for j in range(npoly_arfl): pinit = append(pinit,0.0) try: ccoeffs, errors, covar, iiter, sigma, chi2, dof, fit, plx, ply, status = \ kepfit.lsqclip(functype,pinit,s_pnt,flux_pnt,None,sigma_arfl,sigma_arfl,100,logfile,verbose) except: message = 'ERROR -- KEPSFF: could not fit rotated centroid data with polynomial' status = kepmsg.err(logfile,message,verbose) # correction factors for unfiltered data centr = concatenate([[centr1] - mean(centr1_good), [centr2] - mean(centr2_good)]) centr_rot = dot(evec.T,centr) yy = copy(indata) zz = centr_rot[1,:] xx = zeros((len(zz))) cfac = zeros((len(zz))) for i in range(len(acoeffs)): xx = xx + acoeffs[i] * numpy.power(zz,i) for i in range(len(ccoeffs)): cfac = cfac + ccoeffs[i] * numpy.power(xx,i) # apply correction to flux time-series out_detsap = indata / cfac # split time-series data for plotting tim_gd = array([],'float32') flx_gd = array([],'float32') tim_bd = array([],'float32') flx_bd = array([],'float32') for i in range(len(indata)): if intime[i] in time_pnt: tim_gd = append(tim_gd,intime[i]) flx_gd = append(flx_gd,out_detsap[i]) else: tim_bd = append(tim_bd,intime[i]) flx_bd = append(flx_bd,out_detsap[i]) # plot style and size status = kepplot.define(labelsize,ticksize,logfile,verbose) pylab.figure(figsize=[xsize,ysize]) pylab.clf() # plot x-centroid vs y-centroid ax = kepplot.location([0.04,0.57,0.16,0.41]) # plot location px = copy(centr1) # clean-up x-axis units py = copy(centr2) # clean-up y-axis units pxmin = px.min() pxmax = px.max() pymin = py.min() pymax = py.max() pxr = pxmax - pxmin pyr = pymax - pymin pad = 0.05 if pxr > pyr: dely = (pxr - pyr) / 2 xlim(pxmin - pxr * pad, pxmax + pxr * pad) ylim(pymin - dely - pyr * pad, pymax + dely + pyr * pad) else: delx = (pyr - pxr) / 2 ylim(pymin - pyr * pad, pymax + pyr * pad) xlim(pxmin - delx - pxr * pad, pxmax + delx + pxr * pad) pylab.plot(px,py,color='#980000',markersize=5,marker='D',ls='') # plot data pylab.plot(centr1_good,centr2_good,color='#009900',markersize=5,marker='D',ls='') # plot data pylab.plot(ex,epar,color='k',ls='-') pylab.plot(ex,enor,color='k',ls='-') for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(14) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(14) kepplot.labels('CCD Column','CCD Row','k',16) # labels pylab.grid() # grid lines # plot arclength fits vs drift along strongest eigenvector ax = kepplot.location([0.24,0.57,0.16,0.41]) # plot location px = rx - rx[0] py = s - rx - (s[0] - rx[0]) # clean-up y-axis units py, ylab, status = kepplot.cleany(py,1.0,logfile,verbose) # clean-up x-axis units kepplot.RangeOfPlot(px,py,0.05,False) # data limits pylab.plot(px,py,color='#009900',markersize=5,marker='D',ls='') px = plotx - rx[0] # clean-up x-axis units py = ploty-plotx - (s[0] - rx[0]) # clean-up y-axis units py, ylab, status = kepplot.cleany(py,1.0,logfile,verbose) # clean-up x-axis units pylab.plot(px,py,color='r',ls='-',lw=3) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(14) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(14) ylab = re.sub(' e\S+',' pixels)',ylab) ylab = re.sub(' s\S+','',ylab) ylab = re.sub('Flux','s $-$ x\'',ylab) kepplot.labels('Linear Drift [x\'] (pixels)',ylab,'k',16) # labels pylab.grid() # grid lines # plot time derivative of arclength s ax = kepplot.location([0.04,0.08,0.16,0.41]) # plot location px = copy(time_pnt) py = copy(dx_pnt) px, xlab, status = kepplot.cleanx(px,logfile,verbose) # clean-up x-axis units kepplot.RangeOfPlot(px,dx,0.05,False) # data limits pylab.plot(px,py,color='#009900',markersize=5,marker='D',ls='') try: px = copy(time_thr) py = copy(dx_thr) px, xlab, status = kepplot.cleanx(px,logfile,verbose) # clean-up x-axis units pylab.plot(px,py,color='#980000',markersize=5,marker='D',ls='') except: pass px = copy(t) py = copy(dfit) px, xlab, status = kepplot.cleanx(px,logfile,verbose) # clean-up x-axis units pylab.plot(px,py,color='r',ls='-',lw=3) py = copy(dfit+sigma_dsdt*dsigma) pylab.plot(px,py,color='r',ls='--',lw=3) py = copy(dfit-sigma_dsdt*dsigma) pylab.plot(px,py,color='r',ls='--',lw=3) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(14) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(14) kepplot.labels(xlab,'ds/dt (pixels day$^{-1}$)','k',16) # labels pylab.grid() # grid lines # plot relation of arclength vs detrended flux ax = kepplot.location([0.24,0.08,0.16,0.41]) # plot location px = copy(s_pnt) py = copy(flux_pnt) py, ylab, status = kepplot.cleany(py,1.0,logfile,verbose) # clean-up x-axis units kepplot.RangeOfPlot(px,py,0.05,False) # data limits pylab.plot(px,py,color='#009900',markersize=5,marker='D',ls='') pylab.plot(plx,ply,color='r',ls='-',lw=3) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(14) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(14) kepplot.labels('Arclength [s] (pixels)',ylab,'k',16) # labels pylab.grid() # grid lines # plot aperture photometry kepplot.location([0.44,0.53,0.55,0.45]) # plot location px, xlab, status = kepplot.cleanx(intime,logfile,verbose) # clean-up x-axis units py, ylab, status = kepplot.cleany(indata,1.0,logfile,verbose) # clean-up x-axis units kepplot.RangeOfPlot(px,py,0.01,True) # data limits kepplot.plot1d(px,py,cadence,lcolor,lwidth,fcolor,falpha,True) # plot data kepplot.labels(' ',ylab,'k',16) # labels pylab.setp(pylab.gca(),xticklabels=[]) # remove x- or y-tick labels kepplot.labels(xlab,re.sub('Flux','Aperture Flux',ylab),'k',16) # labels pylab.grid() # grid lines # Plot corrected photometry kepplot.location([0.44,0.08,0.55,0.45]) # plot location kepplot.RangeOfPlot(px,py,0.01,True) # data limits px, xlab, status = kepplot.cleanx(tim_gd,logfile,verbose) # clean-up x-axis units py, ylab, status = kepplot.cleany(flx_gd,1.0,logfile,verbose) # clean-up x-axis units kepplot.plot1d(px,py,cadence,lcolor,lwidth,fcolor,falpha,True) # plot data try: px, xlab, status = kepplot.cleanx(tim_bd,logfile,verbose) # clean-up x-axis units py = copy(flx_bd) pylab.plot(px,py,color='#980000',markersize=5,marker='D',ls='') except: pass kepplot.labels(xlab,re.sub('Flux','Corrected Flux',ylab),'k',16) # labels pylab.grid() # grid lines # render plot if plotres: kepplot.render(cmdLine) # save plot to file if plotres: pylab.savefig(re.sub('.fits','_%d.png' % (iw + 1),outfile)) # correct fluxes within the output file intime = work1[:,7] + bjdref cadenceno = work1[:,6].astype(int) indata = work1[:,5] mom_centr1 = work1[:,4] mom_centr2 = work1[:,3] psf_centr1 = work1[:,2] psf_centr2 = work1[:,1] centr1 = copy(mom_centr1) centr2 = copy(mom_centr2) centr = concatenate([[centr1] - mean(centr1_good), [centr2] - mean(centr2_good)]) centr_rot = dot(evec.T,centr) yy = copy(indata) zz = centr_rot[1,:] xx = zeros((len(zz))) cfac = zeros((len(zz))) for i in range(len(acoeffs)): xx = xx + acoeffs[i] * numpy.power(zz,i) for i in range(len(ccoeffs)): cfac = cfac + ccoeffs[i] * numpy.power(xx,i) out_detsap = yy / cfac instr[1].data.field('SAP_FLUX')[t1:t2] /= cfac instr[1].data.field('PDCSAP_FLUX')[t1:t2] /= cfac try: instr[1].data.field('DETSAP_FLUX')[t1:t2] /= cfac except: pass # add quality flag to output file for thruster firings for i in range(len(intime)): if cadenceno[i] in thr_cadence: instr[1].data.field('SAP_QUALITY')[t1+i] += 131072 # write output file if status == 0: instr.writeto(outfile) # close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) # end time if (status == 0): message = 'KEPSFF completed at' else: message = '\nKEPSFF aborted at' kepmsg.clock(message,logfile,verbose)
def kepbin(infile,outfile,fluxcol,do_nbin,nbins,do_binwidth,binwidth, do_ownbins,binfile,method,interpm,plot,clobber,verbose,logfile,status): """ Setup the kepbin environment """ # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPBIN -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'fluxcol='+fluxcol+ ' ' donbin = 'n' if (do_nbin): donbin = 'y' call += 'donbin='+donbin+ ' ' dobinwidth = 'n' if (do_binwidth): dobinwidth = 'y' call += 'dbinwidth='+dobinwidth+ ' ' doownbin = 'n' if (do_ownbins): doownbin = 'y' call += 'doownbin='+doownbin+ ' ' call += 'method='+method+' ' call += 'interpm='+interpm+' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPCLIP started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPCLIP: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile,message,verbose) # open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr, infile,logfile,verbose,status) # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # input data if status == 0: table = instr[1].data # read time and flux columns date = table.field('barytime') flux = table.field(fluxcol) #cut out infinites and zero flux columns date,flux = cutBadData(date,flux) if do_nbin: bdate,bflux = bin_funct(date,flux,nbins=nbins ,method=method,interpm=interpm) elif do_binwidth: bdate,bflux = bin_funct(date,flux,binwidth=binwidth ,method=method,interpm=interpm) elif do_ownbins: filepointer = open(binfile,'r') ownbins = [] for line in filepointer: splitted = line.split() ownbins.append(float(splitted[0])) ownbins = n.array(ownbins) bdate,bflux = bin_funct(date,flux,ownbins=ownbins ,method=method,interpm=interpm) if plot: do_plot(bdate,bflux) if status == 0: col1 = pyfits.Column(name='bdate',format='E',unit='day',array=bdate) col2 = pyfits.Column(name='bflux',format='E',unit='e-/cadence',array=bflux) cols = pyfits.ColDefs([col1,col2]) instr.append(pyfits.new_table(cols)) instr[-1].header.update('EXTNAME','BINNED DATA','extension name') instr.writeto(outfile) # close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) # end time if (status == 0): message = 'KEPBIN completed at' else: message = '\nKEPBIN aborted at' kepmsg.clock(message,logfile,verbose)
def keptimefix(infile,outfile,clobber,verbose,logfile,status,cmdLine=False): """ All Kepler light curve and target pixel files with version numbers 5.0 contain an error in the time stamps. This was fixed in the light curve with version 5.0 (at MAST after May 2013). The timescale for fixing the target pixel files is unclear but in the mean time this script will fix the target pixel file time stamps and make the times consistent with the light curve files. The error in Q0-13 can be corrected by adding 66.184s. During Q14 there was a leap second added Q15+ can be corrected by adding 67.184s. This tool fixes the time stamp accordingly. inputs infile - the name of the input target pixel file output - the name of the output target pixel file optional clobber (default=False) - overwrite a file with the stame name as outfile. """ # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPTIMEFIX -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPTIMEFIX started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPTIMEFIX: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile,message,verbose) instr, status = kepio.openfits(infile,'readonly',logfile,verbose) creator = instr[0].header['CREATOR'] if creator.find('TargetPixelExporterPipelineModule') < 0: message = 'ERROR -- KEPTIMEFIX: this file is not a target pixel file' status = kepmsg.err(logfile,message,verbose) if status == 0: header_ext1 = instr[1].header.ascardlist() data_ext1 = instr[1].data fileversion = instr[0].header['FILEVER'] if float(fileversion) > 4.0: message = 'ERROR -- KEPTIMEFIX: no time fix needed for this file. FILEVER > 4.0' status = kepmsg.err(logfile,message,verbose) sys.exit(0) quarter = instr[0].header['QUARTER'] if instr[0].header['OBSMODE'] == 'long cadence': cadencetype = 'L' elif instr[0].header['OBSMODE'] == 'short cadence': cadencetype = 'S' TIME_wrong = data_ext1.field('TIME') CADNUM = data_ext1.field('CADENCENO') TIMECORR_old = data_ext1.field('TIMECORR') ## update headers ##TSTART, TSTART, EXPOSURE, TELAPSE, LIVETIME ##DATE-OBS, DATE-END if cadencetype == 'L': offset = np.where(CADNUM <= 57139,66.184,67.184) / 86400. elif cadencetype == 'S': offset = np.where(CADNUM <= 1702663,66.184,67.184) / 86400. TIME_right = TIME_wrong + offset TIMECORR_new = TIMECORR_old + offset #tcol = pyfits.Column(name='TIME',format='D14.7', # array=TIME_right, unit = 'BJD - 2454833', disp='D14.7') #instr[1].columns.change_attrib('TIME',array,TIME_right) #cols = instr[1].data.columns + tcol instr[1].data['TIME'][:] = TIME_right #we decided not to use the updated timecorr because #it is different from the LC FITS files by ~1 ms. instr[1].data['TIMECORR'][:] = np.nan * np.empty(len(TIMECORR_old)) #instr[1] = pyfits.new_table(cols,header=instr[1].header) #now to fix the header tstart_right = instr[1].header['TSTART'] + offset[0] tstop_right = instr[1].header['TSTOP'] + offset[-1] telapse_right = tstop_right - tstart_right instr[1].header['TSTART'] = tstart_right instr[1].header['TSTOP'] = tstop_right instr[1].header['TELAPSE'] = telapse_right deadc = instr[1].header['DEADC'] instr[1].header['LIVETIME'] = telapse_right * deadc #get the date-obs dstart = instr[1].header['DATE-OBS'] dend = instr[1].header['DATE-END'] ## This datetime stuff is not nessessary!!!! #dts = datetime.datetime.strptime(dstart, "%Y-%m-%dT%H:%M:%S.%fZ") #dte = datetime.datetime.strptime(dend, "%Y-%m-%dT%H:%M:%S.%fZ") #offset_s1 = datetime.timedelta(seconds=66.184) #offset_s2 = datetime.timedelta(seconds=67.184) #if quarter <14: # date_obs_new = dts + offset_s1 # date_end_new = dte + offset_s1 #if quarter > 14: # date_obs_new = dts + offset_s2 # date_end_new = dte + offset_s2 #if quarter == 14: # date_obs_new = dts + offset_s1 # date_end_new = dte + offset_s2 #instr[1].header['DATE-OBS'] = str(date_obs_new)[:-3] + 'Z' #instr[1].header['DATE-END'] = str(date_end_new)[:-3] + 'Z' instr.writeto(outfile) #if quarter == 14: # livtime = instr[1].header['LIVTIME'] # livtime += 1. # exposure += 1. # end time if (status == 0): message = 'KEPTIMEFIX completed at' else: message = '\nKEPTIMEFIX aborted at' kepmsg.clock(message,logfile,verbose)
def kepsff(infile, outfile, datacol, cenmethod, stepsize, npoly_cxcy, sigma_cxcy, npoly_ardx, npoly_dsdt, sigma_dsdt, npoly_arfl, sigma_arfl, plotres, clobber, verbose, logfile, status, cmdLine=False): # startup parameters status = 0 labelsize = 16 ticksize = 14 xsize = 20 ysize = 8 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 seterr(all="ignore") # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPSFF -- ' call += 'infile=' + infile + ' ' call += 'outfile=' + outfile + ' ' call += 'datacol=' + datacol + ' ' call += 'cenmethod=' + cenmethod + ' ' call += 'stepsize=' + str(stepsize) + ' ' call += 'npoly_cxcy=' + str(npoly_cxcy) + ' ' call += 'sigma_cxcy=' + str(sigma_cxcy) + ' ' call += 'npoly_ardx=' + str(npoly_ardx) + ' ' call += 'npoly_dsdt=' + str(npoly_dsdt) + ' ' call += 'sigma_dsdt=' + str(sigma_dsdt) + ' ' call += 'npoly_arfl=' + str(npoly_arfl) + ' ' call += 'sigma_arfl=' + str(sigma_arfl) + ' ' savep = 'n' if (plotres): savep = 'y' call += 'plotres=' + savep + ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber=' + overwrite + ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose=' + chatter + ' ' call += 'logfile=' + logfile kepmsg.log(logfile, call + '\n', verbose) # start time kepmsg.clock('KEPSFF started at', logfile, verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPSFF: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile, message, verbose) # open input file if status == 0: instr, status = kepio.openfits(infile, 'readonly', logfile, verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys( instr, infile, logfile, verbose, status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr, file, logfile, verbose) # read table structure if status == 0: table, status = kepio.readfitstab(infile, instr[1], logfile, verbose) # determine sequence of windows in time if status == 0: frametim = instr[1].header['FRAMETIM'] num_frm = instr[1].header['NUM_FRM'] exptime = frametim * num_frm / 86400 tstart = table.field('TIME')[0] tstop = table.field('TIME')[-1] winedge = arange(tstart, tstop, stepsize) if tstop > winedge[-1] + stepsize / 2: winedge = append(winedge, tstop) else: winedge[-1] = tstop winedge = (winedge - tstart) / exptime winedge = winedge.astype(int) if len(table.field('TIME')) > winedge[-1] + 1: winedge = append(winedge, len(table.field('TIME'))) elif len(table.field('TIME')) < winedge[-1]: winedge[-1] = len(table.field('TIME')) # step through the time windows if status == 0: for iw in range(1, len(winedge)): t1 = winedge[iw - 1] t2 = winedge[iw] # filter input data table work1 = numpy.array([ table.field('TIME')[t1:t2], table.field('CADENCENO')[t1:t2], table.field(datacol)[t1:t2], table.field('MOM_CENTR1')[t1:t2], table.field('MOM_CENTR2')[t1:t2], table.field('PSF_CENTR1')[t1:t2], table.field('PSF_CENTR2')[t1:t2], table.field('SAP_QUALITY')[t1:t2] ], 'float64') work1 = numpy.rot90(work1, 3) work2 = work1[~numpy.isnan(work1).any(1)] work2 = work2[(work2[:, 0] == 0.0) | (work2[:, 0] > 1e5)] # assign table columns intime = work2[:, 7] + bjdref cadenceno = work2[:, 6].astype(int) indata = work2[:, 5] mom_centr1 = work2[:, 4] mom_centr2 = work2[:, 3] psf_centr1 = work2[:, 2] psf_centr2 = work2[:, 1] sap_quality = work2[:, 0] if cenmethod == 'moments': centr1 = copy(mom_centr1) centr2 = copy(mom_centr2) else: centr1 = copy(psf_centr1) centr2 = copy(psf_centr2) # fit centroid data with low-order polynomial cfit = zeros((len(centr2))) csig = zeros((len(centr2))) functype = 'poly' + str(npoly_cxcy) pinit = array([nanmean(centr2)]) if npoly_cxcy > 0: for j in range(npoly_cxcy): pinit = append(pinit, 0.0) try: coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip(functype,pinit,centr1,centr2,None,sigma_cxcy,sigma_cxcy,10,logfile,verbose) for j in range(len(coeffs)): cfit += coeffs[j] * numpy.power(centr1, j) csig[:] = sigma except: message = 'ERROR -- KEPSFF: could not fit centroid data with polynomial. There are no data points within the range of input rows %d - %d. Either increase the stepsize (with an appreciation of the effects on light curve quality this will have!), or better yet - cut the timeseries up to remove large gaps in the input light curve using kepclip.' % ( t1, t2) status = kepmsg.err(logfile, message, verbose) # sys.exit('') os._exit(1) # reject outliers time_good = array([], 'float64') centr1_good = array([], 'float32') centr2_good = array([], 'float32') flux_good = array([], 'float32') cad_good = array([], 'int') for i in range(len(cfit)): if abs(centr2[i] - cfit[i]) < sigma_cxcy * csig[i]: time_good = append(time_good, intime[i]) centr1_good = append(centr1_good, centr1[i]) centr2_good = append(centr2_good, centr2[i]) flux_good = append(flux_good, indata[i]) cad_good = append(cad_good, cadenceno[i]) # covariance matrix for centroid time series centr = concatenate([[centr1_good] - mean(centr1_good), [centr2_good] - mean(centr2_good)]) covar = cov(centr) # eigenvector eigenvalues of covariance matrix [eval, evec] = numpy.linalg.eigh(covar) ex = arange(-10.0, 10.0, 0.1) epar = evec[1, 1] / evec[0, 1] * ex enor = evec[1, 0] / evec[0, 0] * ex ex = ex + mean(centr1) epar = epar + mean(centr2_good) enor = enor + mean(centr2_good) # rotate centroid data centr_rot = dot(evec.T, centr) # fit polynomial to rotated centroids rfit = zeros((len(centr2))) rsig = zeros((len(centr2))) functype = 'poly' + str(npoly_ardx) pinit = array([nanmean(centr_rot[0, :])]) pinit = array([1.0]) if npoly_ardx > 0: for j in range(npoly_ardx): pinit = append(pinit, 0.0) try: coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip(functype,pinit,centr_rot[1,:],centr_rot[0,:],None,100.0,100.0,1, logfile,verbose) except: message = 'ERROR -- KEPSFF: could not fit rotated centroid data with polynomial' status = kepmsg.err(logfile, message, verbose) rx = linspace(nanmin(centr_rot[1, :]), nanmax(centr_rot[1, :]), 100) ry = zeros((len(rx))) for i in range(len(coeffs)): ry = ry + coeffs[i] * numpy.power(rx, i) # calculate arclength of centroids s = zeros((len(rx))) for i in range(1, len(s)): work3 = ((ry[i] - ry[i - 1]) / (rx[i] - rx[i - 1]))**2 s[i] = s[i - 1] + math.sqrt(1.0 + work3) * (rx[i] - rx[i - 1]) # fit arclength as a function of strongest eigenvector sfit = zeros((len(centr2))) ssig = zeros((len(centr2))) functype = 'poly' + str(npoly_ardx) pinit = array([nanmean(s)]) if npoly_ardx > 0: for j in range(npoly_ardx): pinit = append(pinit, 0.0) try: acoeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip(functype,pinit,rx,s,None,100.0,100.0,100,logfile,verbose) except: message = 'ERROR -- KEPSFF: could not fit rotated centroid data with polynomial' status = kepmsg.err(logfile, message, verbose) # correlate arclength with detrended flux t = copy(time_good) c = copy(cad_good) y = copy(flux_good) z = centr_rot[1, :] x = zeros((len(z))) for i in range(len(acoeffs)): x = x + acoeffs[i] * numpy.power(z, i) # calculate time derivative of arclength s dx = zeros((len(x))) for i in range(1, len(x)): dx[i] = (x[i] - x[i - 1]) / (t[i] - t[i - 1]) dx[0] = dx[1] # fit polynomial to derivative and flag outliers (thruster firings) dfit = zeros((len(dx))) dsig = zeros((len(dx))) functype = 'poly' + str(npoly_dsdt) pinit = array([nanmean(dx)]) if npoly_dsdt > 0: for j in range(npoly_dsdt): pinit = append(pinit, 0.0) try: dcoeffs, errors, covar, iiter, dsigma, chi2, dof, fit, dumx, dumy, status = \ kepfit.lsqclip(functype,pinit,t,dx,None,3.0,3.0,10,logfile,verbose) except: message = 'ERROR -- KEPSFF: could not fit rotated centroid data with polynomial' status = kepmsg.err(logfile, message, verbose) for i in range(len(dcoeffs)): dfit = dfit + dcoeffs[i] * numpy.power(t, i) centr1_pnt = array([], 'float32') centr2_pnt = array([], 'float32') time_pnt = array([], 'float64') flux_pnt = array([], 'float32') dx_pnt = array([], 'float32') s_pnt = array([], 'float32') time_thr = array([], 'float64') flux_thr = array([], 'float32') dx_thr = array([], 'float32') thr_cadence = [] for i in range(len(t)): if dx[i] < dfit[i] + sigma_dsdt * dsigma and dx[ i] > dfit[i] - sigma_dsdt * dsigma: time_pnt = append(time_pnt, time_good[i]) flux_pnt = append(flux_pnt, flux_good[i]) dx_pnt = append(dx_pnt, dx[i]) s_pnt = append(s_pnt, x[i]) centr1_pnt = append(centr1_pnt, centr1_good[i]) centr2_pnt = append(centr2_pnt, centr2_good[i]) else: time_thr = append(time_thr, time_good[i]) flux_thr = append(flux_thr, flux_good[i]) dx_thr = append(dx_thr, dx[i]) thr_cadence.append(cad_good[i]) # fit arclength-flux correlation cfit = zeros((len(time_pnt))) csig = zeros((len(time_pnt))) functype = 'poly' + str(npoly_arfl) pinit = array([nanmean(flux_pnt)]) if npoly_arfl > 0: for j in range(npoly_arfl): pinit = append(pinit, 0.0) try: ccoeffs, errors, covar, iiter, sigma, chi2, dof, fit, plx, ply, status = \ kepfit.lsqclip(functype,pinit,s_pnt,flux_pnt,None,sigma_arfl,sigma_arfl,100,logfile,verbose) except: message = 'ERROR -- KEPSFF: could not fit rotated centroid data with polynomial' status = kepmsg.err(logfile, message, verbose) # correction factors for unfiltered data centr = concatenate([[centr1] - mean(centr1_good), [centr2] - mean(centr2_good)]) centr_rot = dot(evec.T, centr) yy = copy(indata) zz = centr_rot[1, :] xx = zeros((len(zz))) cfac = zeros((len(zz))) for i in range(len(acoeffs)): xx = xx + acoeffs[i] * numpy.power(zz, i) for i in range(len(ccoeffs)): cfac = cfac + ccoeffs[i] * numpy.power(xx, i) # apply correction to flux time-series out_detsap = indata / cfac # split time-series data for plotting tim_gd = array([], 'float32') flx_gd = array([], 'float32') tim_bd = array([], 'float32') flx_bd = array([], 'float32') for i in range(len(indata)): if intime[i] in time_pnt: tim_gd = append(tim_gd, intime[i]) flx_gd = append(flx_gd, out_detsap[i]) else: tim_bd = append(tim_bd, intime[i]) flx_bd = append(flx_bd, out_detsap[i]) # plot style and size status = kepplot.define(labelsize, ticksize, logfile, verbose) pylab.figure(figsize=[xsize, ysize]) pylab.clf() # plot x-centroid vs y-centroid ax = kepplot.location([0.04, 0.57, 0.16, 0.41]) # plot location px = copy(centr1) # clean-up x-axis units py = copy(centr2) # clean-up y-axis units pxmin = px.min() pxmax = px.max() pymin = py.min() pymax = py.max() pxr = pxmax - pxmin pyr = pymax - pymin pad = 0.05 if pxr > pyr: dely = (pxr - pyr) / 2 xlim(pxmin - pxr * pad, pxmax + pxr * pad) ylim(pymin - dely - pyr * pad, pymax + dely + pyr * pad) else: delx = (pyr - pxr) / 2 ylim(pymin - pyr * pad, pymax + pyr * pad) xlim(pxmin - delx - pxr * pad, pxmax + delx + pxr * pad) pylab.plot(px, py, color='#980000', markersize=5, marker='D', ls='') # plot data pylab.plot(centr1_good, centr2_good, color='#009900', markersize=5, marker='D', ls='') # plot data pylab.plot(ex, epar, color='k', ls='-') pylab.plot(ex, enor, color='k', ls='-') for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(14) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(14) kepplot.labels('CCD Column', 'CCD Row', 'k', 16) # labels pylab.grid() # grid lines # plot arclength fits vs drift along strongest eigenvector ax = kepplot.location([0.24, 0.57, 0.16, 0.41]) # plot location px = rx - rx[0] py = s - rx - (s[0] - rx[0]) # clean-up y-axis units py, ylab, status = kepplot.cleany(py, 1.0, logfile, verbose) # clean-up x-axis units kepplot.RangeOfPlot(px, py, 0.05, False) # data limits pylab.plot(px, py, color='#009900', markersize=5, marker='D', ls='') px = plotx - rx[0] # clean-up x-axis units py = ploty - plotx - (s[0] - rx[0]) # clean-up y-axis units py, ylab, status = kepplot.cleany(py, 1.0, logfile, verbose) # clean-up x-axis units pylab.plot(px, py, color='r', ls='-', lw=3) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(14) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(14) ylab = re.sub(' e\S+', ' pixels)', ylab) ylab = re.sub(' s\S+', '', ylab) ylab = re.sub('Flux', 's $-$ x\'', ylab) kepplot.labels('Linear Drift [x\'] (pixels)', ylab, 'k', 16) # labels pylab.grid() # grid lines # plot time derivative of arclength s ax = kepplot.location([0.04, 0.08, 0.16, 0.41]) # plot location px = copy(time_pnt) py = copy(dx_pnt) px, xlab, status = kepplot.cleanx(px, logfile, verbose) # clean-up x-axis units kepplot.RangeOfPlot(px, dx, 0.05, False) # data limits pylab.plot(px, py, color='#009900', markersize=5, marker='D', ls='') try: px = copy(time_thr) py = copy(dx_thr) px, xlab, status = kepplot.cleanx( px, logfile, verbose) # clean-up x-axis units pylab.plot(px, py, color='#980000', markersize=5, marker='D', ls='') except: pass px = copy(t) py = copy(dfit) px, xlab, status = kepplot.cleanx(px, logfile, verbose) # clean-up x-axis units pylab.plot(px, py, color='r', ls='-', lw=3) py = copy(dfit + sigma_dsdt * dsigma) pylab.plot(px, py, color='r', ls='--', lw=3) py = copy(dfit - sigma_dsdt * dsigma) pylab.plot(px, py, color='r', ls='--', lw=3) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(14) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(14) kepplot.labels(xlab, 'ds/dt (pixels day$^{-1}$)', 'k', 16) # labels pylab.grid() # grid lines # plot relation of arclength vs detrended flux ax = kepplot.location([0.24, 0.08, 0.16, 0.41]) # plot location px = copy(s_pnt) py = copy(flux_pnt) py, ylab, status = kepplot.cleany(py, 1.0, logfile, verbose) # clean-up x-axis units kepplot.RangeOfPlot(px, py, 0.05, False) # data limits pylab.plot(px, py, color='#009900', markersize=5, marker='D', ls='') pylab.plot(plx, ply, color='r', ls='-', lw=3) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(14) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(14) kepplot.labels('Arclength [s] (pixels)', ylab, 'k', 16) # labels pylab.grid() # grid lines # plot aperture photometry kepplot.location([0.44, 0.53, 0.55, 0.45]) # plot location px, xlab, status = kepplot.cleanx(intime, logfile, verbose) # clean-up x-axis units py, ylab, status = kepplot.cleany(indata, 1.0, logfile, verbose) # clean-up x-axis units kepplot.RangeOfPlot(px, py, 0.01, True) # data limits kepplot.plot1d(px, py, cadence, lcolor, lwidth, fcolor, falpha, True) # plot data kepplot.labels(' ', ylab, 'k', 16) # labels pylab.setp(pylab.gca(), xticklabels=[]) # remove x- or y-tick labels kepplot.labels(xlab, re.sub('Flux', 'Aperture Flux', ylab), 'k', 16) # labels pylab.grid() # grid lines # Plot corrected photometry kepplot.location([0.44, 0.08, 0.55, 0.45]) # plot location kepplot.RangeOfPlot(px, py, 0.01, True) # data limits px, xlab, status = kepplot.cleanx(tim_gd, logfile, verbose) # clean-up x-axis units py, ylab, status = kepplot.cleany(flx_gd, 1.0, logfile, verbose) # clean-up x-axis units kepplot.plot1d(px, py, cadence, lcolor, lwidth, fcolor, falpha, True) # plot data try: px, xlab, status = kepplot.cleanx( tim_bd, logfile, verbose) # clean-up x-axis units py = copy(flx_bd) pylab.plot(px, py, color='#980000', markersize=5, marker='D', ls='') except: pass kepplot.labels(xlab, re.sub('Flux', 'Corrected Flux', ylab), 'k', 16) # labels pylab.grid() # grid lines # render plot if plotres: kepplot.render(cmdLine) # save plot to file if plotres: pylab.savefig(re.sub('.fits', '_%d.png' % (iw + 1), outfile)) # correct fluxes within the output file intime = work1[:, 7] + bjdref cadenceno = work1[:, 6].astype(int) indata = work1[:, 5] mom_centr1 = work1[:, 4] mom_centr2 = work1[:, 3] psf_centr1 = work1[:, 2] psf_centr2 = work1[:, 1] centr1 = copy(mom_centr1) centr2 = copy(mom_centr2) centr = concatenate([[centr1] - mean(centr1_good), [centr2] - mean(centr2_good)]) centr_rot = dot(evec.T, centr) yy = copy(indata) zz = centr_rot[1, :] xx = zeros((len(zz))) cfac = zeros((len(zz))) for i in range(len(acoeffs)): xx = xx + acoeffs[i] * numpy.power(zz, i) for i in range(len(ccoeffs)): cfac = cfac + ccoeffs[i] * numpy.power(xx, i) out_detsap = yy / cfac instr[1].data.field('SAP_FLUX')[t1:t2] /= cfac instr[1].data.field('PDCSAP_FLUX')[t1:t2] /= cfac try: instr[1].data.field('DETSAP_FLUX')[t1:t2] /= cfac except: pass # add quality flag to output file for thruster firings for i in range(len(intime)): if cadenceno[i] in thr_cadence: instr[1].data.field('SAP_QUALITY')[t1 + i] += 131072 # write output file if status == 0: instr.writeto(outfile) # close input file if status == 0: status = kepio.closefits(instr, logfile, verbose) # end time if (status == 0): message = 'KEPSFF completed at' else: message = '\nKEPSFF aborted at' kepmsg.clock(message, logfile, verbose)
def keptransit(inputfile,outputfile,datacol,errorcol,periodini_d,rprsini,T0ini, Eccini,arsini,incini,omegaini,LDparams,secini,fixperiod,fixrprs,fixT0, fixEcc,fixars,fixinc,fixomega,fixsec,fixfluxoffset,removeflaggeddata,ftol=0.0001,fitter='nothing',norm=False, clobber=False, plot=True,verbose=0,logfile='logfile.dat',status=0,cmdLine=False): """ tmod.lightcurve(xdata,period,rprs,T0,Ecc,ars, incl, omega, ld, sec) input transit parameters are Period in days T0 rplanet / rstar a / rstar inclination limb darkening code number: 0 = uniform 1 = linear 2 = quadratic 3 = square root 4 = non linear LDarr: u -- linear limb-darkening (set NL=1) a, b -- quadratic limb-darkening (set NL=2) c, d -- root-square limb-darkening (set NL= -2) a1, a2, a3, a4 -- nonlinear limb-darkening (set NL=4) Nothing at all -- uniform limb-darkening (set NL=0) """ np.seterr(all="ignore") #write to a logfile hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPTRANSIT -- ' call += 'inputfile='+inputfile+' ' call += 'outputfile='+outputfile+' ' call += 'datacol='+str(datacol)+' ' call += 'errorcol='+str(errorcol)+' ' call += 'periodini_d='+str(periodini_d)+' ' call += 'rprsini='+str(rprsini)+' ' call += 'T0ini='+str(T0ini)+' ' call += 'Eccini='+str(Eccini)+' ' call += 'arsini='+str(arsini)+' ' call += 'incini='+str(incini)+' ' call += 'omegaini='+str(omegaini)+' ' call += 'LDparams='+str(LDparams)+' ' call += 'secini='+str(secini)+' ' call += 'fixperiod='+str(fixperiod)+' ' call += 'fixrprs='+str(fixrprs)+' ' call += 'fixT0='+str(fixT0)+' ' call += 'fixEcc='+str(fixEcc)+' ' call += 'fixars='+str(fixars)+' ' call += 'fixinc='+str(fixinc)+' ' call += 'fixomega='+str(fixomega)+' ' call += 'fixsec='+str(fixsec)+' ' call += 'fixfluxoffset='+str(fixfluxoffset)+' ' call += 'removeflaggeddata='+str(removeflaggeddata)+' ' call += 'ftol='+str(ftol)+' ' call += 'fitter='+str(fitter)+' ' call += 'norm='+str(norm)+' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' #chatter = 'n' #if (verbose): chatter = 'y' #call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) kepmsg.clock('KEPTRANSIT started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outputfile,logfile,verbose) if kepio.fileexists(outputfile): message = 'ERROR -- KEPTRANSIT: ' + outputfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile,message,verbose) # open input file if status == 0: instr, status = kepio.openfits(inputfile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr, inputfile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # read table structure if status == 0: table, status = kepio.readfitstab(inputfile,instr[1],logfile,verbose) if status == 0: intime_o = table.field('time') influx_o = table.field(datacol) inerr_o = table.field(errorcol) try: qualflag = table.field('SAP_QUALITY') except: qualflag = np.zeros(len(intime_o)) if status == 0: intime, indata, inerr, baddata = cutBadData(intime_o, influx_o, inerr_o,removeflaggeddata,qualflag) if status == 0 and norm: #first remove outliers before normalizing threesig = 3.* np.std(indata) mask = np.logical_and(indata< indata + threesig,indata > indata - threesig) #now normalize indata = indata / np.median(indata[mask]) if status == 0: #need to check if LD params are sensible and in right format LDparams = [float(i) for i in LDparams.split()] incini = incini * np.pi / 180. omegaini = omegaini * np.pi / 180. if arsini*np.cos(incini) > 1.0 + rprsini: message = 'The guess inclination and a/r* values result in a non-transing planet' status = kepmsg.err(logfile,message,verbose) if status == 0: fixed_dict = fix_params(fixperiod,fixrprs,fixT0, fixEcc,fixars,fixinc,fixomega,fixsec,fixfluxoffset) #force flux offset to be guessed at zero fluxoffsetini = 0.0 if status == 0: guess_params = [periodini_d,rprsini,T0ini,Eccini,arsini, incini, omegaini, secini,fluxoffsetini] print('cleaning done: about to fit transit') if fitter == 'leastsq': fit_output = leastsq(fit_tmod,guess_params, args=[LDparams,intime,indata,inerr,fixed_dict,guess_params], full_output=True,ftol=ftol) elif fitter == 'fmin': fit_output = fmin(fit_tmod2,guess_params, args=[LDparams,intime,indata,inerr,fixed_dict,guess_params], full_output=True,ftol=ftol,xtol=ftol) elif fitter == 'anneal': fit_output = anneal(fit_tmod2,guess_params, args=[LDparams,intime,indata,inerr,fixed_dict,guess_params], full_output=True) if status == 0: if fixed_dict['period'] == True: newperiod = guess_params[0] print('Fixed period (days) = ' + str(newperiod)) else: newperiod = fit_output[0][0] print('Fit period (days) = ' + str(newperiod)) if fixed_dict['rprs'] == True: newrprs = guess_params[1] print('Fixed R_planet / R_star = ' + str(newrprs)) else: newrprs = fit_output[0][1] print('Fit R_planet / R_star = ' + str(newrprs)) if fixed_dict['T0'] == True: newT0 = guess_params[2] print('Fixed T0 (BJD) = ' + str(newT0)) else: newT0 = fit_output[0][2] print('Fit T0 (BJD) = ' + str(newT0)) if fixed_dict['Ecc'] == True: newEcc = guess_params[3] print('Fixed eccentricity = ' + str(newEcc)) else: newEcc = fit_output[0][3] print('Fit eccentricity = ' + str(newEcc)) if fixed_dict['ars'] == True: newars = guess_params[4] print('Fixed a / R_star = ' + str(newars)) else: newars = fit_output[0][4] print('Fit a / R_star = ' + str(newars)) if fixed_dict['inc'] == True: newinc = guess_params[5] print('Fixed inclination (deg) = ' + str(newinc* 180. / np.pi)) else: newinc = fit_output[0][5] print('Fit inclination (deg) = ' + str(newinc* 180. / np.pi)) if fixed_dict['omega'] == True: newomega = guess_params[6] print('Fixed omega = ' + str(newomega)) else: newomega = fit_output[0][6] print('Fit omega = ' + str(newomega)) if fixed_dict['sec'] == True: newsec = guess_params[7] print('Fixed seconary eclipse depth = ' + str(newsec)) else: newsec = fit_output[0][7] print('Fit seconary eclipse depth = ' + str(newsec)) if fixfluxoffset == False: newfluxoffset = fit_output[0][8] print('Fit flux offset = ' + str(newfluxoffset)) modelfit = tmod.lightcurve(intime,newperiod,newrprs,newT0,newEcc, newars,newinc,newomega,LDparams,newsec) if fixfluxoffset == False: modelfit += newfluxoffset #output to a file phi, fluxfold, modelfold, errorfold, phiNotFold = fold_data(intime, modelfit,indata,inerr,newperiod,newT0) make_outfile(instr,outputfile,phiNotFold,modelfit, baddata) # end time if (status == 0): message = 'KEPTRANSIT completed at' else: message = '\nKEPTRANSIT aborted at' kepmsg.clock(message,logfile,verbose) if plot and status == 0: do_plot(intime,modelfit,indata,inerr,newperiod,newT0,cmdLine)
def kepconvert(infile,outfile,conversion,columns,baddata,clobber,verbose,logfile,status): # startup parameters status = 0 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPCONVERT -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'conversion='+conversion+' ' call += 'columns='+columns+ ' ' writebad = 'n' if (baddata): writebad = 'y' call += 'baddata='+writebad+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPCONVERT started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # data columns if status == 0: colnames = columns.strip().split(',') ncol = len(colnames) if ncol < 1: message = 'ERROR -- KEPCONVERT: no data columns specified' status = kepmsg.err(logfile,message,verbose) # input file exists if status == 0 and not kepio.fileexists(infile): message = 'ERROR -- KEPCONVERT: input file '+infile+' does not exist' status = kepmsg.err(logfile,message,verbose) # clobber output file if status == 0: if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPCONVERT: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile,message,verbose) # open FITS input file if status == 0 and conversion == 'fits2asc': instr, status = kepio.openfits(infile,'readonly',logfile,verbose) tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) # read FITS table data if status == 0 and conversion == 'fits2asc': table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) # check columns exist in FITS file if not baddata and status == 0 and conversion == 'fits2asc': try: qualcol = table.field('SAP_QUALITY') == 0 except: message = 'No SAP_QUALITY column in data, are you using an old FITS file?' status = kepmsg.err(logfile,message,verbose) if status == 0 and conversion == 'fits2asc': work = [] for colname in colnames: try: if colname.lower() == 'time': work.append(table.field(colname) + bjdref) else: work.append(table.field(colname)) except: message = 'ERROR -- KEPCONVERT: no column ' + colname + ' in ' + infile status = kepmsg.err(logfile,message,verbose) if not baddata: for i in range(len(work)): work[i] = work[i][qualcol] # close input file if status == 0 and conversion == 'fits2asc': status = kepio.closefits(instr,logfile,verbose) ## write output file if status == 0 and conversion == 'fits2asc': # table, status = kepio.openascii(outfile,'w',logfile,verbose) # for i in range(len(work[0])): # txt = '' # for j in range(len(work)): # if numpy.isfinite(work[j][i]): # txt += str(work[j][i]) + ' ' # txt = txt.strip() # if len(re.sub('\s+',',',txt).split(',')) == ncol: # table.write(txt + '\n') # status = kepio.closeascii(table,logfile,verbose) savetxt(outfile,array(work).T) ## open and read ASCII input file if status == 0 and conversion == 'asc2fits': table, status = kepio.openascii(infile,'r',logfile,verbose) ## organize ASCII table into arrays if status == 0 and conversion == 'asc2fits': work = [] for i in range(ncol): work.append([]) nline = 0 for line in table: line = line.strip() line = re.sub('\s+',',',line) line = re.sub('\|',',',line) line = re.sub(';',',',line) if '#' not in line: nline + 1 line = line.split(',') if len(line) == ncol: for i in range(len(line)): try: work[i].append(float(line[i])) except: message = 'ERROR --KEPCONVERT: ' + str(line[i]) + ' is not float' status = kepmsg.err(logfile,message,verbose) break else: message = 'ERROR --KEPCONVERT: ' + str(ncol) + ' columns required but ' message += str(len(line)) + ' columns supplied by ' + infile message += ' at line' + str(nline) status = kepmsg.err(logfile,message,verbose) break for i in range(ncol): work[i] = numpy.array(work[i],dtype='float64') ## timing keywords for output file if status == 0 and conversion == 'asc2fits': for i in range(ncol): if 'time' in colnames[i].lower(): if work[i][1] > 54000.0 and work[i][1] < 60000.0: work[i] += 2.4e6 # work[i] += 2.4553e6 tstart = work[i].min() tstop = work[i].max() lc_start = tstart lc_end = tstop if lc_start > 2.4e6: lc_start -= 2.4e6 if lc_end > 2.4e6: lc_end -= 2.4e6 dts = [] for j in range(1,len(work[i])): dts.append(work[i][j] - work[i][j-1]) dts = numpy.array(dts,dtype='float32') cadence = numpy.median(dts) if cadence * 86400.0 > 58.0 and cadence * 86400.0 < 61.0: obsmode = 'short cadence' elif cadence * 86400.0 > 1600.0 and cadence * 86400.0 < 2000.0: obsmode = 'long cadence' else: obsmode = 'unknown' ## Create the outfile primary extension if status == 0 and conversion == 'asc2fits': hdu0 = PrimaryHDU() try: hdu0.header.update('EXTNAME','PRIMARY','name of extension') hdu0.header.update('EXTVER',1.0,'extension version number') hdu0.header.update('ORIGIN','NASA/Ames','organization that generated this file') hdu0.header.update('DATE',time.asctime(time.localtime()),'file creation date') hdu0.header.update('CREATOR','kepconvert','SW version used to create this file') hdu0.header.update('PROCVER','None','processing script version') hdu0.header.update('FILEVER','2.0','file format version') hdu0.header.update('TIMVERSN','OGIP/93-003','OGIP memo number for file format') hdu0.header.update('TELESCOP','Kepler','telescope') hdu0.header.update('INSTRUME','Kepler photometer','detector type') hdu0.header.update('OBJECT','Unknown','string version of kepID') hdu0.header.update('KEPLERID','Unknown','unique Kepler target identifier') hdu0.header.update('CHANNEL','Unknown','CCD channel') hdu0.header.update('SKYGROUP','Unknown','roll-independent location of channel') hdu0.header.update('MODULE','Unknown','CCD module') hdu0.header.update('OUTPUT','Unknown','CCD output') hdu0.header.update('QUARTER','Unknown','mission quarter during which data was collected') hdu0.header.update('SEASON','Unknown','mission season during which data was collected') hdu0.header.update('DATA_REL','Unknown','version of data release notes describing data') hdu0.header.update('OBSMODE',obsmode,'observing mode') hdu0.header.update('RADESYS','Unknown','reference frame of celestial coordinates') hdu0.header.update('RA_OBJ','Unknown','[deg] right ascension from KIC') hdu0.header.update('DEC_OBJ','Unknown','[deg] declination from KIC') hdu0.header.update('EQUINOX',2000.0,'equinox of celestial coordinate system') hdu0.header.update('PMRA','Unknown','[arcsec/yr] RA proper motion') hdu0.header.update('PMDEC','Unknown','[arcsec/yr] Dec proper motion') hdu0.header.update('PMTOTAL','Unknown','[arcsec/yr] total proper motion') hdu0.header.update('PARALLAX','Unknown','[arcsec] parallax') hdu0.header.update('GLON','Unknown','[deg] galactic longitude') hdu0.header.update('GLAT','Unknown','[deg] galactic latitude') hdu0.header.update('GMAG','Unknown','[mag] SDSS g band magnitude from KIC') hdu0.header.update('RMAG','Unknown','[mag] SDSS r band magnitude from KIC') hdu0.header.update('IMAG','Unknown','[mag] SDSS i band magnitude from KIC') hdu0.header.update('ZMAG','Unknown','[mag] SDSS z band magnitude from KIC') hdu0.header.update('D51MAG','Unknown','[mag] D51 magnitude, from KIC') hdu0.header.update('JMAG','Unknown','[mag] J band magnitude from 2MASS') hdu0.header.update('HMAG','Unknown','[mag] H band magnitude from 2MASS') hdu0.header.update('KMAG','Unknown','[mag] K band magnitude from 2MASS') hdu0.header.update('KEPMAG','Unknown','[mag] Kepler magnitude (Kp) from KIC') hdu0.header.update('GRCOLOR','Unknown','[mag] (g-r) color, SDSS bands') hdu0.header.update('JKCOLOR','Unknown','[mag] (J-K) color, 2MASS bands') hdu0.header.update('GKCOLOR','Unknown','[mag] (g-K) color, SDSS g - 2MASS K') hdu0.header.update('TEFF','Unknown','[K] effective temperature from KIC') hdu0.header.update('LOGG','Unknown','[cm/s2] log10 surface gravity from KIC') hdu0.header.update('FEH','Unknown','[log10([Fe/H])] metallicity from KIC') hdu0.header.update('EBMINUSV','Unknown','[mag] E(B-V) redenning from KIC') hdu0.header.update('AV','Unknown','[mag] A_v extinction from KIC') hdu0.header.update('RADIUS','Unknown','[solar radii] stellar radius from KIC') hdu0.header.update('TMINDEX','Unknown','unique 2MASS catalog ID from KIC') hdu0.header.update('SCPID','Unknown','unique SCP processing ID from KIC') hdulist = HDUList(hdu0) except: message = 'ERROR -- KEPCONVERT: cannot create primary extension in ' + outfile status = kepmsg.err(logfile,message,verbose) ## create the outfile HDU 1 extension if status == 0 and conversion == 'asc2fits': try: fitscol = [] for i in range(ncol): fitscol.append(Column(name=colnames[i],format='D',array=work[i])) fitscols = ColDefs(fitscol) hdu1 = new_table(fitscols) hdulist.append(hdu1) hdu1.header.update('INHERIT',True,'inherit primary keywords') hdu1.header.update('EXTNAME','LIGHTCURVE','name of extension') hdu1.header.update('EXTVER',1,'extension version number') hdu1.header.update('TELESCOP','Kepler','telescope') hdu1.header.update('INSTRUME','Kepler photometer','detector type') hdu1.header.update('OBJECT','Unknown','string version of kepID') hdu1.header.update('KEPLERID','Unknown','unique Kepler target identifier') hdu1.header.update('RADESYS','Unknown','reference frame of celestial coordinates') hdu1.header.update('RA_OBJ','Unknown','[deg] right ascension from KIC') hdu1.header.update('DEC_OBJ','Unknown','[deg] declination from KIC') hdu1.header.update('EQUINOX',2000.0,'equinox of celestial coordinate system') hdu1.header.update('TIMEREF','Unknown','barycentric correction applied to times') hdu1.header.update('TASSIGN','Unknown','where time is assigned') hdu1.header.update('TIMESYS','Unknown','time system is barycentric JD') hdu1.header.update('BJDREFI',0.0,'integer part of BJD reference date') hdu1.header.update('BJDREFF',0.0,'fraction of day in BJD reference date') hdu1.header.update('TIMEUNIT','Unknown','time unit for TIME, TSTART and TSTOP') hdu1.header.update('TSTART',tstart,'observation start time in JD - BJDREF') hdu1.header.update('TSTOP',tstop,'observation stop time in JD - BJDREF') hdu1.header.update('LC_START',lc_start,'observation start time in MJD') hdu1.header.update('LC_END',lc_end,'observation stop time in MJD') hdu1.header.update('TELAPSE',tstop-tstart,'[d] TSTOP - TSTART') hdu1.header.update('LIVETIME','Unknown','[d] TELAPSE multiplied by DEADC') hdu1.header.update('EXPOSURE','Unknown','[d] time on source') hdu1.header.update('DEADC','Unknown','deadtime correction') hdu1.header.update('TIMEPIXR','Unknown','bin time beginning=0 middle=0.5 end=1') hdu1.header.update('TIERRELA','Unknown','[d] relative time error') hdu1.header.update('TIERABSO','Unknown','[d] absolute time error') hdu1.header.update('INT_TIME','Unknown','[s] photon accumulation time per frame') hdu1.header.update('READTIME','Unknown','[s] readout time per frame') hdu1.header.update('FRAMETIM','Unknown','[s] frame time (INT_TIME + READTIME)') hdu1.header.update('NUM_FRM','Unknown','number of frames per time stamp') hdu1.header.update('TIMEDEL','Unknown','[d] time resolution of data') hdu1.header.update('DATE-OBS','Unknown','TSTART as UT calendar date') hdu1.header.update('DATE-END','Unknown','TSTOP as UT calendar date') hdu1.header.update('BACKAPP','Unknown','background is subtracted') hdu1.header.update('DEADAPP','Unknown','deadtime applied') hdu1.header.update('VIGNAPP','Unknown','vignetting or collimator correction applied') hdu1.header.update('GAIN','Unknown','channel gain [electrons/count]') hdu1.header.update('READNOIS','Unknown','read noise [electrons]') hdu1.header.update('NREADOUT','Unknown','number of reads per cadence') hdu1.header.update('TIMSLICE','Unknown','time-slice readout sequence section') hdu1.header.update('MEANBLCK','Unknown','FSW mean black level [count]') hdu1.header.update('PDCSAPFL','Unknown','SAP PDC processing flags (bit code)') hdu1.header.update('PDCDIAFL','Unknown','DIA PDC processing flags (bit code)') hdu1.header.update('MISPXSAP','Unknown','no of optimal aperture pixels missing from SAP') hdu1.header.update('MISPXDIA','Unknown','no of optimal aperture pixels missing from DIA') hdu1.header.update('CROWDSAP','Unknown','crowding metric evaluated over SAP opt. ap.') hdu1.header.update('CROWDDIA','Unknown','crowding metric evaluated over DIA aperture') except: message = 'ERROR -- KEPCONVERT: cannot create light curve extension in ' + outfile status = kepmsg.err(logfile,message,verbose) ## history keyword in output file if status == 0 and conversion == 'asc2fits': status = kepkey.history(call,hdu0,outfile,logfile,verbose) ## filter data table if status == 0 and conversion == 'asc2fits': instr, status = kepio.filterNaN(hdulist,colnames[min(array([1,len(colnames)-1],dtype='int'))], outfile,logfile,verbose) ## write output FITS file if status == 0 and conversion == 'asc2fits': hdulist.writeto(outfile,checksum=True) ## end time if (status == 0): message = 'KEPCONVERT completed at' else: message = '\nKEPCONVERT aborted at' kepmsg.clock(message,logfile,verbose)
def kepdetrend(infile, outfile, datacol, errcol, ranges1, npoly1, nsig1, niter1, ranges2, npoly2, nsig2, niter2, popnans, plot, clobber, verbose, logfile, status, cmdLine=False): # startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 16 ysize = 9 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPDETREND -- ' call += 'infile=' + infile + ' ' call += 'outfile=' + outfile + ' ' call += 'datacol=' + str(datacol) + ' ' call += 'errcol=' + str(errcol) + ' ' call += 'ranges1=' + str(ranges1) + ' ' call += 'npoly1=' + str(npoly1) + ' ' call += 'nsig1=' + str(nsig1) + ' ' call += 'niter1=' + str(niter1) + ' ' call += 'ranges2=' + str(ranges2) + ' ' call += 'npoly2=' + str(npoly2) + ' ' call += 'nsig2=' + str(nsig2) + ' ' call += 'niter2=' + str(niter2) + ' ' popn = 'n' if (popnans): popn = 'y' call += 'popnans=' + popn + ' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot=' + plotit + ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber=' + overwrite + ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose=' + chatter + ' ' call += 'logfile=' + logfile kepmsg.log(logfile, call + '\n', verbose) # start time kepmsg.clock('KEPDETREND started at', logfile, verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPDETREND: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile, message, verbose) # open input file if status == 0: instr, status = kepio.openfits(infile, 'readonly', logfile, verbose) tstart, tstop, bjdref, cadence, status = kepio.timekeys( instr, infile, logfile, verbose, status) # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr, file, logfile, verbose) # read table structure if status == 0: table, status = kepio.readfitstab(infile, instr[1], logfile, verbose) # filter input data table if status == 0: work1 = numpy.array( [table.field('time'), table.field(datacol), table.field(errcol)]) work1 = numpy.rot90(work1, 3) work1 = work1[~numpy.isnan(work1).any(1)] # read table columns if status == 0: intime = work1[:, 2] + bjdref indata = work1[:, 1] inerr = work1[:, 0] print intime # time ranges for region 1 (region to be corrected) if status == 0: time1 = [] data1 = [] err1 = [] t1start, t1stop, status = kepio.timeranges(ranges1, logfile, verbose) if status == 0: cadencelis1, status = kepstat.filterOnRange(intime, t1start, t1stop) if status == 0: for i in range(len(cadencelis1)): time1.append(intime[cadencelis1[i]]) data1.append(indata[cadencelis1[i]]) if errcol.lower() != 'none': err1.append(inerr[cadencelis1[i]]) t0 = time1[0] time1 = array(time1, dtype='float64') - t0 data1 = array(data1, dtype='float32') if errcol.lower() != 'none': err1 = array(err1, dtype='float32') else: err1 = None # fit function to range 1 if status == 0: functype = 'poly' + str(npoly1) pinit = [data1.mean()] if npoly1 > 0: for i in range(npoly1): pinit.append(0) pinit = array(pinit, dtype='float32') coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx1, ploty1, status = \ kepfit.lsqclip(functype,pinit,time1,data1,err1,nsig1,nsig1,niter1, logfile,verbose) fit1 = indata * 0.0 for i in range(len(coeffs)): fit1 += coeffs[i] * (intime - t0)**i for i in range(len(intime)): if i not in cadencelis1: fit1[i] = 0.0 plotx1 += t0 print coeffs # time ranges for region 2 (region that is correct) if status == 0: time2 = [] data2 = [] err2 = [] t2start, t2stop, status = kepio.timeranges(ranges2, logfile, verbose) cadencelis2, status = kepstat.filterOnRange(intime, t2start, t2stop) for i in range(len(cadencelis2)): time2.append(intime[cadencelis2[i]]) data2.append(indata[cadencelis2[i]]) if errcol.lower() != 'none': err2.append(inerr[cadencelis2[i]]) t0 = time2[0] time2 = array(time2, dtype='float64') - t0 data2 = array(data2, dtype='float32') if errcol.lower() != 'none': err2 = array(err2, dtype='float32') else: err2 = None # fit function to range 2 if status == 0: functype = 'poly' + str(npoly2) pinit = [data2.mean()] if npoly2 > 0: for i in range(npoly2): pinit.append(0) pinit = array(pinit, dtype='float32') coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx2, ploty2, status = \ kepfit.lsqclip(functype,pinit,time2,data2,err2,nsig2,nsig2,niter2, logfile,verbose) fit2 = indata * 0.0 for i in range(len(coeffs)): fit2 += coeffs[i] * (intime - t0)**i for i in range(len(intime)): if i not in cadencelis1: fit2[i] = 0.0 plotx2 += t0 # normalize data if status == 0: outdata = indata - fit1 + fit2 if errcol.lower() != 'none': outerr = inerr * 1.0 # comment keyword in output file if status == 0: status = kepkey.history(call, instr[0], outfile, logfile, verbose) # clean up x-axis unit if status == 0: intime0 = float(int(tstart / 100) * 100.0) if intime0 < 2.4e6: intime0 += 2.4e6 ptime = intime - intime0 plotx1 = plotx1 - intime0 plotx2 = plotx2 - intime0 xlab = 'BJD $-$ %d' % intime0 # clean up y-axis units if status == 0: pout = outdata ploty1 ploty2 nrm = len(str(int(numpy.nanmax(indata)))) - 1 indata = indata / 10**nrm pout = pout / 10**nrm ploty1 = ploty1 / 10**nrm ploty2 = ploty2 / 10**nrm ylab = '10$^%d$ e$^-$ s$^{-1}$' % nrm # data limits xmin = ptime.min() xmax = ptime.max() ymin = indata.min() ymax = indata.max() omin = pout.min() omax = pout.max() xr = xmax - xmin yr = ymax - ymin oo = omax - omin ptime = insert(ptime, [0], [ptime[0]]) ptime = append(ptime, [ptime[-1]]) indata = insert(indata, [0], [0.0]) indata = append(indata, [0.0]) pout = insert(pout, [0], [0.0]) pout = append(pout, 0.0) # plot light curve if status == 0 and plot: try: params = { 'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight': 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize } rcParams.update(params) except: pass pylab.figure(figsize=[xsize, ysize]) pylab.clf() # plot original data ax = pylab.axes([0.06, 0.523, 0.93, 0.45]) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) # rotate y labels by 90 deg labels = ax.get_yticklabels() pylab.setp(labels, 'rotation', 90, fontsize=12) pylab.plot(ptime, indata, color=lcolor, linestyle='-', linewidth=lwidth) pylab.fill(ptime, indata, color=fcolor, linewidth=0.0, alpha=falpha) pylab.plot(plotx1, ploty1, color='r', linestyle='-', linewidth=2.0) pylab.plot(plotx2, ploty2, color='g', linestyle='-', linewidth=2.0) pylab.xlim(xmin - xr * 0.01, xmax + xr * 0.01) if ymin > 0.0: pylab.ylim(ymin - yr * 0.01, ymax + yr * 0.01) else: pylab.ylim(1.0e-10, ymax + yr * 0.01) pylab.ylabel(ylab, {'color': 'k'}) pylab.grid() # plot detrended data ax = pylab.axes([0.06, 0.073, 0.93, 0.45]) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) # rotate y labels by 90 deg labels = ax.get_yticklabels() pylab.setp(labels, 'rotation', 90, fontsize=12) pylab.plot(ptime, pout, color=lcolor, linestyle='-', linewidth=lwidth) pylab.fill(ptime, pout, color=fcolor, linewidth=0.0, alpha=falpha) pylab.xlim(xmin - xr * 0.01, xmax + xr * 0.01) if ymin > 0.0: pylab.ylim(omin - oo * 0.01, omax + oo * 0.01) else: pylab.ylim(1.0e-10, omax + oo * 0.01) pylab.xlabel(xlab, {'color': 'k'}) try: pylab.ylabel(ylab, {'color': 'k'}) except: ylab = '10**%d e-/s' % nrm pylab.ylabel(ylab, {'color': 'k'}) # render plot if status == 0: if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() # write output file if status == 0 and popnans: instr[1].data.field(datacol)[good_data] = outdata instr[1].data.field(errcol)[good_data] = outerr instr[1].data.field(datacol)[bad_data] = None instr[1].data.field(errcol)[bad_data] = None instr.writeto(outfile) elif status == 0 and not popnans: for i in range(len(outdata)): instr[1].data.field(datacol)[i] = outdata[i] if errcol.lower() != 'none': instr[1].data.field(errcol)[i] = outerr[i] instr.writeto(outfile) # close input file if status == 0: status = kepio.closefits(instr, logfile, verbose) ## end time if (status == 0): message = 'KEPDETREND completed at' else: message = '\nKEPDETREND aborted at' kepmsg.clock(message, logfile, verbose)
def kepfield(infile,plotfile,rownum,imscale='linear',colmap='YlOrBr',lcolor='gray',verbose=0, logfile='kepfield.log',status=0,kic=0,cmdLine=False): # input arguments seterr(all="ignore") # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPFIELD -- ' call += 'infile='+infile+' ' call += 'plotfile='+plotfile+' ' call += 'rownum='+str(rownum)+' ' call += 'imscale='+imscale+' ' call += 'colmap='+colmap+' ' call += 'lcolor='+lcolor+' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPFIELD started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # reference color map if colmap == 'browse': status = cmap_plot(cmdLine) # open TPF FITS file if status == 0: try: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, barytime, status = \ kepio.readTPF(infile,'TIME',logfile,verbose) except: message = 'ERROR -- KEPFIELD: is %s a Target Pixel File? ' % infile status = kepmsg.err(logfile,message,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, tcorr, status = \ kepio.readTPF(infile,'TIMECORR',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, cadno, status = \ kepio.readTPF(infile,'CADENCENO',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, fluxpixels, status = \ kepio.readTPF(infile,'FLUX',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, errpixels, status = \ kepio.readTPF(infile,'FLUX_ERR',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, qual, status = \ kepio.readTPF(infile,'QUALITY',logfile,verbose) # read mask defintion data from TPF file if status == 0: maskimg, pixcoord1, pixcoord2, status = kepio.readMaskDefinition(infile,logfile,verbose) # observed or simulated data? if status == 0: coa = False instr = pyfits.open(infile,mode='readonly',memmap=True) filever, status = kepkey.get(infile,instr[0],'FILEVER',logfile,verbose) if filever == 'COA': coa = True # print target data if status == 0 and verbose: print '' print ' KepID: %s' % kepid print ' RA (J2000): %s' % ra print 'Dec (J2000): %s' % dec print ' KepMag: %s' % kepmag print ' SkyGroup: %2s' % skygroup print ' Season: %2s' % str(season) print ' Channel: %2s' % channel print ' Module: %2s' % module print ' Output: %1s' % output print '' # is this a good row with finite timestamp and pixels? if status == 0: if not numpy.isfinite(barytime[rownum-1]) or not numpy.nansum(fluxpixels[rownum-1,:]): message = 'ERROR -- KEPFIELD: Row ' + str(rownum) + ' is a bad quality timestamp' status = kepmsg.err(logfile,message,verbose) # construct input pixel image if status == 0: flux = fluxpixels[rownum-1,:] # image scale and intensity limits of pixel data if status == 0: flux_pl, zminfl, zmaxfl = kepplot.intScale1D(flux,imscale) n = 0 imgflux_pl = empty((ydim+2,xdim+2)) for i in range(ydim+2): for j in range(xdim+2): imgflux_pl[i,j] = numpy.nan for i in range(ydim): for j in range(xdim): imgflux_pl[i+1,j+1] = flux_pl[n] n += 1 # cone search around target coordinates using the MAST target search form if status == 0: dr = max([ydim+2,xdim+2]) * 4.0 kepid,ra,dec,kepmag = MASTRADec(float(ra),float(dec),dr) # convert celestial coordinates to detector coordinates if status == 0: sx = numpy.array([]) sy = numpy.array([]) inf, status = kepio.openfits(infile,'readonly',logfile,verbose) crpix1, crpix2, crval1, crval2, cdelt1, cdelt2, pc, status = \ kepkey.getWCSs(infile,inf['APERTURE'],logfile,verbose) crpix1p, crpix2p, crval1p, crval2p, cdelt1p, cdelt2p, status = \ kepkey.getWCSp(infile,inf['APERTURE'],logfile,verbose) for i in range(len(kepid)): dra = (ra[i] - crval1) * math.sin(math.radians(dec[i])) / cdelt1 ddec = (dec[i] - crval2) / cdelt2 if coa: sx = numpy.append(sx,-(pc[0,0] * dra + pc[0,1] * ddec) + crpix1 + crval1p - 1.0) else: sx = numpy.append(sx,pc[0,0] * dra + pc[0,1] * ddec + crpix1 + crval1p - 1.0) sy = numpy.append(sy,pc[1,0] * dra + pc[1,1] * ddec + crpix2 + crval2p - 1.0) # plot style if status == 0: try: params = {'backend': 'png', 'axes.linewidth': 2.0, 'axes.labelsize': 24, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': 18, 'ytick.labelsize': 18} pylab.rcParams.update(params) except: pass pylab.figure(figsize=[10,10]) pylab.clf() # pixel limits of the subimage if status == 0: ymin = copy(float(row)) ymax = ymin + ydim xmin = copy(float(column)) xmax = xmin + xdim # plot limits for flux image if status == 0: ymin = float(ymin) - 1.5 ymax = float(ymax) + 0.5 xmin = float(xmin) - 1.5 xmax = float(xmax) + 0.5 # plot the image window if status == 0: ax = pylab.axes([0.1,0.11,0.88,0.88]) pylab.imshow(imgflux_pl,aspect='auto',interpolation='nearest',origin='lower', vmin=zminfl,vmax=zmaxfl,extent=(xmin,xmax,ymin,ymax),cmap=colmap) pylab.gca().set_autoscale_on(False) labels = ax.get_yticklabels() setp(labels, 'rotation', 90) pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.xlabel('Pixel Column Number', {'color' : 'k'}) pylab.ylabel('Pixel Row Number', {'color' : 'k'}) # plot mask borders if status == 0: kepplot.borders(maskimg,xdim,ydim,pixcoord1,pixcoord2,1,lcolor,'-',1) # plot aperture borders if status == 0: kepplot.borders(maskimg,xdim,ydim,pixcoord1,pixcoord2,2,lcolor,'-',4.0) # list sources if status == 0 and verbose: print 'Column Row RA J2000 Dec J2000 Kp Kepler ID' print '----------------------------------------------------' for i in range(len(sx)-1,-1,-1): if sx[i] >= xmin and sx[i] < xmax and sy[i] >= ymin and sy[i] < ymax: if kepid[i] != 0 and kepmag[i] != 0.0: print '%6.1f %6.1f %9.5f %8.5f %5.2f KIC %d' % \ (float(sx[i]),float(sy[i]),float(ra[i]),float(dec[i]),float(kepmag[i]),int(kepid[i])) elif kepid[i] != 0 and kepmag[i] == 0.0: print '%6.1f %6.1f %9.5f %8.5f KIC %d' % \ (float(sx[i]),float(sy[i]),float(ra[i]),float(dec[i]),int(kepid[i])) else: print '%6.1f %6.1f %9.5f %8.5f' % (float(sx[i]),float(sy[i]),float(ra[i]),float(dec[i])) # plot sources if status == 0: for i in range(len(sx)-1,-1,-1): if kepid[i] != 0 and kepmag[i] != 0.0: size = max(array([80.0,80.0 + (2.5**(18.0 - max(12.0,float(kepmag[i])))) * 250.0])) pylab.scatter(sx[i],sy[i],s=size,facecolors='g',edgecolors='k',alpha=0.4) else: pylab.scatter(sx[i],sy[i],s=80,facecolors='r',edgecolors='k',alpha=0.4) # render plot if status == 0 and len(plotfile) > 0 and plotfile.lower() != 'none': pylab.savefig(plotfile) if status == 0: if cmdLine: pylab.show(block=True) else: pylab.ion() pylab.plot([]) pylab.ioff() pylab.clf() # stop time kepmsg.clock('\nKEPFIELD ended at',logfile,verbose) # pdb.set_trace() if kic > 0: ind = np.where(kepid == kic) colret = sx[ind] rowret = sy[ind] raret = ra[ind] decret = dec[ind] kepmagret = kepmag[ind] kepidret = kepid[ind] else: inds = np.where(kepmag != 0.0) colret = sx[inds] rowret = sy[inds] raret = ra[inds] decret = dec[inds] kepmagret = kepmag[inds] kepidret = kepid[inds] return colret,rowret,raret,decret,kepmagret,kepidret
def kepbls(infile,outfile,datacol,errcol,minper,maxper,mindur,maxdur,nsearch, nbins,plot,clobber,verbose,logfile,status,cmdLine=False): # startup parameters numpy.seterr(all="ignore") status = 0 labelsize = 32 ticksize = 18 xsize = 16 ysize = 8 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPBLS -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+str(datacol)+' ' call += 'errcol='+str(errcol)+' ' call += 'minper='+str(minper)+' ' call += 'maxper='+str(maxper)+' ' call += 'mindur='+str(mindur)+' ' call += 'maxdur='+str(maxdur)+' ' call += 'nsearch='+str(nsearch)+' ' call += 'nbins='+str(nbins)+' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPBLS started at',logfile,verbose) # is duration greater than one bin in the phased light curve? if float(nbins) * maxdur / 24.0 / maxper <= 1.0: message = 'WARNING -- KEPBLS: ' + str(maxdur) + ' hours transit duration < 1 phase bin when P = ' message += str(maxper) + ' days' kepmsg.warn(logfile,message) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPBLS: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile,message,verbose) # open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # read table structure if status == 0: table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) # filter input data table if status == 0: work1 = numpy.array([table.field('time'), table.field(datacol), table.field(errcol)]) work1 = numpy.rot90(work1,3) work1 = work1[~numpy.isnan(work1).any(1)] # read table columns if status == 0: intime = work1[:,2] + bjdref indata = work1[:,1] inerr = work1[:,0] # test whether the period range is sensible if status == 0: tr = intime[-1] - intime[0] if maxper > tr: message = 'ERROR -- KEPBLS: maxper is larger than the time range of the input data' status = kepmsg.err(logfile,message,verbose) # prepare time series if status == 0: work1 = intime - intime[0] work2 = indata - numpy.mean(indata) # start period search if status == 0: srMax = numpy.array([],dtype='float32') transitDuration = numpy.array([],dtype='float32') transitPhase = numpy.array([],dtype='float32') dPeriod = (maxper - minper) / nsearch trialPeriods = numpy.arange(minper,maxper+dPeriod,dPeriod,dtype='float32') complete = 0 print ' ' for trialPeriod in trialPeriods: fracComplete = float(complete) / float(len(trialPeriods) - 1) * 100.0 txt = '\r' txt += 'Trial period = ' txt += str(int(trialPeriod)) txt += ' days [' txt += str(int(fracComplete)) txt += '% complete]' txt += ' ' * 20 sys.stdout.write(txt) sys.stdout.flush() complete += 1 srMax = numpy.append(srMax,0.0) transitDuration = numpy.append(transitDuration,numpy.nan) transitPhase = numpy.append(transitPhase,numpy.nan) trialFrequency = 1.0 / trialPeriod # minimum and maximum transit durations in quantized phase units duration1 = max(int(float(nbins) * mindur / 24.0 / trialPeriod),2) duration2 = max(int(float(nbins) * maxdur / 24.0 / trialPeriod) + 1,duration1 + 1) # 30 minutes in quantized phase units halfHour = int(0.02083333 / trialPeriod * nbins + 1) # compute folded time series with trial period work4 = numpy.zeros((nbins),dtype='float32') work5 = numpy.zeros((nbins),dtype='float32') phase = numpy.array(((work1 * trialFrequency) - numpy.floor(work1 * trialFrequency)) * float(nbins),dtype='int') ptuple = numpy.array([phase, work2, inerr]) ptuple = numpy.rot90(ptuple,3) phsort = numpy.array(sorted(ptuple,key=lambda ph: ph[2])) for i in range(nbins): elements = numpy.nonzero(phsort[:,2] == float(i))[0] work4[i] = numpy.mean(phsort[elements,1]) work5[i] = math.sqrt(numpy.sum(numpy.power(phsort[elements,0], 2)) / len(elements)) # extend the work arrays beyond nbins by wrapping work4 = numpy.append(work4,work4[:duration2]) work5 = numpy.append(work5,work5[:duration2]) # calculate weights of folded light curve points sigmaSum = numpy.nansum(numpy.power(work5,-2)) omega = numpy.power(work5,-2) / sigmaSum # calculate weighted phased light curve s = omega * work4 # iterate through trial period phase for i1 in range(nbins): # iterate through transit durations for duration in range(duration1,duration2+1,int(halfHour)): # calculate maximum signal residue i2 = i1 + duration sr1 = numpy.sum(numpy.power(s[i1:i2],2)) sr2 = numpy.sum(omega[i1:i2]) sr = math.sqrt(sr1 / (sr2 * (1.0 - sr2))) if sr > srMax[-1]: srMax[-1] = sr transitDuration[-1] = float(duration) transitPhase[-1] = float((i1 + i2) / 2) # normalize maximum signal residue curve bestSr = numpy.max(srMax) bestTrial = numpy.nonzero(srMax == bestSr)[0][0] srMax /= bestSr transitDuration *= trialPeriods / 24.0 BJD0 = numpy.array(transitPhase * trialPeriods / nbins,dtype='float64') + intime[0] - 2454833.0 print '\n' # clean up x-axis unit if status == 0: ptime = copy(trialPeriods) xlab = 'Trial Period (days)' # clean up y-axis units if status == 0: pout = copy(srMax) ylab = 'Normalized Signal Residue' # data limits xmin = ptime.min() xmax = ptime.max() ymin = pout.min() ymax = pout.max() xr = xmax - xmin yr = ymax - ymin ptime = insert(ptime,[0],[ptime[0]]) ptime = append(ptime,[ptime[-1]]) pout = insert(pout,[0],[0.0]) pout = append(pout,0.0) # plot light curve if status == 0 and plot: plotLatex = True try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} rcParams.update(params) except: plotLatex = False if status == 0 and plot: pylab.figure(figsize=[xsize,ysize]) pylab.clf() # plot data ax = pylab.axes([0.06,0.10,0.93,0.87]) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) # rotate y labels by 90 deg labels = ax.get_yticklabels() pylab.setp(labels, 'rotation', 90) # plot curve if status == 0 and plot: pylab.plot(ptime[1:-1],pout[1:-1],color=lcolor,linestyle='-',linewidth=lwidth) pylab.fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha) pylab.xlabel(xlab, {'color' : 'k'}) pylab.ylabel(ylab, {'color' : 'k'}) pylab.grid() # plot ranges if status == 0 and plot: pylab.xlim(xmin-xr*0.01,xmax+xr*0.01) if ymin >= 0.0: pylab.ylim(ymin-yr*0.01,ymax+yr*0.01) else: pylab.ylim(1.0e-10,ymax+yr*0.01) # render plot if status == 0 and plot: if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() # append new BLS data extension to the output file if status == 0: col1 = Column(name='PERIOD',format='E',unit='days',array=trialPeriods) col2 = Column(name='BJD0',format='D',unit='BJD - 2454833',array=BJD0) col3 = Column(name='DURATION',format='E',unit='hours',array=transitDuration) col4 = Column(name='SIG_RES',format='E',array=srMax) cols = ColDefs([col1,col2,col3,col4]) instr.append(new_table(cols)) instr[-1].header.cards['TTYPE1'].comment = 'column title: trial period' instr[-1].header.cards['TTYPE2'].comment = 'column title: trial mid-transit zero-point' instr[-1].header.cards['TTYPE3'].comment = 'column title: trial transit duration' instr[-1].header.cards['TTYPE4'].comment = 'column title: normalized signal residue' instr[-1].header.cards['TFORM1'].comment = 'column type: float32' instr[-1].header.cards['TFORM2'].comment = 'column type: float64' instr[-1].header.cards['TFORM3'].comment = 'column type: float32' instr[-1].header.cards['TFORM4'].comment = 'column type: float32' instr[-1].header.cards['TUNIT1'].comment = 'column units: days' instr[-1].header.cards['TUNIT2'].comment = 'column units: BJD - 2454833' instr[-1].header.cards['TUNIT3'].comment = 'column units: hours' instr[-1].header.update('EXTNAME','BLS','extension name') instr[-1].header.update('PERIOD',trialPeriods[bestTrial],'most significant trial period [d]') instr[-1].header.update('BJD0',BJD0[bestTrial] + 2454833.0,'time of mid-transit [BJD]') instr[-1].header.update('TRANSDUR',transitDuration[bestTrial],'transit duration [hours]') instr[-1].header.update('SIGNRES',srMax[bestTrial] * bestSr,'maximum signal residue') # history keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) instr.writeto(outfile) # close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) # print best trial period results if status == 0: print ' Best trial period = %.5f days' % trialPeriods[bestTrial] print ' Time of mid-transit = BJD %.5f' % (BJD0[bestTrial] + 2454833.0) print ' Transit duration = %.5f hours' % transitDuration[bestTrial] print ' Maximum signal residue = %.4g \n' % (srMax[bestTrial] * bestSr) # end time if (status == 0): message = 'KEPBLS completed at' else: message = '\nKEPBLS aborted at' kepmsg.clock(message,logfile,verbose)
def kepstddev(infile,outfile,datacol,timescale,clobber,verbose,logfile,status,cmdLine=False): # startup parameters status = 0 labelsize = 44 ticksize = 36 xsize = 16 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPSTDDEV -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+str(datacol)+' ' call += 'timescale='+str(timescale)+' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPSTDDEV started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPSTDDEV: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile,message,verbose) # open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # read table structure if status == 0: table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) # filter input data table if status == 0: work1 = numpy.array([table.field('time'), table.field(datacol)]) work1 = numpy.rot90(work1,3) work1 = work1[~numpy.isnan(work1).any(1)] # read table columns if status == 0: intime = work1[:,1] + bjdref indata = work1[:,0] # calculate STDDEV in units of ppm if status == 0: stddev = running_frac_std(intime,indata,timescale/24) * 1.0e6 astddev = numpy.std(indata) * 1.0e6 cdpp = stddev / sqrt(timescale * 3600.0 / cadence) # filter cdpp if status == 0: for i in range(len(cdpp)): if cdpp[i] > median(cdpp) * 10.0: cdpp[i] = cdpp[i-1] # calculate median STDDEV if status == 0: medcdpp = ones((len(cdpp)),dtype='float32') * median(cdpp[:]) # print '\nMedian %.1fhr standard deviation = %d ppm' % (timescale, median(stddev[:])) print '\nStandard deviation = %d ppm' % astddev # calculate median STDDEV if status == 0: medcdpp = ones((len(cdpp)),dtype='float32') * median(cdpp[:]) print 'Median %.1fhr CDPP = %d ppm' % (timescale, median(cdpp[:])) # calculate RMS STDDEV if status == 0: rms, status = kepstat.rms(cdpp,zeros(len(stddev)),logfile,verbose) rmscdpp = ones((len(cdpp)),dtype='float32') * rms print ' RMS %.1fhr CDPP = %d ppm\n' % (timescale, rms) # clean up x-axis unit if status == 0: intime0 = float(int(tstart / 100) * 100.0) ptime = intime - intime0 xlab = 'BJD $-$ %d' % intime0 # clean up y-axis units if status == 0: pout = copy(cdpp) nrm = math.ceil(math.log10(median(cdpp))) - 1.0 # pout = pout / 10**nrm # ylab = '%.1fhr $\sigma$ (10$^%d$ ppm)' % (timescale,nrm) ylab = '%.1fhr $\sigma$ (ppm)' % timescale # data limits xmin = ptime.min() xmax = ptime.max() ymin = pout.min() ymax = pout.max() xr = xmax - xmin yr = ymax - ymin ptime = insert(ptime,[0],[ptime[0]]) ptime = append(ptime,[ptime[-1]]) pout = insert(pout,[0],[0.0]) pout = append(pout,0.0) # plot style if status == 0: try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': 36, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': 32, 'ytick.labelsize': 36} pylab.rcParams.update(params) except: pass # define size of plot on monitor screen pylab.figure(figsize=[xsize,ysize]) # delete any fossil plots in the matplotlib window pylab.clf() # position first axes inside the plotting window ax = pylab.axes([0.07,0.15,0.92,0.83]) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) ax.yaxis.set_major_locator(MaxNLocator(5)) # rotate y labels by 90 deg labels = ax.get_yticklabels() pylab.setp(labels, 'rotation', 90,fontsize=36) # plot flux vs time ltime = array([],dtype='float64') ldata = array([],dtype='float32') dt = 0 work1 = 2.0 * cadence / 86400 for i in range(1,len(ptime)-1): dt = ptime[i] - ptime[i-1] if dt < work1: ltime = append(ltime,ptime[i]) ldata = append(ldata,pout[i]) else: pylab.plot(ltime,ldata,color='#0000ff',linestyle='-',linewidth=1.0) ltime = array([],dtype='float64') ldata = array([],dtype='float32') pylab.plot(ltime,ldata,color='#0000ff',linestyle='-',linewidth=1.0) # plot the fill color below data time series, with no data gaps pylab.fill(ptime,pout,fc='#ffff00',linewidth=0.0,alpha=0.2) # plot median CDPP # pylab.plot(intime - intime0,medcdpp / 10**nrm,color='r',linestyle='-',linewidth=2.0) # pylab.plot(intime - intime0,medcdpp,color='r',linestyle='-',linewidth=2.0) # plot RMS CDPP # pylab.plot(intime - intime0,rmscdpp / 10**nrm,color='r',linestyle='--',linewidth=2.0) # define plot x and y limits pylab.xlim(xmin - xr * 0.01, xmax + xr * 0.01) if ymin - yr * 0.01 <= 0.0: pylab.ylim(1.0e-10, ymax + yr * 0.01) else: pylab.ylim(ymin - yr * 0.01, ymax + yr * 0.01) # plot labels pylab.xlabel(xlab, {'color' : 'k'}) pylab.ylabel(ylab, {'color' : 'k'}) # make grid on plot pylab.grid() # render plot if status == 0: if cmdLine: pylab.show(block=True) else: pylab.ion() pylab.plot([]) pylab.ioff() # add NaNs back into data if status == 0: n = 0 work1 = array([],dtype='float32') instr, status = kepio.openfits(infile,'readonly',logfile,verbose) table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) for i in range(len(table.field(0))): if isfinite(table.field('time')[i]) and isfinite(table.field(datacol)[i]): work1 = append(work1,cdpp[n]) n += 1 else: work1 = append(work1,nan) # write output file if status == 0: status = kepkey.new('MCDPP%d' % (timescale * 10.0),medcdpp[0], 'Median %.1fhr CDPP (ppm)' % timescale, instr[1],outfile,logfile,verbose) status = kepkey.new('RCDPP%d' % (timescale * 10.0),rmscdpp[0], 'RMS %.1fhr CDPP (ppm)' % timescale, instr[1],outfile,logfile,verbose) colname = 'CDPP_%d' % (timescale * 10) col1 = pyfits.Column(name=colname,format='E13.7',array=work1) cols = instr[1].data.columns + col1 instr[1] = pyfits.new_table(cols,header=instr[1].header) instr.writeto(outfile) # comment keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) # close FITS if status == 0: status = kepio.closefits(instr,logfile,verbose) # end time if (status == 0): message = 'KEPSTDDEV completed at' else: message = '\nKEPSTDDEV aborted at' kepmsg.clock(message,logfile,verbose)
def kepfold(infile,outfile,period,phasezero,bindata,binmethod,threshold,niter,nbins, rejqual,plottype,plotlab,clobber,verbose,logfile,status,cmdLine=False): # startup parameters status = 0 labelsize = 32; ticksize = 18; xsize = 18; ysize = 10 lcolor = '#0000ff'; lwidth = 2.0; fcolor = '#ffff00'; falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPFOLD -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'period='+str(period)+' ' call += 'phasezero='+str(phasezero)+' ' binit = 'n' if (bindata): binit = 'y' call += 'bindata='+binit+' ' call += 'binmethod='+binmethod+' ' call += 'threshold='+str(threshold)+' ' call += 'niter='+str(niter)+' ' call += 'nbins='+str(nbins)+' ' qflag = 'n' if (rejqual): qflag = 'y' call += 'rejqual='+qflag+ ' ' call += 'plottype='+plottype+ ' ' call += 'plotlab='+plotlab+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPFOLD started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPFOLD: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile,message,verbose) # open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # input data if status == 0: table = instr[1].data incards = instr[1].header.cards try: sap = instr[1].data.field('SAP_FLUX') except: try: sap = instr[1].data.field('ap_raw_flux') except: sap = zeros(len(table.field(0))) try: saperr = instr[1].data.field('SAP_FLUX_ERR') except: try: saperr = instr[1].data.field('ap_raw_err') except: saperr = zeros(len(table.field(0))) try: pdc = instr[1].data.field('PDCSAP_FLUX') except: try: pdc = instr[1].data.field('ap_corr_flux') except: pdc = zeros(len(table.field(0))) try: pdcerr = instr[1].data.field('PDCSAP_FLUX_ERR') except: try: pdcerr = instr[1].data.field('ap_corr_err') except: pdcerr = zeros(len(table.field(0))) try: cbv = instr[1].data.field('CBVSAP_FLUX') except: cbv = zeros(len(table.field(0))) if 'cbv' in plottype: txt = 'ERROR -- KEPFOLD: CBVSAP_FLUX column is not populated. Use kepcotrend' status = kepmsg.err(logfile,txt,verbose) try: det = instr[1].data.field('DETSAP_FLUX') except: det = zeros(len(table.field(0))) if 'det' in plottype: txt = 'ERROR -- KEPFOLD: DETSAP_FLUX column is not populated. Use kepflatten' status = kepmsg.err(logfile,txt,verbose) try: deterr = instr[1].data.field('DETSAP_FLUX_ERR') except: deterr = zeros(len(table.field(0))) if 'det' in plottype: txt = 'ERROR -- KEPFOLD: DETSAP_FLUX_ERR column is not populated. Use kepflatten' status = kepmsg.err(logfile,txt,verbose) try: quality = instr[1].data.field('SAP_QUALITY') except: quality = zeros(len(table.field(0))) if qualflag: txt = 'WARNING -- KEPFOLD: Cannot find a QUALITY data column' kepmsg.warn(logfile,txt) if status == 0: barytime, status = kepio.readtimecol(infile,table,logfile,verbose) barytime1 = copy(barytime) # filter out NaNs and quality > 0 work1 = []; work2 = []; work3 = []; work4 = []; work5 = []; work6 = []; work8 = []; work9 = [] if status == 0: if 'sap' in plottype: datacol = copy(sap) errcol = copy(saperr) if 'pdc' in plottype: datacol = copy(pdc) errcol = copy(pdcerr) if 'cbv' in plottype: datacol = copy(cbv) errcol = copy(saperr) if 'det' in plottype: datacol = copy(det) errcol = copy(deterr) for i in range(len(barytime)): if (numpy.isfinite(barytime[i]) and numpy.isfinite(datacol[i]) and datacol[i] != 0.0 and numpy.isfinite(errcol[i]) and errcol[i] > 0.0): if rejqual and quality[i] == 0: work1.append(barytime[i]) work2.append(sap[i]) work3.append(saperr[i]) work4.append(pdc[i]) work5.append(pdcerr[i]) work6.append(cbv[i]) work8.append(det[i]) work9.append(deterr[i]) elif not rejqual: work1.append(barytime[i]) work2.append(sap[i]) work3.append(saperr[i]) work4.append(pdc[i]) work5.append(pdcerr[i]) work6.append(cbv[i]) work8.append(det[i]) work9.append(deterr[i]) barytime = array(work1,dtype='float64') sap = array(work2,dtype='float32') / cadenom saperr = array(work3,dtype='float32') / cadenom pdc = array(work4,dtype='float32') / cadenom pdcerr = array(work5,dtype='float32') / cadenom cbv = array(work6,dtype='float32') / cadenom det = array(work8,dtype='float32') / cadenom deterr = array(work9,dtype='float32') / cadenom # calculate phase if status == 0: if phasezero < bjdref: phasezero += bjdref date1 = (barytime1 + bjdref - phasezero) phase1 = (date1 / period) - floor(date1/period) date2 = (barytime + bjdref - phasezero) phase2 = (date2 / period) - floor(date2/period) phase2 = array(phase2,'float32') # sort phases if status == 0: ptuple = [] phase3 = []; sap3 = []; saperr3 = [] pdc3 = []; pdcerr3 = [] cbv3 = []; cbverr3 = [] det3 = []; deterr3 = [] for i in range(len(phase2)): ptuple.append([phase2[i], sap[i], saperr[i], pdc[i], pdcerr[i], cbv[i], saperr[i], det[i], deterr[i]]) phsort = sorted(ptuple,key=lambda ph: ph[0]) for i in range(len(phsort)): phase3.append(phsort[i][0]) sap3.append(phsort[i][1]) saperr3.append(phsort[i][2]) pdc3.append(phsort[i][3]) pdcerr3.append(phsort[i][4]) cbv3.append(phsort[i][5]) cbverr3.append(phsort[i][6]) det3.append(phsort[i][7]) deterr3.append(phsort[i][8]) phase3 = array(phase3,'float32') sap3 = array(sap3,'float32') saperr3 = array(saperr3,'float32') pdc3 = array(pdc3,'float32') pdcerr3 = array(pdcerr3,'float32') cbv3 = array(cbv3,'float32') cbverr3 = array(cbverr3,'float32') det3 = array(det3,'float32') deterr3 = array(deterr3,'float32') # bin phases if status == 0 and bindata: work1 = array([sap3[0]],'float32') work2 = array([saperr3[0]],'float32') work3 = array([pdc3[0]],'float32') work4 = array([pdcerr3[0]],'float32') work5 = array([cbv3[0]],'float32') work6 = array([cbverr3[0]],'float32') work7 = array([det3[0]],'float32') work8 = array([deterr3[0]],'float32') phase4 = array([],'float32') sap4 = array([],'float32') saperr4 = array([],'float32') pdc4 = array([],'float32') pdcerr4 = array([],'float32') cbv4 = array([],'float32') cbverr4 = array([],'float32') det4 = array([],'float32') deterr4 = array([],'float32') dt = 1.0 / nbins nb = 0.0 rng = numpy.append(phase3,phase3[0]+1.0) for i in range(len(rng)): if rng[i] < nb * dt or rng[i] >= (nb + 1.0) * dt: if len(work1) > 0: phase4 = append(phase4,(nb + 0.5) * dt) if (binmethod == 'mean'): sap4 = append(sap4,kepstat.mean(work1)) saperr4 = append(saperr4,kepstat.mean_err(work2)) pdc4 = append(pdc4,kepstat.mean(work3)) pdcerr4 = append(pdcerr4,kepstat.mean_err(work4)) cbv4 = append(cbv4,kepstat.mean(work5)) cbverr4 = append(cbverr4,kepstat.mean_err(work6)) det4 = append(det4,kepstat.mean(work7)) deterr4 = append(deterr4,kepstat.mean_err(work8)) elif (binmethod == 'median'): sap4 = append(sap4,kepstat.median(work1,logfile)) saperr4 = append(saperr4,kepstat.mean_err(work2)) pdc4 = append(pdc4,kepstat.median(work3,logfile)) pdcerr4 = append(pdcerr4,kepstat.mean_err(work4)) cbv4 = append(cbv4,kepstat.median(work5,logfile)) cbverr4 = append(cbverr4,kepstat.mean_err(work6)) det4 = append(det4,kepstat.median(work7,logfile)) deterr4 = append(deterr4,kepstat.mean_err(work8)) else: coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip('poly0',[scipy.stats.nanmean(work1)],arange(0.0,float(len(work1)),1.0),work1,work2, threshold,threshold,niter,logfile,False) sap4 = append(sap4,coeffs[0]) saperr4 = append(saperr4,kepstat.mean_err(work2)) coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip('poly0',[scipy.stats.nanmean(work3)],arange(0.0,float(len(work3)),1.0),work3,work4, threshold,threshold,niter,logfile,False) pdc4 = append(pdc4,coeffs[0]) pdcerr4 = append(pdcerr4,kepstat.mean_err(work4)) coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip('poly0',[scipy.stats.nanmean(work5)],arange(0.0,float(len(work5)),1.0),work5,work6, threshold,threshold,niter,logfile,False) cbv4 = append(cbv4,coeffs[0]) cbverr4 = append(cbverr4,kepstat.mean_err(work6)) coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip('poly0',[scipy.stats.nanmean(work7)],arange(0.0,float(len(work7)),1.0),work7,work8, threshold,threshold,niter,logfile,False) det4 = append(det4,coeffs[0]) deterr4 = append(deterr4,kepstat.mean_err(work8)) work1 = array([],'float32') work2 = array([],'float32') work3 = array([],'float32') work4 = array([],'float32') work5 = array([],'float32') work6 = array([],'float32') work7 = array([],'float32') work8 = array([],'float32') nb += 1.0 else: work1 = append(work1,sap3[i]) work2 = append(work2,saperr3[i]) work3 = append(work3,pdc3[i]) work4 = append(work4,pdcerr3[i]) work5 = append(work5,cbv3[i]) work6 = append(work6,cbverr3[i]) work7 = append(work7,det3[i]) work8 = append(work8,deterr3[i]) # update HDU1 for output file if status == 0: cols = (instr[1].columns + ColDefs([Column(name='PHASE',format='E',array=phase1)])) instr[1] = pyfits.new_table(cols) instr[1].header.cards['TTYPE'+str(len(instr[1].columns))].comment = 'column title: phase' instr[1].header.cards['TFORM'+str(len(instr[1].columns))].comment = 'data type: float32' for i in range(len(incards)): if incards[i].key not in instr[1].header.keys(): instr[1].header.update(incards[i].key, incards[i].value, incards[i].comment) else: instr[1].header.cards[incards[i].key].comment = incards[i].comment instr[1].header.update('PERIOD',period,'period defining the phase [d]') instr[1].header.update('BJD0',phasezero,'time of phase zero [BJD]') # write new phased data extension for output file if status == 0 and bindata: col1 = Column(name='PHASE',format='E',array=phase4) col2 = Column(name='SAP_FLUX',format='E',unit='e/s',array=sap4/cadenom) col3 = Column(name='SAP_FLUX_ERR',format='E',unit='e/s',array=saperr4/cadenom) col4 = Column(name='PDC_FLUX',format='E',unit='e/s',array=pdc4/cadenom) col5 = Column(name='PDC_FLUX_ERR',format='E',unit='e/s',array=pdcerr4/cadenom) col6 = Column(name='CBV_FLUX',format='E',unit='e/s',array=cbv4/cadenom) col7 = Column(name='DET_FLUX',format='E',array=det4/cadenom) col8 = Column(name='DET_FLUX_ERR',format='E',array=deterr4/cadenom) cols = ColDefs([col1,col2,col3,col4,col5,col6,col7,col8]) instr.append(new_table(cols)) instr[-1].header.cards['TTYPE1'].comment = 'column title: phase' instr[-1].header.cards['TTYPE2'].comment = 'column title: simple aperture photometry' instr[-1].header.cards['TTYPE3'].comment = 'column title: SAP 1-sigma error' instr[-1].header.cards['TTYPE4'].comment = 'column title: pipeline conditioned photometry' instr[-1].header.cards['TTYPE5'].comment = 'column title: PDC 1-sigma error' instr[-1].header.cards['TTYPE6'].comment = 'column title: cotrended basis vector photometry' instr[-1].header.cards['TTYPE7'].comment = 'column title: Detrended aperture photometry' instr[-1].header.cards['TTYPE8'].comment = 'column title: DET 1-sigma error' instr[-1].header.cards['TFORM1'].comment = 'column type: float32' instr[-1].header.cards['TFORM2'].comment = 'column type: float32' instr[-1].header.cards['TFORM3'].comment = 'column type: float32' instr[-1].header.cards['TFORM4'].comment = 'column type: float32' instr[-1].header.cards['TFORM5'].comment = 'column type: float32' instr[-1].header.cards['TFORM6'].comment = 'column type: float32' instr[-1].header.cards['TFORM7'].comment = 'column type: float32' instr[-1].header.cards['TFORM8'].comment = 'column type: float32' instr[-1].header.cards['TUNIT2'].comment = 'column units: electrons per second' instr[-1].header.cards['TUNIT3'].comment = 'column units: electrons per second' instr[-1].header.cards['TUNIT4'].comment = 'column units: electrons per second' instr[-1].header.cards['TUNIT5'].comment = 'column units: electrons per second' instr[-1].header.cards['TUNIT6'].comment = 'column units: electrons per second' instr[-1].header.update('EXTNAME','FOLDED','extension name') instr[-1].header.update('PERIOD',period,'period defining the phase [d]') instr[-1].header.update('BJD0',phasezero,'time of phase zero [BJD]') instr[-1].header.update('BINMETHD',binmethod,'phase binning method') if binmethod =='sigclip': instr[-1].header.update('THRSHOLD',threshold,'sigma-clipping threshold [sigma]') instr[-1].header.update('NITER',niter,'max number of sigma-clipping iterations') # history keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) instr.writeto(outfile) # clean up x-axis unit if status == 0: ptime1 = array([],'float32') ptime2 = array([],'float32') pout1 = array([],'float32') pout2 = array([],'float32') if bindata: work = sap4 if plottype == 'pdc': work = pdc4 if plottype == 'cbv': work = cbv4 if plottype == 'det': work = det4 for i in range(len(phase4)): if (phase4[i] > 0.5): ptime2 = append(ptime2,phase4[i] - 1.0) pout2 = append(pout2,work[i]) ptime2 = append(ptime2,phase4) pout2 = append(pout2,work) for i in range(len(phase4)): if (phase4[i] <= 0.5): ptime2 = append(ptime2,phase4[i] + 1.0) pout2 = append(pout2,work[i]) work = sap3 if plottype == 'pdc': work = pdc3 if plottype == 'cbv': work = cbv3 if plottype == 'det': work = det3 for i in range(len(phase3)): if (phase3[i] > 0.5): ptime1 = append(ptime1,phase3[i] - 1.0) pout1 = append(pout1,work[i]) ptime1 = append(ptime1,phase3) pout1 = append(pout1,work) for i in range(len(phase3)): if (phase3[i] <= 0.5): ptime1 = append(ptime1,phase3[i] + 1.0) pout1 = append(pout1,work[i]) xlab = 'Orbital Phase ($\phi$)' # clean up y-axis units if status == 0: nrm = len(str(int(pout1[isfinite(pout1)].max())))-1 pout1 = pout1 / 10**nrm pout2 = pout2 / 10**nrm if nrm == 0: ylab = plotlab else: ylab = '10$^%d$ %s' % (nrm, plotlab) # data limits xmin = ptime1.min() xmax = ptime1.max() ymin = pout1[isfinite(pout1)].min() ymax = pout1[isfinite(pout1)].max() xr = xmax - xmin yr = ymax - ymin ptime1 = insert(ptime1,[0],[ptime1[0]]) ptime1 = append(ptime1,[ptime1[-1]]) pout1 = insert(pout1,[0],[0.0]) pout1 = append(pout1,0.0) if bindata: ptime2 = insert(ptime2,[0],ptime2[0] - 1.0 / nbins) ptime2 = insert(ptime2,[0],ptime2[0]) ptime2 = append(ptime2,[ptime2[-1] + 1.0 / nbins, ptime2[-1] + 1.0 / nbins]) pout2 = insert(pout2,[0],[pout2[-1]]) pout2 = insert(pout2,[0],[0.0]) pout2 = append(pout2,[pout2[2],0.0]) # plot new light curve if status == 0 and plottype != 'none': try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 18, 'legend.fontsize': 18, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} pylab.rcParams.update(params) except: print 'ERROR -- KEPFOLD: install latex for scientific plotting' status = 1 if status == 0 and plottype != 'none': pylab.figure(figsize=[17,7]) pylab.clf() ax = pylab.axes([0.06,0.11,0.93,0.86]) pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) labels = ax.get_yticklabels() setp(labels, 'rotation', 90) if bindata: pylab.fill(ptime2,pout2,color=fcolor,linewidth=0.0,alpha=falpha) else: if 'det' in plottype: pylab.fill(ptime1,pout1,color=fcolor,linewidth=0.0,alpha=falpha) pylab.plot(ptime1,pout1,color=lcolor,linestyle='',linewidth=lwidth,marker='.') if bindata: pylab.plot(ptime2[1:-1],pout2[1:-1],color='r',linestyle='-',linewidth=lwidth,marker='') xlabel(xlab, {'color' : 'k'}) ylabel(ylab, {'color' : 'k'}) xlim(-0.49999,1.49999) if ymin >= 0.0: ylim(ymin-yr*0.01,ymax+yr*0.01) # ylim(0.96001,1.03999) else: ylim(1.0e-10,ymax+yr*0.01) grid() if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() # close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) # stop time kepmsg.clock('KEPFOLD ended at: ',logfile,verbose)
def kepwindow(infile,outfile,fcol,fmax,nfreq,plot,clobber,verbose,logfile,status, cmdLine=False): ## startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 18 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 ## log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPWINDOW -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'fcol='+fcol+' ' call += 'fmax='+str(fmax)+' ' call += 'nfreq='+str(nfreq)+' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) ## start time kepmsg.clock('KEPWINDOW started at',logfile,verbose) ## test log file logfile = kepmsg.test(logfile) ## clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPWINDOW: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile,message,verbose) ## open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence ## fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) ## read table columns if status == 0: try: barytime = instr[1].data.field('barytime') except: barytime, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose) signal, status = kepio.readfitscol(infile,instr[1].data,fcol,logfile,verbose) ## remove infinite data from time series if status == 0: incols = [barytime, signal] outcols = kepstat.removeinfinlc(signal, incols) barytime = outcols[0] signal = outcols[1] ## reset signal data to zero if status == 0: signal = ones(len(outcols[1])) ## frequency steps if status == 0: deltaf = fmax / nfreq ## loop through frequency steps; determine FT power if status == 0: fr, power = kepfourier.ft(barytime,signal,0.0,fmax,deltaf,True) power[0] = 1.0 ## mirror window function around ordinate if status == 0: work1 = []; work2 = [] for i in range(len(fr)-1, 0, -1): work1.append(-fr[i]) work2.append(power[i]) for i in range(len(fr)): work1.append(fr[i]) work2.append(power[i]) fr = array(work1,dtype='float32') power = array(work2,dtype='float32') ## write output file if status == 0: col1 = Column(name='FREQUENCY',format='E',unit='days',array=fr) col2 = Column(name='POWER',format='E',array=power) cols = ColDefs([col1,col2]) instr.append(new_table(cols)) instr[-1].header.update('EXTNAME','WINDOW FUNCTION','extension name') ## comment keyword in output file if status == 0: status = kepkey.comment(call,instr[0],outfile,logfile,verbose) instr.writeto(outfile) ## close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) ## data limits if status == 0: nrm = len(str(int(power.max())))-1 power = power / 10**nrm ylab = 'Power (x10$^%d$)' % nrm xmin = fr.min() xmax = fr.max() ymin = power.min() ymax = power.max() xr = xmax - xmin yr = ymax - ymin fr = insert(fr,[0],fr[0]) fr = append(fr,fr[-1]) power = insert(power,[0],0.0) power = append(power,0.0) ## plot power spectrum if status == 0 and plot: try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} rcParams.update(params) except: print('ERROR -- KEPWINDOW: install latex for scientific plotting') status = 1 if status == 0 and plot: pylab.figure(1,figsize=[xsize,ysize]) pylab.axes([0.06,0.113,0.93,0.86]) pylab.plot(fr,power,color=lcolor,linestyle='-',linewidth=lwidth) fill(fr,power,color=fcolor,linewidth=0.0,alpha=falpha) xlim(xmin-xr*0.01,xmax+xr*0.01) if ymin-yr*0.01 <= 0.0: ylim(1.0e-10,ymax+yr*0.01) else: ylim(ymin-yr*0.01,ymax+yr*0.01) xlabel(r'Frequency (d$^{-1}$)', {'color' : 'k'}) ylabel('Power', {'color' : 'k'}) # render plot if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() ## end time if (status == 0): message = 'KEPWINDOW completed at' else: message = '\nKEPWINDOW aborted at' kepmsg.clock(message,logfile,verbose)
def kepbinary(infile, outfile, datacol, m1, m2, r1, r2, period, bjd0, eccn, omega, inclination, c1, c2, c3, c4, albedo, depth, contamination, gamma, fitparams, eclipses, dopboost, tides, job, clobber, verbose, logfile, status): # startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 17 ysize = 7 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPBINARY -- ' call += 'infile=' + infile + ' ' call += 'outfile=' + outfile + ' ' call += 'datacol=' + datacol + ' ' call += 'm1=' + str(m1) + ' ' call += 'm2=' + str(m2) + ' ' call += 'r1=' + str(r1) + ' ' call += 'r2=' + str(r2) + ' ' call += 'period=' + str(period) + ' ' call += 'bjd0=' + str(bjd0) + ' ' call += 'eccn=' + str(eccn) + ' ' call += 'omega=' + str(omega) + ' ' call += 'inclination=' + str(inclination) + ' ' call += 'c1=' + str(c1) + ' ' call += 'c2=' + str(c2) + ' ' call += 'c3=' + str(c3) + ' ' call += 'c4=' + str(c4) + ' ' call += 'albedo=' + str(albedo) + ' ' call += 'depth=' + str(depth) + ' ' call += 'contamination=' + str(contamination) + ' ' call += 'gamma=' + str(gamma) + ' ' call += 'fitparams=' + str(fitparams) + ' ' eclp = 'n' if (eclipses): eclp = 'y' call += 'eclipses=' + eclp + ' ' boost = 'n' if (dopboost): boost = 'y' call += 'dopboost=' + boost + ' ' distort = 'n' if (tides): distort = 'y' call += 'tides=' + distort + ' ' call += 'job=' + str(job) + ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber=' + overwrite + ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose=' + chatter + ' ' call += 'logfile=' + logfile kepmsg.log(logfile, call + '\n', verbose) # start time kepmsg.clock('KEPBINARY started at', logfile, verbose) # test log file logfile = kepmsg.test(logfile) # check and format the list of fit parameters if status == 0 and job == 'fit': allParams = [m1, m2, r1, r2, period, bjd0, eccn, omega, inclination] allNames = [ 'm1', 'm2', 'r1', 'r2', 'period', 'bjd0', 'eccn', 'omega', 'inclination' ] fitparams = re.sub('\|', ',', fitparams.strip()) fitparams = re.sub('\.', ',', fitparams.strip()) fitparams = re.sub(';', ',', fitparams.strip()) fitparams = re.sub(':', ',', fitparams.strip()) fitparams = re.sub('\s+', ',', fitparams.strip()) fitparams, status = kepio.parselist(fitparams, logfile, verbose) for fitparam in fitparams: if fitparam.strip() not in allNames: message = 'ERROR -- KEPBINARY: unknown field in list of fit parameters' status = kepmsg.err(logfile, message, verbose) # clobber output file if status == 0: if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPBINARY: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile, message, verbose) # open input file if status == 0: instr, status = kepio.openfits(infile, 'readonly', logfile, verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys( instr, infile, logfile, verbose, status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # check the data column exists if status == 0: try: instr[1].data.field(datacol) except: message = 'ERROR -- KEPBINARY: ' + datacol + ' column does not exist in ' + infile + '[1]' status = kepmsg.err(logfile, message, verbose) # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr, file, logfile, verbose) # read table structure if status == 0: table, status = kepio.readfitstab(infile, instr[1], logfile, verbose) # filter input data table if status == 0: try: nanclean = instr[1].header['NANCLEAN'] except: naxis2 = 0 try: for i in range(len(table.field(0))): if numpy.isfinite(table.field('barytime')[i]) and \ numpy.isfinite(table.field(datacol)[i]): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] except: for i in range(len(table.field(0))): if numpy.isfinite(table.field('time')[i]) and \ numpy.isfinite(table.field(datacol)[i]): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] comment = 'NaN cadences removed from data' status = kepkey.new('NANCLEAN', True, comment, instr[1], outfile, logfile, verbose) # read table columns if status == 0: try: time = instr[1].data.field('barytime') except: time, status = kepio.readfitscol(infile, instr[1].data, 'time', logfile, verbose) indata, status = kepio.readfitscol(infile, instr[1].data, datacol, logfile, verbose) if status == 0: time = time + bjdref indata = indata / cadenom # limb-darkening cofficients if status == 0: limbdark = numpy.array([c1, c2, c3, c4], dtype='float32') # time details for model if status == 0: npt = len(time) exptime = numpy.zeros((npt), dtype='float64') dtype = numpy.zeros((npt), dtype='int') for i in range(npt): try: exptime[i] = time[i + 1] - time[i] except: exptime[i] = time[i] - time[i - 1] # calculate binary model if status == 0: tmodel = kepsim.transitModel(1.0, m1, m2, r1, r2, period, inclination, bjd0, eccn, omega, depth, albedo, c1, c2, c3, c4, gamma, contamination, npt, time, exptime, dtype, eclipses, dopboost, tides) # re-normalize binary model to data if status == 0 and (job == 'overlay' or job == 'fit'): dmedian = numpy.median(indata) tmodel = tmodel / numpy.median(tmodel) * dmedian # define arrays of floating and frozen parameters if status == 0 and job == 'fit': params = [] paramNames = [] arguments = [] argNames = [] for i in range(len(allNames)): if allNames[i] in fitparams: params.append(allParams[i]) paramNames.append(allNames[i]) else: arguments.append(allParams[i]) argNames.append(allNames[i]) params.append(dmedian) params = numpy.array(params, dtype='float32') # subtract model from data if status == 0 and job == 'fit': deltam = numpy.abs(indata - tmodel) # fit statistics if status == 0 and job == 'fit': aveDelta = numpy.sum(deltam) / npt chi2 = math.sqrt( numpy.sum( (indata - tmodel) * (indata - tmodel) / (npt - len(params)))) # fit model to data using downhill simplex if status == 0 and job == 'fit': print '' print '%4s %11s %11s' % ('iter', 'delta', 'chi^2') print '----------------------------' print '%4d %.5E %.5E' % (0, aveDelta, chi2) bestFit = scipy.optimize.fmin( fitModel, params, args=(paramNames, dmedian, m1, m2, r1, r2, period, bjd0, eccn, omega, inclination, depth, albedo, c1, c2, c3, c4, gamma, contamination, npt, time, exptime, indata, dtype, eclipses, dopboost, tides), maxiter=1e4) # calculate best fit binary model if status == 0 and job == 'fit': print '' for i in range(len(paramNames)): if 'm1' in paramNames[i].lower(): m1 = bestFit[i] print ' M1 = %.3f Msun' % bestFit[i] elif 'm2' in paramNames[i].lower(): m2 = bestFit[i] print ' M2 = %.3f Msun' % bestFit[i] elif 'r1' in paramNames[i].lower(): r1 = bestFit[i] print ' R1 = %.4f Rsun' % bestFit[i] elif 'r2' in paramNames[i].lower(): r2 = bestFit[i] print ' R2 = %.4f Rsun' % bestFit[i] elif 'period' in paramNames[i].lower(): period = bestFit[i] elif 'bjd0' in paramNames[i].lower(): bjd0 = bestFit[i] print 'BJD0 = %.8f' % bestFit[i] elif 'eccn' in paramNames[i].lower(): eccn = bestFit[i] print ' e = %.3f' % bestFit[i] elif 'omega' in paramNames[i].lower(): omega = bestFit[i] print ' w = %.3f deg' % bestFit[i] elif 'inclination' in paramNames[i].lower(): inclination = bestFit[i] print ' i = %.3f deg' % bestFit[i] flux = bestFit[-1] print '' tmodel = kepsim.transitModel(flux, m1, m2, r1, r2, period, inclination, bjd0, eccn, omega, depth, albedo, c1, c2, c3, c4, gamma, contamination, npt, time, exptime, dtype, eclipses, dopboost, tides) # subtract model from data if status == 0: deltaMod = indata - tmodel # standard deviation of model if status == 0: stdDev = math.sqrt( numpy.sum((indata - tmodel) * (indata - tmodel)) / npt) # clean up x-axis unit if status == 0: time0 = float(int(tstart / 100) * 100.0) ptime = time - time0 xlab = 'BJD $-$ %d' % time0 # clean up y-axis units if status == 0: nrm = len(str(int(indata.max()))) - 1 pout = indata / 10**nrm pmod = tmodel / 10**nrm pres = deltaMod / stdDev if job == 'fit' or job == 'overlay': try: ylab1 = 'Flux (10$^%d$ e$^-$ s$^{-1}$)' % nrm ylab2 = 'Residual ($\sigma$)' except: ylab1 = 'Flux (10**%d e-/s)' % nrm ylab2 = 'Residual (sigma)' else: ylab1 = 'Normalized Flux' # dynamic range of model plot if status == 0 and job == 'model': xmin = ptime.min() xmax = ptime.max() ymin = tmodel.min() ymax = tmodel.max() # dynamic range of model/data overlay or fit if status == 0 and (job == 'overlay' or job == 'fit'): xmin = ptime.min() xmax = ptime.max() ymin = pout.min() ymax = pout.max() tmin = pmod.min() tmax = pmod.max() ymin = numpy.array([ymin, tmin]).min() ymax = numpy.array([ymax, tmax]).max() rmin = pres.min() rmax = pres.max() # pad the dynamic range if status == 0: xr = (xmax - xmin) / 80 yr = (ymax - ymin) / 40 if job == 'overlay' or job == 'fit': rr = (rmax - rmin) / 40 # set up plot style if status == 0: labelsize = 24 ticksize = 16 xsize = 17 ysize = 7 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 params = { 'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': 24, 'axes.font': 'sans-serif', 'axes.fontweight': 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': 16, 'ytick.labelsize': 16 } pylab.rcParams.update(params) pylab.figure(figsize=[14, 10]) pylab.clf() # main plot window ax = pylab.axes([0.05, 0.3, 0.94, 0.68]) pylab.gca().xaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) labels = ax.get_yticklabels() setp(labels, 'rotation', 90, fontsize=12) # plot model time series if status == 0 and job == 'model': pylab.plot(ptime, tmodel, color='#0000ff', linestyle='-', linewidth=1.0) ptime = numpy.insert(ptime, [0.0], ptime[0]) ptime = numpy.append(ptime, ptime[-1]) tmodel = numpy.insert(tmodel, [0.0], 0.0) tmodel = numpy.append(tmodel, 0.0) pylab.fill(ptime, tmodel, fc='#ffff00', linewidth=0.0, alpha=0.2) # plot data time series and best fit if status == 0 and (job == 'overlay' or job == 'fit'): pylab.plot(ptime, pout, color='#0000ff', linestyle='-', linewidth=1.0) ptime = numpy.insert(ptime, [0.0], ptime[0]) ptime = numpy.append(ptime, ptime[-1]) pout = numpy.insert(pout, [0], 0.0) pout = numpy.append(pout, 0.0) pylab.fill(ptime, pout, fc='#ffff00', linewidth=0.0, alpha=0.2) pylab.plot(ptime[1:-1], pmod, color='r', linestyle='-', linewidth=2.0) # ranges and labels if status == 0: pylab.xlim(xmin - xr, xmax + xr) pylab.ylim(ymin - yr, ymax + yr) pylab.xlabel(xlab, {'color': 'k'}) pylab.ylabel(ylab1, {'color': 'k'}) # residual plot window if status == 0 and (job == 'overlay' or job == 'fit'): ax = pylab.axes([0.05, 0.07, 0.94, 0.23]) pylab.gca().xaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) labels = ax.get_yticklabels() setp(labels, 'rotation', 90, fontsize=12) # plot residual time series if status == 0 and (job == 'overlay' or job == 'fit'): pylab.plot([ptime[0], ptime[-1]], [0.0, 0.0], color='r', linestyle='--', linewidth=1.0) pylab.plot([ptime[0], ptime[-1]], [-1.0, -1.0], color='r', linestyle='--', linewidth=1.0) pylab.plot([ptime[0], ptime[-1]], [1.0, 1.0], color='r', linestyle='--', linewidth=1.0) pylab.plot(ptime[1:-1], pres, color='#0000ff', linestyle='-', linewidth=1.0) pres = numpy.insert(pres, [0], rmin) pres = numpy.append(pres, rmin) pylab.fill(ptime, pres, fc='#ffff00', linewidth=0.0, alpha=0.2) # ranges and labels of residual time series if status == 0 and (job == 'overlay' or job == 'fit'): pylab.xlim(xmin - xr, xmax + xr) pylab.ylim(rmin - rr, rmax + rr) pylab.xlabel(xlab, {'color': 'k'}) pylab.ylabel(ylab2, {'color': 'k'}) # display the plot if status == 0: pylab.draw()
def kepbin( infile, outfile, fluxcol, do_nbin, nbins, do_binwidth, binwidth, do_ownbins, binfile, method, interpm, plot, clobber, verbose, logfile, status, ): """ Setup the kepbin environment """ # log the call hashline = "----------------------------------------------------------------------------" kepmsg.log(logfile, hashline, verbose) call = "KEPBIN -- " call += "infile=" + infile + " " call += "outfile=" + outfile + " " call += "fluxcol=" + fluxcol + " " donbin = "n" if do_nbin: donbin = "y" call += "donbin=" + donbin + " " dobinwidth = "n" if do_binwidth: dobinwidth = "y" call += "dbinwidth=" + dobinwidth + " " doownbin = "n" if do_ownbins: doownbin = "y" call += "doownbin=" + doownbin + " " call += "method=" + method + " " call += "interpm=" + interpm + " " plotit = "n" if plot: plotit = "y" call += "plot=" + plotit + " " overwrite = "n" if clobber: overwrite = "y" call += "clobber=" + overwrite + " " chatter = "n" if verbose: chatter = "y" call += "verbose=" + chatter + " " call += "logfile=" + logfile kepmsg.log(logfile, call + "\n", verbose) # start time kepmsg.clock("KEPCLIP started at", logfile, verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = "ERROR -- KEPCLIP: " + outfile + " exists. Use --clobber" status = kepmsg.err(logfile, message, verbose) # open input file if status == 0: instr, status = kepio.openfits(infile, "readonly", logfile, verbose) tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr, infile, logfile, verbose, status) # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr, file, logfile, verbose) # input data if status == 0: table = instr[1].data # read time and flux columns date = table.field("barytime") flux = table.field(fluxcol) # cut out infinites and zero flux columns date, flux = cutBadData(date, flux) if do_nbin: bdate, bflux = bin_funct(date, flux, nbins=nbins, method=method, interpm=interpm) elif do_binwidth: bdate, bflux = bin_funct(date, flux, binwidth=binwidth, method=method, interpm=interpm) elif do_ownbins: filepointer = open(binfile, "r") ownbins = [] for line in filepointer: splitted = line.split() ownbins.append(float(splitted[0])) ownbins = n.array(ownbins) bdate, bflux = bin_funct(date, flux, ownbins=ownbins, method=method, interpm=interpm) if plot: do_plot(bdate, bflux) if status == 0: col1 = pyfits.Column(name="bdate", format="E", unit="day", array=bdate) col2 = pyfits.Column(name="bflux", format="E", unit="e-/cadence", array=bflux) cols = pyfits.ColDefs([col1, col2]) instr.append(pyfits.new_table(cols)) instr[-1].header.update("EXTNAME", "BINNED DATA", "extension name") instr.writeto(outfile) # close input file if status == 0: status = kepio.closefits(instr, logfile, verbose) # end time if status == 0: message = "KEPBIN completed at" else: message = "\nKEPBIN aborted at" kepmsg.clock(message, logfile, verbose)
def kepstddev(infile,outfile,datacol,timescale,clobber,verbose,logfile,status,cmdLine=False): # startup parameters status = 0 labelsize = 44 ticksize = 36 xsize = 16 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPSTDDEV -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+str(datacol)+' ' call += 'timescale='+str(timescale)+' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPSTDDEV started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPSTDDEV: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile,message,verbose) # open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # read table structure if status == 0: table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) # filter input data table if status == 0: work1 = numpy.array([table.field('time'), table.field(datacol)]) work1 = numpy.rot90(work1,3) work1 = work1[~numpy.isnan(work1).any(1)] # read table columns if status == 0: intime = work1[:,1] + bjdref indata = work1[:,0] # calculate STDDEV in units of ppm if status == 0: stddev = running_frac_std(intime,indata,timescale/24) * 1.0e6 astddev = numpy.std(indata) * 1.0e6 cdpp = stddev / sqrt(timescale * 3600.0 / cadence) # filter cdpp if status == 0: for i in range(len(cdpp)): if cdpp[i] > median(cdpp) * 10.0: cdpp[i] = cdpp[i-1] # calculate median STDDEV if status == 0: medcdpp = ones((len(cdpp)),dtype='float32') * median(cdpp[:]) # print '\nMedian %.1fhr standard deviation = %d ppm' % (timescale, median(stddev[:])) print('\nStandard deviation = %d ppm' % astddev) # calculate median STDDEV if status == 0: medcdpp = ones((len(cdpp)),dtype='float32') * median(cdpp[:]) print('Median %.1fhr CDPP = %d ppm' % (timescale, median(cdpp[:]))) # calculate RMS STDDEV if status == 0: rms, status = kepstat.rms(cdpp,zeros(len(stddev)),logfile,verbose) rmscdpp = ones((len(cdpp)),dtype='float32') * rms print(' RMS %.1fhr CDPP = %d ppm\n' % (timescale, rms)) # clean up x-axis unit if status == 0: intime0 = float(int(tstart / 100) * 100.0) ptime = intime - intime0 xlab = 'BJD $-$ %d' % intime0 # clean up y-axis units if status == 0: pout = copy(cdpp) nrm = math.ceil(math.log10(median(cdpp))) - 1.0 # pout = pout / 10**nrm # ylab = '%.1fhr $\sigma$ (10$^%d$ ppm)' % (timescale,nrm) ylab = '%.1fhr $\sigma$ (ppm)' % timescale # data limits xmin = ptime.min() xmax = ptime.max() ymin = pout.min() ymax = pout.max() xr = xmax - xmin yr = ymax - ymin ptime = insert(ptime,[0],[ptime[0]]) ptime = append(ptime,[ptime[-1]]) pout = insert(pout,[0],[0.0]) pout = append(pout,0.0) # plot style if status == 0: try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': 36, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': 32, 'ytick.labelsize': 36} pylab.rcParams.update(params) except: pass # define size of plot on monitor screen pylab.figure(figsize=[xsize,ysize]) # delete any fossil plots in the matplotlib window pylab.clf() # position first axes inside the plotting window ax = pylab.axes([0.07,0.15,0.92,0.83]) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) ax.yaxis.set_major_locator(MaxNLocator(5)) # rotate y labels by 90 deg labels = ax.get_yticklabels() pylab.setp(labels, 'rotation', 90,fontsize=36) # plot flux vs time ltime = array([],dtype='float64') ldata = array([],dtype='float32') dt = 0 work1 = 2.0 * cadence / 86400 for i in range(1,len(ptime)-1): dt = ptime[i] - ptime[i-1] if dt < work1: ltime = append(ltime,ptime[i]) ldata = append(ldata,pout[i]) else: pylab.plot(ltime,ldata,color='#0000ff',linestyle='-',linewidth=1.0) ltime = array([],dtype='float64') ldata = array([],dtype='float32') pylab.plot(ltime,ldata,color='#0000ff',linestyle='-',linewidth=1.0) # plot the fill color below data time series, with no data gaps pylab.fill(ptime,pout,fc='#ffff00',linewidth=0.0,alpha=0.2) # plot median CDPP # pylab.plot(intime - intime0,medcdpp / 10**nrm,color='r',linestyle='-',linewidth=2.0) # pylab.plot(intime - intime0,medcdpp,color='r',linestyle='-',linewidth=2.0) # plot RMS CDPP # pylab.plot(intime - intime0,rmscdpp / 10**nrm,color='r',linestyle='--',linewidth=2.0) # define plot x and y limits pylab.xlim(xmin - xr * 0.01, xmax + xr * 0.01) if ymin - yr * 0.01 <= 0.0: pylab.ylim(1.0e-10, ymax + yr * 0.01) else: pylab.ylim(ymin - yr * 0.01, ymax + yr * 0.01) # plot labels pylab.xlabel(xlab, {'color' : 'k'}) pylab.ylabel(ylab, {'color' : 'k'}) # make grid on plot pylab.grid() # render plot if status == 0: if cmdLine: pylab.show(block=True) else: pylab.ion() pylab.plot([]) pylab.ioff() # add NaNs back into data if status == 0: n = 0 work1 = array([],dtype='float32') instr, status = kepio.openfits(infile,'readonly',logfile,verbose) table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) for i in range(len(table.field(0))): if isfinite(table.field('time')[i]) and isfinite(table.field(datacol)[i]): work1 = append(work1,cdpp[n]) n += 1 else: work1 = append(work1,nan) # write output file if status == 0: status = kepkey.new('MCDPP%d' % (timescale * 10.0),medcdpp[0], 'Median %.1fhr CDPP (ppm)' % timescale, instr[1],outfile,logfile,verbose) status = kepkey.new('RCDPP%d' % (timescale * 10.0),rmscdpp[0], 'RMS %.1fhr CDPP (ppm)' % timescale, instr[1],outfile,logfile,verbose) colname = 'CDPP_%d' % (timescale * 10) col1 = pyfits.Column(name=colname,format='E13.7',array=work1) cols = instr[1].data.columns + col1 instr[1] = pyfits.new_table(cols,header=instr[1].header) instr.writeto(outfile) # comment keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) # close FITS if status == 0: status = kepio.closefits(instr,logfile,verbose) # end time if (status == 0): message = 'KEPSTDDEV completed at' else: message = '\nKEPSTDDEV aborted at' kepmsg.clock(message,logfile,verbose)
def kepdiffim(infile,outfile,plotfile,imscale,colmap,filter,function,cutoff,clobber,verbose,logfile,status,cmdLine=False): # input arguments status = 0 seterr(all="ignore") # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPDIFFIM -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'plotfile='+plotfile+' ' call += 'imscale='+imscale+' ' call += 'colmap='+colmap+' ' filt = 'n' if (filter): filt = 'y' call += 'filter='+filt+ ' ' call += 'function='+function+' ' call += 'cutoff='+str(cutoff)+' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPDIFFIM started at: ',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPDIFFIM: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile,message,verbose) # reference color map if colmap == 'browse': status = cmap_plot() # open TPF FITS file if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, barytime, status = \ kepio.readTPF(infile,'TIME',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, tcorr, status = \ kepio.readTPF(infile,'TIMECORR',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, cadno, status = \ kepio.readTPF(infile,'CADENCENO',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, fluxpixels, status = \ kepio.readTPF(infile,'FLUX',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, errpixels, status = \ kepio.readTPF(infile,'FLUX_ERR',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, qual, status = \ kepio.readTPF(infile,'QUALITY',logfile,verbose) # read mask defintion data from TPF file if status == 0: maskimg, pixcoord1, pixcoord2, status = kepio.readMaskDefinition(infile,logfile,verbose) # print target data if status == 0: print '' print ' KepID: %s' % kepid print ' RA (J2000): %s' % ra print 'Dec (J2000): %s' % dec print ' KepMag: %s' % kepmag print ' SkyGroup: %2s' % skygroup print ' Season: %2s' % str(season) print ' Channel: %2s' % channel print ' Module: %2s' % module print ' Output: %1s' % output print '' # how many quality = 0 rows? if status == 0: npts = 0 nrows = len(fluxpixels) for i in range(nrows): if qual[i] == 0 and \ numpy.isfinite(barytime[i]) and \ numpy.isfinite(fluxpixels[i,ydim*xdim/2]): npts += 1 time = empty((npts)) timecorr = empty((npts)) cadenceno = empty((npts)) quality = empty((npts)) pixseries = empty((ydim*xdim,npts)) errseries = empty((ydim*xdim,npts)) # construct output light curves if status == 0: np = 0 for i in range(ydim*xdim): npts = 0 for k in range(nrows): if qual[k] == 0 and \ numpy.isfinite(barytime[k]) and \ numpy.isfinite(fluxpixels[k,ydim*xdim/2]): time[npts] = barytime[k] timecorr[npts] = tcorr[k] cadenceno[npts] = cadno[k] quality[npts] = qual[k] pixseries[i,npts] = fluxpixels[k,np] errseries[i,npts] = errpixels[k,np] npts += 1 np += 1 # define data sampling if status == 0 and filter: tpf, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0 and filter: cadence, status = kepkey.cadence(tpf[1],infile,logfile,verbose) tr = 1.0 / (cadence / 86400) timescale = 1.0 / (cutoff / tr) # define convolution function if status == 0 and filter: if function == 'boxcar': filtfunc = numpy.ones(numpy.ceil(timescale)) elif function == 'gauss': timescale /= 2 dx = numpy.ceil(timescale * 10 + 1) filtfunc = kepfunc.gauss() filtfunc = filtfunc([1.0,dx/2-1.0,timescale],linspace(0,dx-1,dx)) elif function == 'sinc': dx = numpy.ceil(timescale * 12 + 1) fx = linspace(0,dx-1,dx) fx = fx - dx / 2 + 0.5 fx /= timescale filtfunc = numpy.sinc(fx) filtfunc /= numpy.sum(filtfunc) # pad time series at both ends with noise model if status == 0 and filter: for i in range(ydim*xdim): ave, sigma = kepstat.stdev(pixseries[i,:len(filtfunc)]) padded = numpy.append(kepstat.randarray(numpy.ones(len(filtfunc)) * ave, \ numpy.ones(len(filtfunc)) * sigma), pixseries[i,:]) ave, sigma = kepstat.stdev(pixseries[i,-len(filtfunc):]) padded = numpy.append(padded, kepstat.randarray(numpy.ones(len(filtfunc)) * ave, \ numpy.ones(len(filtfunc)) * sigma)) # convolve data if status == 0: convolved = convolve(padded,filtfunc,'same') # remove padding from the output array if status == 0: outdata = convolved[len(filtfunc):-len(filtfunc)] # subtract low frequencies if status == 0: outmedian = median(outdata) pixseries[i,:] = pixseries[i,:] - outdata + outmedian # sum pixels over cadence if status == 0: np = 0 nrows = len(fluxpixels) pixsum = zeros((ydim*xdim)) errsum = zeros((ydim*xdim)) for i in range(npts): if quality[i] == 0: pixsum += pixseries[:,i] errsum += errseries[:,i]**2 np += 1 pixsum /= np errsum = sqrt(errsum) / np # calculate standard deviation pixels if status == 0: pixvar = zeros((ydim*xdim)) for i in range(npts): if quality[i] == 0: pixvar += (pixsum - pixseries[:,i] / errseries[:,i])**2 pixvar = numpy.sqrt(pixvar) # median pixel errors if status == 0: errmed = empty((ydim*xdim)) for i in range(ydim*xdim): errmed[i] = numpy.median(errseries[:,i]) # calculate chi distribution pixels if status == 0: pixdev = zeros((ydim*xdim)) for i in range(npts): if quality[i] == 0: pixdev += ((pixsum - pixseries[:,i]) / pixsum)**2 pixdev = numpy.sqrt(pixdev) # pixdev = numpy.sqrt(pixvar) / errsum #errmed # image scale and intensity limits if status == 0: pixsum_pl, zminsum, zmaxsum = kepplot.intScale1D(pixsum,imscale) pixvar_pl, zminvar, zmaxvar = kepplot.intScale1D(pixvar,imscale) pixdev_pl, zmindev, zmaxdev = kepplot.intScale1D(pixdev,imscale) # construct output summed image if status == 0: imgsum = empty((ydim,xdim)) imgvar = empty((ydim,xdim)) imgdev = empty((ydim,xdim)) imgsum_pl = empty((ydim,xdim)) imgvar_pl = empty((ydim,xdim)) imgdev_pl = empty((ydim,xdim)) n = 0 for i in range(ydim): for j in range(xdim): imgsum[i,j] = pixsum[n] imgvar[i,j] = pixvar[n] imgdev[i,j] = pixdev[n] imgsum_pl[i,j] = pixsum_pl[n] imgvar_pl[i,j] = pixvar_pl[n] imgdev_pl[i,j] = pixdev_pl[n] n += 1 # construct output file if status == 0: instruct, status = kepio.openfits(infile,'readonly',logfile,verbose) status = kepkey.history(call,instruct[0],outfile,logfile,verbose) hdulist = HDUList(instruct[0]) hdulist.writeto(outfile) status = kepkey.new('EXTNAME','FLUX','name of extension',instruct[2],outfile,logfile,verbose) pyfits.append(outfile,imgsum,instruct[2].header) status = kepkey.new('EXTNAME','CHI','name of extension',instruct[2],outfile,logfile,verbose) pyfits.append(outfile,imgvar,instruct[2].header) status = kepkey.new('EXTNAME','STDDEV','name of extension',instruct[2],outfile,logfile,verbose) pyfits.append(outfile,imgdev,instruct[2].header) status = kepkey.new('EXTNAME','APERTURE','name of extension',instruct[2],outfile,logfile,verbose) pyfits.append(outfile,instruct[2].data,instruct[2].header) status = kepio.closefits(instruct,logfile,verbose) # pixel limits of the subimage if status == 0: ymin = row ymax = ymin + ydim xmin = column xmax = xmin + xdim # plot limits for summed image ymin = float(ymin) - 0.5 ymax = float(ymax) - 0.5 xmin = float(xmin) - 0.5 xmax = float(xmax) - 0.5 # plot style try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': 24, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': 10, 'ytick.labelsize': 10} pylab.rcParams.update(params) except: 'ERROR -- KEPDIFFIM: install latex for scientific plotting' status = 1 if status == 0: plotimage(imgsum_pl,imgvar_pl,imgdev_pl,zminsum,zminvar,zmindev, zmaxsum,zmaxvar,zmaxdev,xmin,xmax,ymin,ymax,colmap,plotfile,cmdLine) # stop time kepmsg.clock('KEPDIFFIM ended at: ',logfile,verbose) return
def kepbls(infile, outfile, datacol, errcol, minper, maxper, mindur, maxdur, nsearch, nbins, plot, clobber, verbose, logfile, status, cmdLine=False): # startup parameters numpy.seterr(all="ignore") status = 0 labelsize = 32 ticksize = 18 xsize = 16 ysize = 8 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPBLS -- ' call += 'infile=' + infile + ' ' call += 'outfile=' + outfile + ' ' call += 'datacol=' + str(datacol) + ' ' call += 'errcol=' + str(errcol) + ' ' call += 'minper=' + str(minper) + ' ' call += 'maxper=' + str(maxper) + ' ' call += 'mindur=' + str(mindur) + ' ' call += 'maxdur=' + str(maxdur) + ' ' call += 'nsearch=' + str(nsearch) + ' ' call += 'nbins=' + str(nbins) + ' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot=' + plotit + ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber=' + overwrite + ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose=' + chatter + ' ' call += 'logfile=' + logfile kepmsg.log(logfile, call + '\n', verbose) # start time kepmsg.clock('KEPBLS started at', logfile, verbose) # is duration greater than one bin in the phased light curve? if float(nbins) * maxdur / 24.0 / maxper <= 1.0: message = 'WARNING -- KEPBLS: ' + str( maxdur) + ' hours transit duration < 1 phase bin when P = ' message += str(maxper) + ' days' kepmsg.warn(logfile, message) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPBLS: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile, message, verbose) # open input file if status == 0: instr, status = kepio.openfits(infile, 'readonly', logfile, verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys( instr, infile, logfile, verbose, status) # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr, file, logfile, verbose) # read table structure if status == 0: table, status = kepio.readfitstab(infile, instr[1], logfile, verbose) # filter input data table if status == 0: work1 = numpy.array( [table.field('time'), table.field(datacol), table.field(errcol)]) work1 = numpy.rot90(work1, 3) work1 = work1[~numpy.isnan(work1).any(1)] # read table columns if status == 0: intime = work1[:, 2] + bjdref indata = work1[:, 1] inerr = work1[:, 0] # test whether the period range is sensible if status == 0: tr = intime[-1] - intime[0] if maxper > tr: message = 'ERROR -- KEPBLS: maxper is larger than the time range of the input data' status = kepmsg.err(logfile, message, verbose) # prepare time series if status == 0: work1 = intime - intime[0] work2 = indata - numpy.mean(indata) # start period search if status == 0: srMax = numpy.array([], dtype='float32') transitDuration = numpy.array([], dtype='float32') transitPhase = numpy.array([], dtype='float32') dPeriod = (maxper - minper) / nsearch trialPeriods = numpy.arange(minper, maxper + dPeriod, dPeriod, dtype='float32') complete = 0 print ' ' for trialPeriod in trialPeriods: fracComplete = float(complete) / float(len(trialPeriods) - 1) * 100.0 txt = '\r' txt += 'Trial period = ' txt += str(int(trialPeriod)) txt += ' days [' txt += str(int(fracComplete)) txt += '% complete]' txt += ' ' * 20 sys.stdout.write(txt) sys.stdout.flush() complete += 1 srMax = numpy.append(srMax, 0.0) transitDuration = numpy.append(transitDuration, numpy.nan) transitPhase = numpy.append(transitPhase, numpy.nan) trialFrequency = 1.0 / trialPeriod # minimum and maximum transit durations in quantized phase units duration1 = max(int(float(nbins) * mindur / 24.0 / trialPeriod), 2) duration2 = max( int(float(nbins) * maxdur / 24.0 / trialPeriod) + 1, duration1 + 1) # 30 minutes in quantized phase units halfHour = int(0.02083333 / trialPeriod * nbins + 1) # compute folded time series with trial period work4 = numpy.zeros((nbins), dtype='float32') work5 = numpy.zeros((nbins), dtype='float32') phase = numpy.array( ((work1 * trialFrequency) - numpy.floor(work1 * trialFrequency)) * float(nbins), dtype='int') ptuple = numpy.array([phase, work2, inerr]) ptuple = numpy.rot90(ptuple, 3) phsort = numpy.array(sorted(ptuple, key=lambda ph: ph[2])) for i in range(nbins): elements = numpy.nonzero(phsort[:, 2] == float(i))[0] work4[i] = numpy.mean(phsort[elements, 1]) work5[i] = math.sqrt( numpy.sum(numpy.power(phsort[elements, 0], 2)) / len(elements)) # extend the work arrays beyond nbins by wrapping work4 = numpy.append(work4, work4[:duration2]) work5 = numpy.append(work5, work5[:duration2]) # calculate weights of folded light curve points sigmaSum = numpy.nansum(numpy.power(work5, -2)) omega = numpy.power(work5, -2) / sigmaSum # calculate weighted phased light curve s = omega * work4 # iterate through trial period phase for i1 in range(nbins): # iterate through transit durations for duration in range(duration1, duration2 + 1, int(halfHour)): # calculate maximum signal residue i2 = i1 + duration sr1 = numpy.sum(numpy.power(s[i1:i2], 2)) sr2 = numpy.sum(omega[i1:i2]) sr = math.sqrt(sr1 / (sr2 * (1.0 - sr2))) if sr > srMax[-1]: srMax[-1] = sr transitDuration[-1] = float(duration) transitPhase[-1] = float((i1 + i2) / 2) # normalize maximum signal residue curve bestSr = numpy.max(srMax) bestTrial = numpy.nonzero(srMax == bestSr)[0][0] srMax /= bestSr transitDuration *= trialPeriods / 24.0 BJD0 = numpy.array(transitPhase * trialPeriods / nbins, dtype='float64') + intime[0] - 2454833.0 print '\n' # clean up x-axis unit if status == 0: ptime = copy(trialPeriods) xlab = 'Trial Period (days)' # clean up y-axis units if status == 0: pout = copy(srMax) ylab = 'Normalized Signal Residue' # data limits xmin = ptime.min() xmax = ptime.max() ymin = pout.min() ymax = pout.max() xr = xmax - xmin yr = ymax - ymin ptime = insert(ptime, [0], [ptime[0]]) ptime = append(ptime, [ptime[-1]]) pout = insert(pout, [0], [0.0]) pout = append(pout, 0.0) # plot light curve if status == 0 and plot: plotLatex = True try: params = { 'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight': 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize } rcParams.update(params) except: plotLatex = False if status == 0 and plot: pylab.figure(figsize=[xsize, ysize]) pylab.clf() # plot data ax = pylab.axes([0.06, 0.10, 0.93, 0.87]) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) # rotate y labels by 90 deg labels = ax.get_yticklabels() pylab.setp(labels, 'rotation', 90) # plot curve if status == 0 and plot: pylab.plot(ptime[1:-1], pout[1:-1], color=lcolor, linestyle='-', linewidth=lwidth) pylab.fill(ptime, pout, color=fcolor, linewidth=0.0, alpha=falpha) pylab.xlabel(xlab, {'color': 'k'}) pylab.ylabel(ylab, {'color': 'k'}) pylab.grid() # plot ranges if status == 0 and plot: pylab.xlim(xmin - xr * 0.01, xmax + xr * 0.01) if ymin >= 0.0: pylab.ylim(ymin - yr * 0.01, ymax + yr * 0.01) else: pylab.ylim(1.0e-10, ymax + yr * 0.01) # render plot if status == 0 and plot: if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() # append new BLS data extension to the output file if status == 0: col1 = Column(name='PERIOD', format='E', unit='days', array=trialPeriods) col2 = Column(name='BJD0', format='D', unit='BJD - 2454833', array=BJD0) col3 = Column(name='DURATION', format='E', unit='hours', array=transitDuration) col4 = Column(name='SIG_RES', format='E', array=srMax) cols = ColDefs([col1, col2, col3, col4]) instr.append(new_table(cols)) instr[-1].header.cards['TTYPE1'].comment = 'column title: trial period' instr[-1].header.cards[ 'TTYPE2'].comment = 'column title: trial mid-transit zero-point' instr[-1].header.cards[ 'TTYPE3'].comment = 'column title: trial transit duration' instr[-1].header.cards[ 'TTYPE4'].comment = 'column title: normalized signal residue' instr[-1].header.cards['TFORM1'].comment = 'column type: float32' instr[-1].header.cards['TFORM2'].comment = 'column type: float64' instr[-1].header.cards['TFORM3'].comment = 'column type: float32' instr[-1].header.cards['TFORM4'].comment = 'column type: float32' instr[-1].header.cards['TUNIT1'].comment = 'column units: days' instr[-1].header.cards[ 'TUNIT2'].comment = 'column units: BJD - 2454833' instr[-1].header.cards['TUNIT3'].comment = 'column units: hours' instr[-1].header.update('EXTNAME', 'BLS', 'extension name') instr[-1].header.update('PERIOD', trialPeriods[bestTrial], 'most significant trial period [d]') instr[-1].header.update('BJD0', BJD0[bestTrial] + 2454833.0, 'time of mid-transit [BJD]') instr[-1].header.update('TRANSDUR', transitDuration[bestTrial], 'transit duration [hours]') instr[-1].header.update('SIGNRES', srMax[bestTrial] * bestSr, 'maximum signal residue') # history keyword in output file if status == 0: status = kepkey.history(call, instr[0], outfile, logfile, verbose) instr.writeto(outfile) # close input file if status == 0: status = kepio.closefits(instr, logfile, verbose) # print best trial period results if status == 0: print ' Best trial period = %.5f days' % trialPeriods[bestTrial] print ' Time of mid-transit = BJD %.5f' % (BJD0[bestTrial] + 2454833.0) print ' Transit duration = %.5f hours' % transitDuration[ bestTrial] print ' Maximum signal residue = %.4g \n' % (srMax[bestTrial] * bestSr) # end time if (status == 0): message = 'KEPBLS completed at' else: message = '\nKEPBLS aborted at' kepmsg.clock(message, logfile, verbose)
def kephalophot(infile, outfile, plotfile, plottype, filter, function, cutoff, clobber, verbose, logfile, status, cmdLine=False): # input arguments status = 0 seterr(all="ignore") # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPHALOPHOT -- ' call += 'infile=' + infile + ' ' call += 'outfile=' + outfile + ' ' call += 'plotfile=' + plotfile + ' ' call += 'plottype=' + plottype + ' ' filt = 'n' if (filter): filt = 'y' call += 'filter=' + filt + ' ' call += 'function=' + function + ' ' call += 'cutoff=' + str(cutoff) + ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber=' + overwrite + ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose=' + chatter + ' ' call += 'logfile=' + logfile kepmsg.log(logfile, call + '\n', verbose) # start time kepmsg.clock('KEPHALOPHOT started at', logfile, verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPHALOPHOT: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile, message, verbose) # open TPF FITS file if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, barytime, status = \ kepio.readTPF(infile,'TIME',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, tcorr, status = \ kepio.readTPF(infile,'TIMECORR',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, cadno, status = \ kepio.readTPF(infile,'CADENCENO',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, fluxpixels, status = \ kepio.readTPF(infile,'FLUX',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, errpixels, status = \ kepio.readTPF(infile,'FLUX_ERR',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, qual, status = \ kepio.readTPF(infile,'QUALITY',logfile,verbose) # read mask defintion data from TPF file if status == 0: maskimg, pixcoord1, pixcoord2, status = kepio.readMaskDefinition( infile, logfile, verbose) # print target data if status == 0: print('') print(' KepID: %s' % kepid) print(' RA (J2000): %s' % ra) print('Dec (J2000): %s' % dec) print(' KepMag: %s' % kepmag) print(' SkyGroup: %2s' % skygroup) print(' Season: %2s' % str(season)) print(' Channel: %2s' % channel) print(' Module: %2s' % module) print(' Output: %1s' % output) print('') # how many quality = 0 rows? how many pixels? if status == 0: np = ydim * xdim nrows = len(fluxpixels) npts = 0 for i in range(nrows): if qual[i] < 1e4 and \ numpy.isfinite(barytime[i]) and \ numpy.isfinite(fluxpixels[i,ydim*xdim/2]): npts += 1 time = empty((npts)) timecorr = empty((npts)) cadenceno = empty((npts)) quality = empty((npts)) pixseries = zeros((npts, np)) errseries = zeros((npts, np)) # pixseries = empty((ydim,xdim,npts)) # errseries = empty((ydim,xdim,npts)) # construct output light curves if status == 0: for i in range(np): npts = 0 for j in range(nrows): if qual[j] < 1e4 and \ numpy.isfinite(barytime[j]) and \ numpy.isfinite(fluxpixels[j,i]): time[npts] = barytime[j] timecorr[npts] = tcorr[j] cadenceno[npts] = cadno[j] quality[npts] = qual[j] pixseries[npts, i] = fluxpixels[j, i] errseries[npts, i] = errpixels[j, i] npts += 1 # define data sampling if status == 0 and filter: tpf, status = kepio.openfits(infile, 'readonly', logfile, verbose) if status == 0 and filter: cadence, status = kepkey.cadence(tpf[1], infile, logfile, verbose) tr = 1.0 / (cadence / 86400) timescale = 1.0 / (cutoff / tr) # define convolution function if status == 0 and filter: if function == 'boxcar': filtfunc = numpy.ones(numpy.ceil(timescale)) elif function == 'gauss': timescale /= 2 dx = numpy.ceil(timescale * 10 + 1) filtfunc = kepfunc.gauss() filtfunc = filtfunc([1.0, dx / 2 - 1.0, timescale], linspace(0, dx - 1, dx)) elif function == 'sinc': dx = numpy.ceil(timescale * 12 + 1) fx = linspace(0, dx - 1, dx) fx = fx - dx / 2 + 0.5 fx /= timescale filtfunc = numpy.sinc(fx) filtfunc /= numpy.sum(filtfunc) # pad time series at both ends with noise model if status == 0 and filter: for i in range(ydim): for j in range(xdim): ave, sigma = kepstat.stdev(pixseries[i, j, :len(filtfunc)]) padded = numpy.append(kepstat.randarray(numpy.ones(len(filtfunc)) * ave, \ numpy.ones(len(filtfunc)) * sigma), pixseries[i,j,:]) ave, sigma = kepstat.stdev(pixseries[i, j, -len(filtfunc):]) padded = numpy.append(padded, kepstat.randarray(numpy.ones(len(filtfunc)) * ave, \ numpy.ones(len(filtfunc)) * sigma)) # convolve data if status == 0: convolved = convolve(padded, filtfunc, 'same') # remove padding from the output array if status == 0: outdata = convolved[len(filtfunc):-len(filtfunc)] # subtract low frequencies if status == 0: outmedian = median(outdata) pixseries[i, j, :] = pixseries[i, j, :] - outdata + outmedian # construct weighted time series if status == 0: wgt = numpy.ones((np, 3)) twgt = numpy.ones((np, 3)) wgt /= sum(wgt, axis=0) satlvl = 0.8 * numpy.max(numpy.max(pixseries, axis=1)) brk1 = 9.7257203 brk2 = 45. ind1 = where(time - time[0] < brk1) ind2 = where((time - time[0] >= brk1) & (time - time[0] < brk2)) ind3 = where(time - time[0] >= brk2) z = numpy.array([0.0, 0.0, 0.0]) for i in range(np): if max(pixseries[ind1, i].flatten()) > satlvl or max( pixseries[ind1, i].flatten()) <= 100: wgt[i, 0] = 0 z[0] += 1 if max(pixseries[ind2, i].flatten()) > satlvl or max( pixseries[ind2, i].flatten()) <= 100: wgt[i, 1] = 0 z[1] += 1 if max(pixseries[ind3, i].flatten()) > satlvl or max( pixseries[ind3, i].flatten()) <= 100: wgt[i, 2] = 0 z[2] += 1 print(z) print(np - z) sf1 = numpy.dot(pixseries[ind1, :], wgt[:, 0]).flatten() sf2 = numpy.dot(pixseries[ind2, :], wgt[:, 1]).flatten() sf3 = numpy.dot(pixseries[ind3, :], wgt[:, 2]).flatten() sf1 /= numpy.median(sf1) sf2 /= numpy.median(sf2) sf3 /= numpy.median(sf3) originalflux = numpy.concatenate([sf1, sf2, sf3]) # a=numpy.array([0.0,0.0,0.0]) # t=0 # ca = numpy.array([0.0,0.0,0.0]) # ct = 0 # sig1 = numpy.std(sf1) # sig2 = numpy.std(sf2) # sig3 = numpy.std(sf3) # while 1: # j = int(numpy.floor(numpy.random.random()*np)) # if sum(wgt[j,:]) == 0: continue # if ct == 1000: # print(ca) # if ca[0] < 333 and ca[1] < 333 and ca[2] < 333: break # ca = numpy.array([0.0,0.0,0.0]) # ct = 0 # t += 1 # ct += 1 # wgt /= sum(wgt,axis=0) # twgt=copy(wgt) # twgt[j,:]*=numpy.random.normal(1.0,0.05,3) # twgt /= sum(twgt,axis=0) # tsf1 = numpy.dot(pixseries[ind1,:],twgt[:,0]).flatten() # tsf2 = numpy.dot(pixseries[ind2,:],twgt[:,1]).flatten() # tsf3 = numpy.dot(pixseries[ind3,:],twgt[:,2]).flatten() # tsf1 /= numpy.median(tsf1) # tsf2 /= numpy.median(tsf2) # tsf3 /= numpy.median(tsf3) # tsig1 = numpy.std(tsf1) # tsig2 = numpy.std(tsf2) # tsig3 = numpy.std(tsf3) # if tsig1 < sig1: # wgt[:,0] = twgt[:,0] # sig1 = tsig1 # a[0] += 1 # ca[0] += 1 # if tsig2 < sig2: # wgt[:,1] = twgt[:,1] # sig2 = tsig2 # a[1] += 1 # ca[1] += 1 # if tsig3 < sig3: # wgt[:,2] = twgt[:,2] # sig3 = tsig3 # a[2] += 1 # ca[2] += 1 # print(100*a/t) # sf1 = numpy.dot(pixseries[ind1,:],wgt[:,0]).flatten() # sf2 = numpy.dot(pixseries[ind2,:],wgt[:,1]).flatten() # sf3 = numpy.dot(pixseries[ind3,:],wgt[:,2]).flatten() # sf1 /= numpy.median(sf1) # sf2 /= numpy.median(sf2) # sf3 /= numpy.median(sf3) # # a=numpy.array([0.0,0.0,0.0]) # t=0 # ca = numpy.array([0.0,0.0,0.0]) # ct = 0 # sig1 = sum(numpy.fabs(sf1[1:]-sf1[:-1])) # sig2 = sum(numpy.fabs(sf2[1:]-sf2[:-1])) # sig3 = sum(numpy.fabs(sf3[1:]-sf3[:-1])) # while 1: # j = int(numpy.floor(numpy.random.random()*np)) # if sum(wgt[j,:]) == 0: continue # if ct == 1000: # print(ca) # if ca[0] < 167 and ca[1] < 167 and ca[2] < 167: break# # ca = numpy.array([0.0,0.0,0.0]) # ct = 0 # t += 1 # ct += 1 # wgt /= sum(wgt,axis=0) # twgt=copy(wgt) # twgt[j,:]*=numpy.random.normal(1.0,0.05,3) # twgt /= sum(twgt,axis=0) # tsf1 = numpy.dot(pixseries[ind1,:],twgt[:,0]).flatten() # tsf2 = numpy.dot(pixseries[ind2,:],twgt[:,1]).flatten() # tsf3 = numpy.dot(pixseries[ind3,:],twgt[:,2]).flatten() # tsf1 /= numpy.median(tsf1) # tsf2 /= numpy.median(tsf2) # tsf3 /= numpy.median(tsf3) # tsig1 = sum(numpy.fabs(tsf1[1:]-tsf1[:-1])) # tsig2 = sum(numpy.fabs(tsf2[1:]-tsf2[:-1])) # tsig3 = sum(numpy.fabs(tsf3[1:]-tsf3[:-1])) # if tsig1 < sig1: # wgt[:,0] = twgt[:,0] # sig1 = tsig1 # a[0] += 1 # ca[0] += 1 # if tsig2 < sig2: # wgt[:,1] = twgt[:,1] # sig2 = tsig2 # a[1] += 1 # ca[1] += 1 # if tsig3 < sig3: # wgt[:,2] = twgt[:,2] # sig3 = tsig3 # a[2] += 1 # ca[2] += 1 # print(100*a/t) # sf1 = numpy.dot(pixseries[ind1,:],wgt[:,0]).flatten() # sf2 = numpy.dot(pixseries[ind2,:],wgt[:,1]).flatten() # sf3 = numpy.dot(pixseries[ind3,:],wgt[:,2]).flatten() # sf1 /= numpy.median(sf1) # sf2 /= numpy.median(sf2) # sf3 /= numpy.median(sf3) a = numpy.array([0.0, 0.0, 0.0]) t = 0 ca = numpy.array([0.0, 0.0, 0.0]) ct = 0 sig1 = sum(numpy.fabs(sf1[2:] - 2 * sf1[1:-1] + sf1[:-2])) sig2 = sum(numpy.fabs(sf2[2:] - 2 * sf2[1:-1] + sf2[:-2])) sig3 = sum(numpy.fabs(sf3[2:] - 2 * sf3[1:-1] + sf3[:-2])) while 1: j = int(numpy.floor(numpy.random.random() * np)) if sum(wgt[j, :]) == 0: continue if ct == 1000: print(ca) if ca[0] < 20 and ca[1] < 20 and ca[2] < 20: break if t > 1000000: break ca = numpy.array([0.0, 0.0, 0.0]) ct = 0 t += 1 ct += 1 wgt /= sum(wgt, axis=0) twgt = copy(wgt) twgt[j, :] *= numpy.random.normal(1.0, 0.05, 3) twgt /= sum(twgt, axis=0) tsf1 = numpy.dot(pixseries[ind1, :], twgt[:, 0]).flatten() tsf2 = numpy.dot(pixseries[ind2, :], twgt[:, 1]).flatten() tsf3 = numpy.dot(pixseries[ind3, :], twgt[:, 2]).flatten() tsf1 /= numpy.median(tsf1) tsf2 /= numpy.median(tsf2) tsf3 /= numpy.median(tsf3) tsig1 = sum(numpy.fabs(tsf1[2:] - 2 * tsf1[1:-1] + tsf1[:-2])) tsig2 = sum(numpy.fabs(tsf2[2:] - 2 * tsf2[1:-1] + tsf2[:-2])) tsig3 = sum(numpy.fabs(tsf3[2:] - 2 * tsf3[1:-1] + tsf3[:-2])) if tsig1 < sig1: wgt[:, 0] = twgt[:, 0] sig1 = tsig1 a[0] += 1 ca[0] += 1 if tsig2 < sig2: wgt[:, 1] = twgt[:, 1] sig2 = tsig2 a[1] += 1 ca[1] += 1 if tsig3 < sig3: wgt[:, 2] = twgt[:, 2] sig3 = tsig3 a[2] += 1 ca[2] += 1 print(100 * a / t) sf1 = numpy.dot(pixseries[ind1, :], wgt[:, 0]).flatten() sf2 = numpy.dot(pixseries[ind2, :], wgt[:, 1]).flatten() sf3 = numpy.dot(pixseries[ind3, :], wgt[:, 2]).flatten() sf1 /= numpy.median(sf1) sf2 /= numpy.median(sf2) sf3 /= numpy.median(sf3) finalflux = numpy.concatenate([sf1, sf2, sf3]) # construct output file if status == 0: instruct, status = kepio.openfits(infile, 'readonly', logfile, verbose) status = kepkey.history(call, instruct[0], outfile, logfile, verbose) hdulist = HDUList(instruct[0]) cols = [] cols.append( Column(name='TIME', format='D', unit='BJD - 2454833', disp='D12.7', array=time)) cols.append( Column(name='TIMECORR', format='E', unit='d', disp='E13.6', array=timecorr)) cols.append( Column(name='CADENCENO', format='J', disp='I10', array=cadenceno)) cols.append(Column(name='QUALITY', format='J', array=quality)) cols.append( Column(name='ORGFLUX', format='E', disp='E13.6', array=originalflux)) cols.append( Column(name='FLUX', format='E', disp='E13.6', array=finalflux)) # for i in range(ydim): # for j in range(xdim): # colname = 'COL%d_ROW%d' % (i+column,j+row) # cols.append(Column(name=colname,format='E',disp='E13.6',array=pixseries[i,j,:])) hdu1 = new_table(ColDefs(cols)) try: hdu1.header.update('INHERIT', True, 'inherit the primary header') except: status = 0 try: hdu1.header.update('EXTNAME', 'PIXELSERIES', 'name of extension') except: status = 0 try: hdu1.header.update( 'EXTVER', instruct[1].header['EXTVER'], 'extension version number (not format version)') except: status = 0 try: hdu1.header.update('TELESCOP', instruct[1].header['TELESCOP'], 'telescope') except: status = 0 try: hdu1.header.update('INSTRUME', instruct[1].header['INSTRUME'], 'detector type') except: status = 0 try: hdu1.header.update('OBJECT', instruct[1].header['OBJECT'], 'string version of KEPLERID') except: status = 0 try: hdu1.header.update('KEPLERID', instruct[1].header['KEPLERID'], 'unique Kepler target identifier') except: status = 0 try: hdu1.header.update('RADESYS', instruct[1].header['RADESYS'], 'reference frame of celestial coordinates') except: status = 0 try: hdu1.header.update('RA_OBJ', instruct[1].header['RA_OBJ'], '[deg] right ascension from KIC') except: status = 0 try: hdu1.header.update('DEC_OBJ', instruct[1].header['DEC_OBJ'], '[deg] declination from KIC') except: status = 0 try: hdu1.header.update('EQUINOX', instruct[1].header['EQUINOX'], 'equinox of celestial coordinate system') except: status = 0 try: hdu1.header.update('TIMEREF', instruct[1].header['TIMEREF'], 'barycentric correction applied to times') except: status = 0 try: hdu1.header.update('TASSIGN', instruct[1].header['TASSIGN'], 'where time is assigned') except: status = 0 try: hdu1.header.update('TIMESYS', instruct[1].header['TIMESYS'], 'time system is barycentric JD') except: status = 0 try: hdu1.header.update('BJDREFI', instruct[1].header['BJDREFI'], 'integer part of BJD reference date') except: status = 0 try: hdu1.header.update('BJDREFF', instruct[1].header['BJDREFF'], 'fraction of the day in BJD reference date') except: status = 0 try: hdu1.header.update('TIMEUNIT', instruct[1].header['TIMEUNIT'], 'time unit for TIME, TSTART and TSTOP') except: status = 0 try: hdu1.header.update('TSTART', instruct[1].header['TSTART'], 'observation start time in BJD-BJDREF') except: status = 0 try: hdu1.header.update('TSTOP', instruct[1].header['TSTOP'], 'observation stop time in BJD-BJDREF') except: status = 0 try: hdu1.header.update('LC_START', instruct[1].header['LC_START'], 'mid point of first cadence in MJD') except: status = 0 try: hdu1.header.update('LC_END', instruct[1].header['LC_END'], 'mid point of last cadence in MJD') except: status = 0 try: hdu1.header.update('TELAPSE', instruct[1].header['TELAPSE'], '[d] TSTOP - TSTART') except: status = 0 try: hdu1.header.update('LIVETIME', instruct[1].header['LIVETIME'], '[d] TELAPSE multiplied by DEADC') except: status = 0 try: hdu1.header.update('EXPOSURE', instruct[1].header['EXPOSURE'], '[d] time on source') except: status = 0 try: hdu1.header.update('DEADC', instruct[1].header['DEADC'], 'deadtime correction') except: status = 0 try: hdu1.header.update('TIMEPIXR', instruct[1].header['TIMEPIXR'], 'bin time beginning=0 middle=0.5 end=1') except: status = 0 try: hdu1.header.update('TIERRELA', instruct[1].header['TIERRELA'], '[d] relative time error') except: status = 0 try: hdu1.header.update('TIERABSO', instruct[1].header['TIERABSO'], '[d] absolute time error') except: status = 0 try: hdu1.header.update('INT_TIME', instruct[1].header['INT_TIME'], '[s] photon accumulation time per frame') except: status = 0 try: hdu1.header.update('READTIME', instruct[1].header['READTIME'], '[s] readout time per frame') except: status = 0 try: hdu1.header.update('FRAMETIM', instruct[1].header['FRAMETIM'], '[s] frame time (INT_TIME + READTIME)') except: status = 0 try: hdu1.header.update('NUM_FRM', instruct[1].header['NUM_FRM'], 'number of frames per time stamp') except: status = 0 try: hdu1.header.update('TIMEDEL', instruct[1].header['TIMEDEL'], '[d] time resolution of data') except: status = 0 try: hdu1.header.update('DATE-OBS', instruct[1].header['DATE-OBS'], 'TSTART as UTC calendar date') except: status = 0 try: hdu1.header.update('DATE-END', instruct[1].header['DATE-END'], 'TSTOP as UTC calendar date') except: status = 0 try: hdu1.header.update('BACKAPP', instruct[1].header['BACKAPP'], 'background is subtracted') except: status = 0 try: hdu1.header.update('DEADAPP', instruct[1].header['DEADAPP'], 'deadtime applied') except: status = 0 try: hdu1.header.update('VIGNAPP', instruct[1].header['VIGNAPP'], 'vignetting or collimator correction applied') except: status = 0 try: hdu1.header.update('GAIN', instruct[1].header['GAIN'], '[electrons/count] channel gain') except: status = 0 try: hdu1.header.update('READNOIS', instruct[1].header['READNOIS'], '[electrons] read noise') except: status = 0 try: hdu1.header.update('NREADOUT', instruct[1].header['NREADOUT'], 'number of read per cadence') except: status = 0 try: hdu1.header.update('TIMSLICE', instruct[1].header['TIMSLICE'], 'time-slice readout sequence section') except: status = 0 try: hdu1.header.update('MEANBLCK', instruct[1].header['MEANBLCK'], '[count] FSW mean black level') except: status = 0 hdulist.append(hdu1) hdulist.writeto(outfile) status = kepkey.new('EXTNAME', 'APERTURE', 'name of extension', instruct[2], outfile, logfile, verbose) pyfits.append(outfile, instruct[2].data, instruct[2].header) wgt1 = numpy.reshape(wgt[:, 0], (ydim, xdim)) wgt2 = numpy.reshape(wgt[:, 1], (ydim, xdim)) wgt3 = numpy.reshape(wgt[:, 2], (ydim, xdim)) hdu3 = ImageHDU(data=wgt1, header=instruct[2].header, name='WEIGHTS1') hdu4 = ImageHDU(data=wgt2, header=instruct[2].header, name='WEIGHTS2') hdu5 = ImageHDU(data=wgt3, header=instruct[2].header, name='WEIGHTS3') pyfits.append(outfile, hdu3.data, hdu3.header) pyfits.append(outfile, hdu4.data, hdu4.header) pyfits.append(outfile, hdu5.data, hdu5.header) status = kepio.closefits(instruct, logfile, verbose) else: message = 'WARNING -- KEPHALOPHOT: output FITS file requires > 999 columns. Non-compliant with FITS convention.' kepmsg.warn(logfile, message) # plot style if status == 0: try: params = { 'backend': 'png', 'axes.linewidth': 2.0, 'axes.labelsize': 32, 'axes.font': 'sans-serif', 'axes.fontweight': 'bold', 'text.fontsize': 8, 'legend.fontsize': 8, 'xtick.labelsize': 12, 'ytick.labelsize': 12 } pylab.rcParams.update(params) except: pass # plot pixel array fmin = 1.0e33 fmax = -1.033 if status == 0: pylab.figure(num=None, figsize=[12, 12]) pylab.clf() dx = 0.93 #/ xdim dy = 0.94 #/ ydim ax = pylab.axes([0.06, 0.05, 0.93, 0.94]) pylab.gca().xaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) pylab.gca().xaxis.set_major_locator( matplotlib.ticker.MaxNLocator(integer=True)) pylab.gca().yaxis.set_major_locator( matplotlib.ticker.MaxNLocator(integer=True)) labels = ax.get_yticklabels() setp(labels, 'rotation', 90, fontsize=12) pylab.xlim(numpy.min(pixcoord1) - 0.5, numpy.max(pixcoord1) + 0.5) pylab.ylim(numpy.min(pixcoord2) - 0.5, numpy.max(pixcoord2) + 0.5) pylab.xlabel('time', {'color': 'k'}) pylab.ylabel('arbitrary flux', {'color': 'k'}) tmin = amin(time) tmax = amax(time) try: numpy.isfinite(amin(finalflux)) numpy.isfinite(amin(finalflux)) fmin = amin(finalflux) fmax = amax(finalflux) except: ugh = 1 xmin = tmin - (tmax - tmin) / 40 xmax = tmax + (tmax - tmin) / 40 ymin = fmin - (fmax - fmin) / 20 ymax = fmax + (fmax - fmin) / 20 pylab.axes([0.06, 0.05, dx, dy]) pylab.setp(pylab.gca(), xticklabels=[], yticklabels=[]) ptime = time * 1.0 ptime = numpy.insert(ptime, [0], ptime[0]) ptime = numpy.append(ptime, ptime[-1]) pflux = finalflux * 1.0 pflux = numpy.insert(pflux, [0], -1000.0) pflux = numpy.append(pflux, -1000.0) pylab.plot(time, finalflux, color='#0000ff', linestyle='-', linewidth=0.5) pylab.fill(ptime, pflux, fc='#FFF380', linewidth=0.0, alpha=1.0) if 'loc' in plottype: pylab.xlim(xmin, xmax) pylab.ylim(ymin, ymax) if 'glob' in plottype: pylab.xlim(xmin, xmax) pylab.ylim(1.0e-10, numpy.nanmax(pixseries) * 1.05) if 'full' in plottype: pylab.xlim(xmin, xmax) pylab.ylim(1.0e-10, ymax * 1.05) # render plot if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() if plotfile.lower() != 'none': pylab.savefig(plotfile) # stop time if status == 0: kepmsg.clock('KEPHALOPHOT ended at', logfile, verbose) return
def keppixseries(infile, outfile, plotfile, plottype, filter, function, cutoff, clobber, verbose, logfile, status, cmdLine=False): # input arguments status = 0 seterr(all="ignore") # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPPIXSERIES -- ' call += 'infile=' + infile + ' ' call += 'outfile=' + outfile + ' ' call += 'plotfile=' + plotfile + ' ' call += 'plottype=' + plottype + ' ' filt = 'n' if (filter): filt = 'y' call += 'filter=' + filt + ' ' call += 'function=' + function + ' ' call += 'cutoff=' + str(cutoff) + ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber=' + overwrite + ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose=' + chatter + ' ' call += 'logfile=' + logfile kepmsg.log(logfile, call + '\n', verbose) # start time kepmsg.clock('KEPPIXSERIES started at', logfile, verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPPIXSERIES: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile, message, verbose) # open TPF FITS file if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, barytime, status = \ kepio.readTPF(infile,'TIME',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, tcorr, status = \ kepio.readTPF(infile,'TIMECORR',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, cadno, status = \ kepio.readTPF(infile,'CADENCENO',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, fluxpixels, status = \ kepio.readTPF(infile,'FLUX',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, errpixels, status = \ kepio.readTPF(infile,'FLUX_ERR',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, qual, status = \ kepio.readTPF(infile,'QUALITY',logfile,verbose) # read mask defintion data from TPF file if status == 0: maskimg, pixcoord1, pixcoord2, status = kepio.readMaskDefinition( infile, logfile, verbose) # print target data if status == 0: print '' print ' KepID: %s' % kepid print ' RA (J2000): %s' % ra print 'Dec (J2000): %s' % dec print ' KepMag: %s' % kepmag print ' SkyGroup: %2s' % skygroup print ' Season: %2s' % str(season) print ' Channel: %2s' % channel print ' Module: %2s' % module print ' Output: %1s' % output print '' # how many quality = 0 rows? if status == 0: npts = 0 nrows = len(fluxpixels) for i in range(nrows): if qual[i] == 0 and \ numpy.isfinite(barytime[i]) and \ numpy.isfinite(fluxpixels[i,ydim*xdim/2]): npts += 1 time = empty((npts)) timecorr = empty((npts)) cadenceno = empty((npts)) quality = empty((npts)) pixseries = empty((ydim, xdim, npts)) errseries = empty((ydim, xdim, npts)) # construct output light curves if status == 0: np = 0 for i in range(ydim): for j in range(xdim): npts = 0 for k in range(nrows): if qual[k] == 0 and \ numpy.isfinite(barytime[k]) and \ numpy.isfinite(fluxpixels[k,ydim*xdim/2]): time[npts] = barytime[k] timecorr[npts] = tcorr[k] cadenceno[npts] = cadno[k] quality[npts] = qual[k] pixseries[i, j, npts] = fluxpixels[k, np] errseries[i, j, npts] = errpixels[k, np] npts += 1 np += 1 # define data sampling if status == 0 and filter: tpf, status = kepio.openfits(infile, 'readonly', logfile, verbose) if status == 0 and filter: cadence, status = kepkey.cadence(tpf[1], infile, logfile, verbose) tr = 1.0 / (cadence / 86400) timescale = 1.0 / (cutoff / tr) # define convolution function if status == 0 and filter: if function == 'boxcar': filtfunc = numpy.ones(numpy.ceil(timescale)) elif function == 'gauss': timescale /= 2 dx = numpy.ceil(timescale * 10 + 1) filtfunc = kepfunc.gauss() filtfunc = filtfunc([1.0, dx / 2 - 1.0, timescale], linspace(0, dx - 1, dx)) elif function == 'sinc': dx = numpy.ceil(timescale * 12 + 1) fx = linspace(0, dx - 1, dx) fx = fx - dx / 2 + 0.5 fx /= timescale filtfunc = numpy.sinc(fx) filtfunc /= numpy.sum(filtfunc) # pad time series at both ends with noise model if status == 0 and filter: for i in range(ydim): for j in range(xdim): ave, sigma = kepstat.stdev(pixseries[i, j, :len(filtfunc)]) padded = numpy.append(kepstat.randarray(numpy.ones(len(filtfunc)) * ave, \ numpy.ones(len(filtfunc)) * sigma), pixseries[i,j,:]) ave, sigma = kepstat.stdev(pixseries[i, j, -len(filtfunc):]) padded = numpy.append(padded, kepstat.randarray(numpy.ones(len(filtfunc)) * ave, \ numpy.ones(len(filtfunc)) * sigma)) # convolve data if status == 0: convolved = convolve(padded, filtfunc, 'same') # remove padding from the output array if status == 0: outdata = convolved[len(filtfunc):-len(filtfunc)] # subtract low frequencies if status == 0: outmedian = median(outdata) pixseries[i, j, :] = pixseries[i, j, :] - outdata + outmedian # construct output file if status == 0 and ydim * xdim < 1000: instruct, status = kepio.openfits(infile, 'readonly', logfile, verbose) status = kepkey.history(call, instruct[0], outfile, logfile, verbose) hdulist = HDUList(instruct[0]) cols = [] cols.append( Column(name='TIME', format='D', unit='BJD - 2454833', disp='D12.7', array=time)) cols.append( Column(name='TIMECORR', format='E', unit='d', disp='E13.6', array=timecorr)) cols.append( Column(name='CADENCENO', format='J', disp='I10', array=cadenceno)) cols.append(Column(name='QUALITY', format='J', array=quality)) for i in range(ydim): for j in range(xdim): colname = 'COL%d_ROW%d' % (i + column, j + row) cols.append( Column(name=colname, format='E', disp='E13.6', array=pixseries[i, j, :])) hdu1 = new_table(ColDefs(cols)) try: hdu1.header.update('INHERIT', True, 'inherit the primary header') except: status = 0 try: hdu1.header.update('EXTNAME', 'PIXELSERIES', 'name of extension') except: status = 0 try: hdu1.header.update( 'EXTVER', instruct[1].header['EXTVER'], 'extension version number (not format version)') except: status = 0 try: hdu1.header.update('TELESCOP', instruct[1].header['TELESCOP'], 'telescope') except: status = 0 try: hdu1.header.update('INSTRUME', instruct[1].header['INSTRUME'], 'detector type') except: status = 0 try: hdu1.header.update('OBJECT', instruct[1].header['OBJECT'], 'string version of KEPLERID') except: status = 0 try: hdu1.header.update('KEPLERID', instruct[1].header['KEPLERID'], 'unique Kepler target identifier') except: status = 0 try: hdu1.header.update('RADESYS', instruct[1].header['RADESYS'], 'reference frame of celestial coordinates') except: status = 0 try: hdu1.header.update('RA_OBJ', instruct[1].header['RA_OBJ'], '[deg] right ascension from KIC') except: status = 0 try: hdu1.header.update('DEC_OBJ', instruct[1].header['DEC_OBJ'], '[deg] declination from KIC') except: status = 0 try: hdu1.header.update('EQUINOX', instruct[1].header['EQUINOX'], 'equinox of celestial coordinate system') except: status = 0 try: hdu1.header.update('TIMEREF', instruct[1].header['TIMEREF'], 'barycentric correction applied to times') except: status = 0 try: hdu1.header.update('TASSIGN', instruct[1].header['TASSIGN'], 'where time is assigned') except: status = 0 try: hdu1.header.update('TIMESYS', instruct[1].header['TIMESYS'], 'time system is barycentric JD') except: status = 0 try: hdu1.header.update('BJDREFI', instruct[1].header['BJDREFI'], 'integer part of BJD reference date') except: status = 0 try: hdu1.header.update('BJDREFF', instruct[1].header['BJDREFF'], 'fraction of the day in BJD reference date') except: status = 0 try: hdu1.header.update('TIMEUNIT', instruct[1].header['TIMEUNIT'], 'time unit for TIME, TSTART and TSTOP') except: status = 0 try: hdu1.header.update('TSTART', instruct[1].header['TSTART'], 'observation start time in BJD-BJDREF') except: status = 0 try: hdu1.header.update('TSTOP', instruct[1].header['TSTOP'], 'observation stop time in BJD-BJDREF') except: status = 0 try: hdu1.header.update('LC_START', instruct[1].header['LC_START'], 'mid point of first cadence in MJD') except: status = 0 try: hdu1.header.update('LC_END', instruct[1].header['LC_END'], 'mid point of last cadence in MJD') except: status = 0 try: hdu1.header.update('TELAPSE', instruct[1].header['TELAPSE'], '[d] TSTOP - TSTART') except: status = 0 try: hdu1.header.update('LIVETIME', instruct[1].header['LIVETIME'], '[d] TELAPSE multiplied by DEADC') except: status = 0 try: hdu1.header.update('EXPOSURE', instruct[1].header['EXPOSURE'], '[d] time on source') except: status = 0 try: hdu1.header.update('DEADC', instruct[1].header['DEADC'], 'deadtime correction') except: status = 0 try: hdu1.header.update('TIMEPIXR', instruct[1].header['TIMEPIXR'], 'bin time beginning=0 middle=0.5 end=1') except: status = 0 try: hdu1.header.update('TIERRELA', instruct[1].header['TIERRELA'], '[d] relative time error') except: status = 0 try: hdu1.header.update('TIERABSO', instruct[1].header['TIERABSO'], '[d] absolute time error') except: status = 0 try: hdu1.header.update('INT_TIME', instruct[1].header['INT_TIME'], '[s] photon accumulation time per frame') except: status = 0 try: hdu1.header.update('READTIME', instruct[1].header['READTIME'], '[s] readout time per frame') except: status = 0 try: hdu1.header.update('FRAMETIM', instruct[1].header['FRAMETIM'], '[s] frame time (INT_TIME + READTIME)') except: status = 0 try: hdu1.header.update('NUM_FRM', instruct[1].header['NUM_FRM'], 'number of frames per time stamp') except: status = 0 try: hdu1.header.update('TIMEDEL', instruct[1].header['TIMEDEL'], '[d] time resolution of data') except: status = 0 try: hdu1.header.update('DATE-OBS', instruct[1].header['DATE-OBS'], 'TSTART as UTC calendar date') except: status = 0 try: hdu1.header.update('DATE-END', instruct[1].header['DATE-END'], 'TSTOP as UTC calendar date') except: status = 0 try: hdu1.header.update('BACKAPP', instruct[1].header['BACKAPP'], 'background is subtracted') except: status = 0 try: hdu1.header.update('DEADAPP', instruct[1].header['DEADAPP'], 'deadtime applied') except: status = 0 try: hdu1.header.update('VIGNAPP', instruct[1].header['VIGNAPP'], 'vignetting or collimator correction applied') except: status = 0 try: hdu1.header.update('GAIN', instruct[1].header['GAIN'], '[electrons/count] channel gain') except: status = 0 try: hdu1.header.update('READNOIS', instruct[1].header['READNOIS'], '[electrons] read noise') except: status = 0 try: hdu1.header.update('NREADOUT', instruct[1].header['NREADOUT'], 'number of read per cadence') except: status = 0 try: hdu1.header.update('TIMSLICE', instruct[1].header['TIMSLICE'], 'time-slice readout sequence section') except: status = 0 try: hdu1.header.update('MEANBLCK', instruct[1].header['MEANBLCK'], '[count] FSW mean black level') except: status = 0 hdulist.append(hdu1) hdulist.writeto(outfile) status = kepkey.new('EXTNAME', 'APERTURE', 'name of extension', instruct[2], outfile, logfile, verbose) pyfits.append(outfile, instruct[2].data, instruct[2].header) status = kepio.closefits(instruct, logfile, verbose) else: message = 'WARNING -- KEPPIXSERIES: output FITS file requires > 999 columns. Non-compliant with FITS convention.' kepmsg.warn(logfile, message) # plot style if status == 0: try: params = { 'backend': 'png', 'axes.linewidth': 2.0, 'axes.labelsize': 32, 'axes.font': 'sans-serif', 'axes.fontweight': 'bold', 'text.fontsize': 8, 'legend.fontsize': 8, 'xtick.labelsize': 12, 'ytick.labelsize': 12 } pylab.rcParams.update(params) except: pass # plot pixel array fmin = 1.0e33 fmax = -1.033 if status == 0: pylab.figure(num=None, figsize=[12, 12]) pylab.clf() dx = 0.93 / xdim dy = 0.94 / ydim ax = pylab.axes([0.06, 0.05, 0.93, 0.94]) pylab.gca().xaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) pylab.gca().xaxis.set_major_locator( matplotlib.ticker.MaxNLocator(integer=True)) pylab.gca().yaxis.set_major_locator( matplotlib.ticker.MaxNLocator(integer=True)) labels = ax.get_yticklabels() setp(labels, 'rotation', 90, fontsize=12) pylab.xlim(numpy.min(pixcoord1) - 0.5, numpy.max(pixcoord1) + 0.5) pylab.ylim(numpy.min(pixcoord2) - 0.5, numpy.max(pixcoord2) + 0.5) pylab.xlabel('time', {'color': 'k'}) pylab.ylabel('arbitrary flux', {'color': 'k'}) for i in range(ydim): for j in range(xdim): tmin = amin(time) tmax = amax(time) try: numpy.isfinite(amin(pixseries[i, j, :])) numpy.isfinite(amin(pixseries[i, j, :])) fmin = amin(pixseries[i, j, :]) fmax = amax(pixseries[i, j, :]) except: ugh = 1 xmin = tmin - (tmax - tmin) / 40 xmax = tmax + (tmax - tmin) / 40 ymin = fmin - (fmax - fmin) / 20 ymax = fmax + (fmax - fmin) / 20 if kepstat.bitInBitmap(maskimg[i, j], 2): pylab.axes([0.06 + float(j) * dx, 0.05 + i * dy, dx, dy], axisbg='lightslategray') elif maskimg[i, j] == 0: pylab.axes([0.06 + float(j) * dx, 0.05 + i * dy, dx, dy], axisbg='black') else: pylab.axes([0.06 + float(j) * dx, 0.05 + i * dy, dx, dy]) if j == int(xdim / 2) and i == 0: pylab.setp(pylab.gca(), xticklabels=[], yticklabels=[]) elif j == 0 and i == int(ydim / 2): pylab.setp(pylab.gca(), xticklabels=[], yticklabels=[]) else: pylab.setp(pylab.gca(), xticklabels=[], yticklabels=[]) ptime = time * 1.0 ptime = numpy.insert(ptime, [0], ptime[0]) ptime = numpy.append(ptime, ptime[-1]) pflux = pixseries[i, j, :] * 1.0 pflux = numpy.insert(pflux, [0], -1000.0) pflux = numpy.append(pflux, -1000.0) pylab.plot(time, pixseries[i, j, :], color='#0000ff', linestyle='-', linewidth=0.5) if not kepstat.bitInBitmap(maskimg[i, j], 2): pylab.fill(ptime, pflux, fc='lightslategray', linewidth=0.0, alpha=1.0) pylab.fill(ptime, pflux, fc='#FFF380', linewidth=0.0, alpha=1.0) if 'loc' in plottype: pylab.xlim(xmin, xmax) pylab.ylim(ymin, ymax) if 'glob' in plottype: pylab.xlim(xmin, xmax) pylab.ylim(1.0e-10, numpy.nanmax(pixseries) * 1.05) if 'full' in plottype: pylab.xlim(xmin, xmax) pylab.ylim(1.0e-10, ymax * 1.05) # render plot if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() if plotfile.lower() != 'none': pylab.savefig(plotfile) # stop time if status == 0: kepmsg.clock('KEPPIXSERIES ended at', logfile, verbose) return
def kepfold(infile, outfile, period, phasezero, bindata, binmethod, threshold, niter, nbins, rejqual, plottype, plotlab, clobber, verbose, logfile, status, cmdLine=False): # startup parameters status = 0 labelsize = 32 ticksize = 18 xsize = 18 ysize = 10 lcolor = '#0000ff' lwidth = 2.0 fcolor = '#ffff00' falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPFOLD -- ' call += 'infile=' + infile + ' ' call += 'outfile=' + outfile + ' ' call += 'period=' + str(period) + ' ' call += 'phasezero=' + str(phasezero) + ' ' binit = 'n' if (bindata): binit = 'y' call += 'bindata=' + binit + ' ' call += 'binmethod=' + binmethod + ' ' call += 'threshold=' + str(threshold) + ' ' call += 'niter=' + str(niter) + ' ' call += 'nbins=' + str(nbins) + ' ' qflag = 'n' if (rejqual): qflag = 'y' call += 'rejqual=' + qflag + ' ' call += 'plottype=' + plottype + ' ' call += 'plotlab=' + plotlab + ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber=' + overwrite + ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose=' + chatter + ' ' call += 'logfile=' + logfile kepmsg.log(logfile, call + '\n', verbose) # start time kepmsg.clock('KEPFOLD started at', logfile, verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPFOLD: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile, message, verbose) # open input file if status == 0: instr, status = kepio.openfits(infile, 'readonly', logfile, verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys( instr, infile, logfile, verbose, status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr, file, logfile, verbose) # input data if status == 0: table = instr[1].data incards = instr[1].header.cards try: sap = instr[1].data.field('SAP_FLUX') except: try: sap = instr[1].data.field('ap_raw_flux') except: sap = zeros(len(table.field(0))) try: saperr = instr[1].data.field('SAP_FLUX_ERR') except: try: saperr = instr[1].data.field('ap_raw_err') except: saperr = zeros(len(table.field(0))) try: pdc = instr[1].data.field('PDCSAP_FLUX') except: try: pdc = instr[1].data.field('ap_corr_flux') except: pdc = zeros(len(table.field(0))) try: pdcerr = instr[1].data.field('PDCSAP_FLUX_ERR') except: try: pdcerr = instr[1].data.field('ap_corr_err') except: pdcerr = zeros(len(table.field(0))) try: cbv = instr[1].data.field('CBVSAP_FLUX') except: cbv = zeros(len(table.field(0))) if 'cbv' in plottype: txt = 'ERROR -- KEPFOLD: CBVSAP_FLUX column is not populated. Use kepcotrend' status = kepmsg.err(logfile, txt, verbose) try: det = instr[1].data.field('DETSAP_FLUX') except: det = zeros(len(table.field(0))) if 'det' in plottype: txt = 'ERROR -- KEPFOLD: DETSAP_FLUX column is not populated. Use kepflatten' status = kepmsg.err(logfile, txt, verbose) try: deterr = instr[1].data.field('DETSAP_FLUX_ERR') except: deterr = zeros(len(table.field(0))) if 'det' in plottype: txt = 'ERROR -- KEPFOLD: DETSAP_FLUX_ERR column is not populated. Use kepflatten' status = kepmsg.err(logfile, txt, verbose) try: quality = instr[1].data.field('SAP_QUALITY') except: quality = zeros(len(table.field(0))) if qualflag: txt = 'WARNING -- KEPFOLD: Cannot find a QUALITY data column' kepmsg.warn(logfile, txt) if status == 0: barytime, status = kepio.readtimecol(infile, table, logfile, verbose) barytime1 = copy(barytime) # filter out NaNs and quality > 0 work1 = [] work2 = [] work3 = [] work4 = [] work5 = [] work6 = [] work8 = [] work9 = [] if status == 0: if 'sap' in plottype: datacol = copy(sap) errcol = copy(saperr) if 'pdc' in plottype: datacol = copy(pdc) errcol = copy(pdcerr) if 'cbv' in plottype: datacol = copy(cbv) errcol = copy(saperr) if 'det' in plottype: datacol = copy(det) errcol = copy(deterr) for i in range(len(barytime)): if (numpy.isfinite(barytime[i]) and numpy.isfinite(datacol[i]) and datacol[i] != 0.0 and numpy.isfinite(errcol[i]) and errcol[i] > 0.0): if rejqual and quality[i] == 0: work1.append(barytime[i]) work2.append(sap[i]) work3.append(saperr[i]) work4.append(pdc[i]) work5.append(pdcerr[i]) work6.append(cbv[i]) work8.append(det[i]) work9.append(deterr[i]) elif not rejqual: work1.append(barytime[i]) work2.append(sap[i]) work3.append(saperr[i]) work4.append(pdc[i]) work5.append(pdcerr[i]) work6.append(cbv[i]) work8.append(det[i]) work9.append(deterr[i]) barytime = array(work1, dtype='float64') sap = array(work2, dtype='float32') / cadenom saperr = array(work3, dtype='float32') / cadenom pdc = array(work4, dtype='float32') / cadenom pdcerr = array(work5, dtype='float32') / cadenom cbv = array(work6, dtype='float32') / cadenom det = array(work8, dtype='float32') / cadenom deterr = array(work9, dtype='float32') / cadenom # calculate phase if status == 0: if phasezero < bjdref: phasezero += bjdref date1 = (barytime1 + bjdref - phasezero) phase1 = (date1 / period) - floor(date1 / period) date2 = (barytime + bjdref - phasezero) phase2 = (date2 / period) - floor(date2 / period) phase2 = array(phase2, 'float32') # sort phases if status == 0: ptuple = [] phase3 = [] sap3 = [] saperr3 = [] pdc3 = [] pdcerr3 = [] cbv3 = [] cbverr3 = [] det3 = [] deterr3 = [] for i in range(len(phase2)): ptuple.append([ phase2[i], sap[i], saperr[i], pdc[i], pdcerr[i], cbv[i], saperr[i], det[i], deterr[i] ]) phsort = sorted(ptuple, key=lambda ph: ph[0]) for i in range(len(phsort)): phase3.append(phsort[i][0]) sap3.append(phsort[i][1]) saperr3.append(phsort[i][2]) pdc3.append(phsort[i][3]) pdcerr3.append(phsort[i][4]) cbv3.append(phsort[i][5]) cbverr3.append(phsort[i][6]) det3.append(phsort[i][7]) deterr3.append(phsort[i][8]) phase3 = array(phase3, 'float32') sap3 = array(sap3, 'float32') saperr3 = array(saperr3, 'float32') pdc3 = array(pdc3, 'float32') pdcerr3 = array(pdcerr3, 'float32') cbv3 = array(cbv3, 'float32') cbverr3 = array(cbverr3, 'float32') det3 = array(det3, 'float32') deterr3 = array(deterr3, 'float32') # bin phases if status == 0 and bindata: work1 = array([sap3[0]], 'float32') work2 = array([saperr3[0]], 'float32') work3 = array([pdc3[0]], 'float32') work4 = array([pdcerr3[0]], 'float32') work5 = array([cbv3[0]], 'float32') work6 = array([cbverr3[0]], 'float32') work7 = array([det3[0]], 'float32') work8 = array([deterr3[0]], 'float32') phase4 = array([], 'float32') sap4 = array([], 'float32') saperr4 = array([], 'float32') pdc4 = array([], 'float32') pdcerr4 = array([], 'float32') cbv4 = array([], 'float32') cbverr4 = array([], 'float32') det4 = array([], 'float32') deterr4 = array([], 'float32') dt = 1.0 / nbins nb = 0.0 rng = numpy.append(phase3, phase3[0] + 1.0) for i in range(len(rng)): if rng[i] < nb * dt or rng[i] >= (nb + 1.0) * dt: if len(work1) > 0: phase4 = append(phase4, (nb + 0.5) * dt) if (binmethod == 'mean'): sap4 = append(sap4, kepstat.mean(work1)) saperr4 = append(saperr4, kepstat.mean_err(work2)) pdc4 = append(pdc4, kepstat.mean(work3)) pdcerr4 = append(pdcerr4, kepstat.mean_err(work4)) cbv4 = append(cbv4, kepstat.mean(work5)) cbverr4 = append(cbverr4, kepstat.mean_err(work6)) det4 = append(det4, kepstat.mean(work7)) deterr4 = append(deterr4, kepstat.mean_err(work8)) elif (binmethod == 'median'): sap4 = append(sap4, kepstat.median(work1, logfile)) saperr4 = append(saperr4, kepstat.mean_err(work2)) pdc4 = append(pdc4, kepstat.median(work3, logfile)) pdcerr4 = append(pdcerr4, kepstat.mean_err(work4)) cbv4 = append(cbv4, kepstat.median(work5, logfile)) cbverr4 = append(cbverr4, kepstat.mean_err(work6)) det4 = append(det4, kepstat.median(work7, logfile)) deterr4 = append(deterr4, kepstat.mean_err(work8)) else: coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip('poly0',[scipy.stats.nanmean(work1)],arange(0.0,float(len(work1)),1.0),work1,work2, threshold,threshold,niter,logfile,False) sap4 = append(sap4, coeffs[0]) saperr4 = append(saperr4, kepstat.mean_err(work2)) coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip('poly0',[scipy.stats.nanmean(work3)],arange(0.0,float(len(work3)),1.0),work3,work4, threshold,threshold,niter,logfile,False) pdc4 = append(pdc4, coeffs[0]) pdcerr4 = append(pdcerr4, kepstat.mean_err(work4)) coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip('poly0',[scipy.stats.nanmean(work5)],arange(0.0,float(len(work5)),1.0),work5,work6, threshold,threshold,niter,logfile,False) cbv4 = append(cbv4, coeffs[0]) cbverr4 = append(cbverr4, kepstat.mean_err(work6)) coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip('poly0',[scipy.stats.nanmean(work7)],arange(0.0,float(len(work7)),1.0),work7,work8, threshold,threshold,niter,logfile,False) det4 = append(det4, coeffs[0]) deterr4 = append(deterr4, kepstat.mean_err(work8)) work1 = array([], 'float32') work2 = array([], 'float32') work3 = array([], 'float32') work4 = array([], 'float32') work5 = array([], 'float32') work6 = array([], 'float32') work7 = array([], 'float32') work8 = array([], 'float32') nb += 1.0 else: work1 = append(work1, sap3[i]) work2 = append(work2, saperr3[i]) work3 = append(work3, pdc3[i]) work4 = append(work4, pdcerr3[i]) work5 = append(work5, cbv3[i]) work6 = append(work6, cbverr3[i]) work7 = append(work7, det3[i]) work8 = append(work8, deterr3[i]) # update HDU1 for output file if status == 0: cols = (instr[1].columns + ColDefs([Column(name='PHASE', format='E', array=phase1)])) instr[1] = pyfits.new_table(cols) instr[1].header.cards[ 'TTYPE' + str(len(instr[1].columns))].comment = 'column title: phase' instr[1].header.cards[ 'TFORM' + str(len(instr[1].columns))].comment = 'data type: float32' for i in range(len(incards)): if incards[i].key not in list(instr[1].header.keys()): instr[1].header.update(incards[i].key, incards[i].value, incards[i].comment) else: instr[1].header.cards[ incards[i].key].comment = incards[i].comment instr[1].header.update('PERIOD', period, 'period defining the phase [d]') instr[1].header.update('BJD0', phasezero, 'time of phase zero [BJD]') # write new phased data extension for output file if status == 0 and bindata: col1 = Column(name='PHASE', format='E', array=phase4) col2 = Column(name='SAP_FLUX', format='E', unit='e/s', array=sap4 / cadenom) col3 = Column(name='SAP_FLUX_ERR', format='E', unit='e/s', array=saperr4 / cadenom) col4 = Column(name='PDC_FLUX', format='E', unit='e/s', array=pdc4 / cadenom) col5 = Column(name='PDC_FLUX_ERR', format='E', unit='e/s', array=pdcerr4 / cadenom) col6 = Column(name='CBV_FLUX', format='E', unit='e/s', array=cbv4 / cadenom) col7 = Column(name='DET_FLUX', format='E', array=det4 / cadenom) col8 = Column(name='DET_FLUX_ERR', format='E', array=deterr4 / cadenom) cols = ColDefs([col1, col2, col3, col4, col5, col6, col7, col8]) instr.append(new_table(cols)) instr[-1].header.cards['TTYPE1'].comment = 'column title: phase' instr[-1].header.cards[ 'TTYPE2'].comment = 'column title: simple aperture photometry' instr[-1].header.cards[ 'TTYPE3'].comment = 'column title: SAP 1-sigma error' instr[-1].header.cards[ 'TTYPE4'].comment = 'column title: pipeline conditioned photometry' instr[-1].header.cards[ 'TTYPE5'].comment = 'column title: PDC 1-sigma error' instr[-1].header.cards[ 'TTYPE6'].comment = 'column title: cotrended basis vector photometry' instr[-1].header.cards[ 'TTYPE7'].comment = 'column title: Detrended aperture photometry' instr[-1].header.cards[ 'TTYPE8'].comment = 'column title: DET 1-sigma error' instr[-1].header.cards['TFORM1'].comment = 'column type: float32' instr[-1].header.cards['TFORM2'].comment = 'column type: float32' instr[-1].header.cards['TFORM3'].comment = 'column type: float32' instr[-1].header.cards['TFORM4'].comment = 'column type: float32' instr[-1].header.cards['TFORM5'].comment = 'column type: float32' instr[-1].header.cards['TFORM6'].comment = 'column type: float32' instr[-1].header.cards['TFORM7'].comment = 'column type: float32' instr[-1].header.cards['TFORM8'].comment = 'column type: float32' instr[-1].header.cards[ 'TUNIT2'].comment = 'column units: electrons per second' instr[-1].header.cards[ 'TUNIT3'].comment = 'column units: electrons per second' instr[-1].header.cards[ 'TUNIT4'].comment = 'column units: electrons per second' instr[-1].header.cards[ 'TUNIT5'].comment = 'column units: electrons per second' instr[-1].header.cards[ 'TUNIT6'].comment = 'column units: electrons per second' instr[-1].header.update('EXTNAME', 'FOLDED', 'extension name') instr[-1].header.update('PERIOD', period, 'period defining the phase [d]') instr[-1].header.update('BJD0', phasezero, 'time of phase zero [BJD]') instr[-1].header.update('BINMETHD', binmethod, 'phase binning method') if binmethod == 'sigclip': instr[-1].header.update('THRSHOLD', threshold, 'sigma-clipping threshold [sigma]') instr[-1].header.update('NITER', niter, 'max number of sigma-clipping iterations') # history keyword in output file if status == 0: status = kepkey.history(call, instr[0], outfile, logfile, verbose) instr.writeto(outfile) # clean up x-axis unit if status == 0: ptime1 = array([], 'float32') ptime2 = array([], 'float32') pout1 = array([], 'float32') pout2 = array([], 'float32') if bindata: work = sap4 if plottype == 'pdc': work = pdc4 if plottype == 'cbv': work = cbv4 if plottype == 'det': work = det4 for i in range(len(phase4)): if (phase4[i] > 0.5): ptime2 = append(ptime2, phase4[i] - 1.0) pout2 = append(pout2, work[i]) ptime2 = append(ptime2, phase4) pout2 = append(pout2, work) for i in range(len(phase4)): if (phase4[i] <= 0.5): ptime2 = append(ptime2, phase4[i] + 1.0) pout2 = append(pout2, work[i]) work = sap3 if plottype == 'pdc': work = pdc3 if plottype == 'cbv': work = cbv3 if plottype == 'det': work = det3 for i in range(len(phase3)): if (phase3[i] > 0.5): ptime1 = append(ptime1, phase3[i] - 1.0) pout1 = append(pout1, work[i]) ptime1 = append(ptime1, phase3) pout1 = append(pout1, work) for i in range(len(phase3)): if (phase3[i] <= 0.5): ptime1 = append(ptime1, phase3[i] + 1.0) pout1 = append(pout1, work[i]) xlab = 'Orbital Phase ($\phi$)' # clean up y-axis units if status == 0: nrm = len(str(int(pout1[isfinite(pout1)].max()))) - 1 pout1 = pout1 / 10**nrm pout2 = pout2 / 10**nrm if nrm == 0: ylab = plotlab else: ylab = '10$^%d$ %s' % (nrm, plotlab) # data limits xmin = ptime1.min() xmax = ptime1.max() ymin = pout1[isfinite(pout1)].min() ymax = pout1[isfinite(pout1)].max() xr = xmax - xmin yr = ymax - ymin ptime1 = insert(ptime1, [0], [ptime1[0]]) ptime1 = append(ptime1, [ptime1[-1]]) pout1 = insert(pout1, [0], [0.0]) pout1 = append(pout1, 0.0) if bindata: ptime2 = insert(ptime2, [0], ptime2[0] - 1.0 / nbins) ptime2 = insert(ptime2, [0], ptime2[0]) ptime2 = append( ptime2, [ptime2[-1] + 1.0 / nbins, ptime2[-1] + 1.0 / nbins]) pout2 = insert(pout2, [0], [pout2[-1]]) pout2 = insert(pout2, [0], [0.0]) pout2 = append(pout2, [pout2[2], 0.0]) # plot new light curve if status == 0 and plottype != 'none': try: params = { 'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight': 'bold', 'text.fontsize': 18, 'legend.fontsize': 18, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize } pylab.rcParams.update(params) except: print('ERROR -- KEPFOLD: install latex for scientific plotting') status = 1 if status == 0 and plottype != 'none': pylab.figure(figsize=[17, 7]) pylab.clf() ax = pylab.axes([0.06, 0.11, 0.93, 0.86]) pylab.gca().xaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) labels = ax.get_yticklabels() setp(labels, 'rotation', 90) if bindata: pylab.fill(ptime2, pout2, color=fcolor, linewidth=0.0, alpha=falpha) else: if 'det' in plottype: pylab.fill(ptime1, pout1, color=fcolor, linewidth=0.0, alpha=falpha) pylab.plot(ptime1, pout1, color=lcolor, linestyle='', linewidth=lwidth, marker='.') if bindata: pylab.plot(ptime2[1:-1], pout2[1:-1], color='r', linestyle='-', linewidth=lwidth, marker='') xlabel(xlab, {'color': 'k'}) ylabel(ylab, {'color': 'k'}) xlim(-0.49999, 1.49999) if ymin >= 0.0: ylim(ymin - yr * 0.01, ymax + yr * 0.01) # ylim(0.96001,1.03999) else: ylim(1.0e-10, ymax + yr * 0.01) grid() if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() # close input file if status == 0: status = kepio.closefits(instr, logfile, verbose) # stop time kepmsg.clock('KEPFOLD ended at: ', logfile, verbose)
def kepaddconstant(infile,outfile,datacol,constant,constantval,sign ,clobber,verbose,logfile,status): # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPARITH -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+str(datacol)+' ' call += 'constant='+str(constant)+' ' call += 'constantval='+str(constantval)+' ' call += 'sign'+str(sign)+' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPARITH started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPARITH: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile,message,verbose) ## open input file instr, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: try: test = str(instr[0].header['FILEVER']) version = 2 except KeyError: version = 1 # if version == 1: # #lc_flux = instr[1].data.field(datacol) + constant # lc_flux = instr[1].data.field(datacol) # instr[1].data.field(datacol)[:] = (lc_flux - median(lc_flux)) / MAD(lc_flux) # elif version == 2: # #lc_flux = instr[1].data.field(datacol) + constant # lc_flux = instr[1].data.field(datacol) # instr[1].data.field(datacol)[:] = (lc_flux - median(lc_flux)) / MAD(lc_flux) lc_flux = instr[1].data.field(datacol) if datacol == 'SAP_FLUX': errcol = 'SAP_FLUX_ERR' try: lc_err = instr[1].data.field(errcol) haveerr = True except: haveerr = False elif datacol == 'PDCSAP_FLUX': errcol = 'PDCSAP_FLUX_ERR' try: lc_err = instr[1].data.field(errcol) haveerr = True except: haveerr = False else: errcol = datacol + '_ERR' try: lc_err = instr[1].data.field(errcol) haveerr = True except: try: errcol = datacol + '_err' lc_err = instr[1].data.field(errcol) haveerr = True except: haveerr = False #subtractor he just refers to the number that will be added/subtracted #divided or multiplied if isinstance(constantval,(long,int,float)) and constant == 'None': subtractor = float(constantval) elif constant.lower() == 'median': subtractor = float(median(lc_flux[isfinite(lc_flux)])) elif constant.lower() == 'mean': subtractor = float(mean(lc_flux[isfinite(lc_flux)])) elif constant.lower() == 'std': subtractor = float(std(lc_flux[isfinite(lc_flux)])) elif constant.lower() == 'mad': subtractor = float(MAD(lc_flux[isfinite(lc_flux)])) elif constant.lower() == 'max': subtractor = float(max(lc_flux[isfinite(lc_flux)])) elif constant.lower() == 'range': subtractor = float(max(lc_flux[isfinite(lc_flux)]) - min(lc_flux[isfinite(lc_flux)])) elif str(constant).lower() == 'none': subtractor = 0. message = 'No operation will be performed if you select None for the function and do not give a constant value' status = kepmsg.err(logfile,message,verbose) else: message = 'Your constant term is not in the list of possible functions' status = kepmsg.err(logfile,message,verbose) if subtractor == 0. and sign == 'divide' and status == 0: message = 'You are trying to divide by zero: not a good idea.' status = kepmsg.err(logfile,message,verbose) if status == 0: if sign.lower() == 'add': instr[1].data.field(datacol)[:] = where(isfinite(instr[1].data.field(datacol)[:]),(lc_flux + subtractor),nan) elif sign.lower() == 'subtract': instr[1].data.field(datacol)[:] = where(isfinite(instr[1].data.field(datacol)[:]),(lc_flux - subtractor),nan) elif sign.lower() == 'divide': instr[1].data.field(datacol)[:] = where(isfinite(instr[1].data.field(datacol)[:]),(lc_flux / subtractor),nan) if haveerr: instr[1].data.field(errcol)[:] = where(isfinite(instr[1].data.field(errcol)[:]),(lc_err / subtractor),nan) elif sign.lower() == 'multiply': instr[1].data.field(datacol)[:] = where(isfinite(instr[1].data.field(datacol)[:]),(lc_flux * subtractor),nan) if haveerr: instr[1].data.field(errcol)[:] = where(isfinite(instr[1].data.field(errcol)[:]),(lc_err * subtractor),nan) else: message = 'Your operation need to be one of: add, subtract, divide or multiply' status = kepmsg.err(logfile,message,verbose) if status == 0: instr.writeto(outfile) if status == 0: status = kepio.closefits(instr,logfile,verbose) ## end time if (status == 0): message = 'KEPARITH completed at' else: message = '\nKEPARITH aborted at' kepmsg.clock(message,logfile,verbose)
def kephead(infile,outfile,keyname,clobber,verbose,logfile,status): # input arguments status = 0 seterr(all="ignore") # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPHEAD -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'keyname='+keyname+' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPHEAD started at: ',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPHEAD: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile,message,verbose) # Is there an output file? if status == 0: if outfile.lower() == 'none': ofile = False else: ofile = outfile # open input FITS file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) # number of HDU in input file if status == 0: nhdu = kepio.HDUnum(instr) # loop through each HDU in infile if status == 0: kepmsg.log(ofile,'',True) for hdu in range(nhdu): # how many keywords in the HDU? keylist = instr[hdu].header.cards nkeys = len(keylist) # print header number prhead = False for i in range(nkeys): if (keyname.upper() == 'ALL' or \ keyname.upper() in instr[hdu].header.keys()[i]): prhead = True if prhead: dashes = '' title = infile + '[' + str(hdu) + ']' for j in range(len(title)): dashes += '-' kepmsg.log(ofile,dashes,True) kepmsg.log(ofile,title,True) kepmsg.log(ofile,dashes,True) kepmsg.log(ofile,'',True) # print keywords for i in range(nkeys): if ((keyname.upper() == 'ALL' or \ keyname.upper() in instr[hdu].header.keys()[i]) and \ 'COMMENT' not in instr[hdu].header.keys()[i]): kepmsg.log(ofile,str(keylist[i]),True) kepmsg.log(ofile,'',True) # stop time kepmsg.clock('KEPHEAD ended at: ',logfile,verbose) return
def kepft(infile, outfile, fcol, pmin, pmax, nfreq, plot, clobber, verbose, logfile, status, cmdLine=False): ## startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 18 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 ## log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPFT -- ' call += 'infile=' + infile + ' ' call += 'outfile=' + outfile + ' ' call += 'fcol=' + fcol + ' ' call += 'pmin=' + str(pmin) + ' ' call += 'pmax=' + str(pmax) + ' ' call += 'nfreq=' + str(nfreq) + ' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot=' + plotit + ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber=' + overwrite + ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose=' + chatter + ' ' call += 'logfile=' + logfile kepmsg.log(logfile, call + '\n', verbose) ## start time kepmsg.clock('Start time is', logfile, verbose) ## test log file logfile = kepmsg.test(logfile) ## clobber output file if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPFT: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile, message, verbose) ## open input file if status == 0: instr, status = kepio.openfits(infile, 'readonly', logfile, verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys( instr, infile, logfile, verbose, status) ## fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr, file, logfile, verbose) ## read table columns if status == 0: try: barytime = instr[1].data.field('barytime') except: barytime, status = kepio.readfitscol(infile, instr[1].data, 'time', logfile, verbose) signal, status = kepio.readfitscol(infile, instr[1].data, fcol, logfile, verbose) if status == 0: barytime = barytime + bjdref ## remove infinite data from time series if status == 0: incols = [barytime, signal] outcols = kepstat.removeinfinlc(signal, incols) barytime = outcols[0] signal = outcols[1] - median(outcols[1]) ## period to frequency conversion fmin = 1.0 / pmax fmax = 1.0 / pmin deltaf = (fmax - fmin) / nfreq ## loop through frequency steps; determine FT power if status == 0: fr, power = kepfourier.ft(barytime, signal, fmin, fmax, deltaf, True) ## write output file if status == 0: col1 = Column(name='FREQUENCY', format='E', unit='1/day', array=fr) col2 = Column(name='POWER', format='E', array=power) cols = ColDefs([col1, col2]) instr.append(new_table(cols)) instr[-1].header.update('EXTNAME', 'POWER SPECTRUM', 'extension name') instr.writeto(outfile) ## history keyword in output file if status == 0: status = kepkey.history(call, instr[0], outfile, logfile, verbose) ## close input file if status == 0: status = kepio.closefits(instr, logfile, verbose) ## data limits if status == 0: nrm = int(log10(power.max())) power = power / 10**nrm ylab = 'Power (x10$^{%d}$)' % nrm xmin = fr.min() xmax = fr.max() ymin = power.min() ymax = power.max() xr = xmax - xmin yr = ymax - ymin fr = insert(fr, [0], fr[0]) fr = append(fr, fr[-1]) power = insert(power, [0], 0.0) power = append(power, 0.0) ## plot power spectrum if status == 0 and plot: try: params = { 'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight': 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize } rcParams.update(params) except: print 'ERROR -- KEPFT: install latex for scientific plotting' status = 1 if status == 0 and plot: pylab.figure(1, figsize=[xsize, ysize]) pylab.clf() pylab.axes([0.06, 0.113, 0.93, 0.86]) pylab.plot(fr, power, color=lcolor, linestyle='-', linewidth=lwidth) fill(fr, power, color=fcolor, linewidth=0.0, alpha=falpha) xlim(xmin - xr * 0.01, xmax + xr * 0.01) if ymin - yr * 0.01 <= 0.0: ylim(1.0e-10, ymax + yr * 0.01) else: ylim(ymin - yr * 0.01, ymax + yr * 0.01) xlabel(r'Frequency (d$^{-1}$)', {'color': 'k'}) ylabel(ylab, {'color': 'k'}) grid() # render plot if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() ## end time if (status == 0): message = 'KEPFT completed at' else: message = '\nKEPFT aborted at' kepmsg.clock(message, logfile, verbose)
def kepdraw(infile,outfile,datacol,ploterr,errcol,quality, lcolor,lwidth,fcolor,falpha,labelsize,ticksize, xsize,ysize,fullrange,chooserange,y1,y2,plotgrid, ylabel,plottype,verbose,logfile,status,cmdLine=False): # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPDRAW -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+datacol+' ' perr = 'n' if (ploterr): perr = 'y' call += 'ploterr='+perr+ ' ' call += 'errcol='+errcol+' ' qual = 'n' if (quality): qual = 'y' call += 'quality='+qual+ ' ' call += 'lcolor='+str(lcolor)+' ' call += 'lwidth='+str(lwidth)+' ' call += 'fcolor='+str(fcolor)+' ' call += 'falpha='+str(falpha)+' ' call += 'labelsize='+str(labelsize)+' ' call += 'ticksize='+str(ticksize)+' ' call += 'xsize='+str(xsize)+' ' call += 'ysize='+str(ysize)+' ' frange = 'n' if (fullrange): frange = 'y' call += 'fullrange='+frange+ ' ' crange = 'n' if (chooserange): crange = 'y' call += 'chooserange='+crange+ ' ' call += 'ymin='+str(y1)+' ' call += 'ymax='+str(y2)+' ' pgrid = 'n' if (plotgrid): pgrid = 'y' call += 'plotgrid='+pgrid+ ' ' call += 'ylabel='+str(ylabel)+' ' call += 'plottype='+plottype+' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPDRAW started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # open input file if status == 0: struct, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(struct,infile,logfile,verbose,status) # read table structure if status == 0: table, status = kepio.readfitstab(infile,struct[1],logfile,verbose) # read table columns if status == 0: intime, status = kepio.readtimecol(infile,table,logfile,verbose) intime += bjdref indata, status = kepio.readfitscol(infile,table,datacol,logfile,verbose) indataerr, status = kepio.readfitscol(infile,table,errcol,logfile,verbose) # read table quality column if status == 0 and quality: try: qualtest = table.field('SAP_QUALITY') except: message = 'ERROR -- KEPDRAW: no SAP_QUALITY column found in file ' + infile message += '. Use kepdraw quality=n' status = kepmsg.err(logfile,message,verbose) # close infile if status == 0: status = kepio.closefits(struct,logfile,verbose) # remove infinities and bad data if status == 0: if numpy.isnan(numpy.nansum(indataerr)): indataerr[:] = 1.0e-5 work1 = numpy.array([intime, indata, indataerr],dtype='float64') work1 = numpy.rot90(work1,3) work1 = work1[~numpy.isnan(work1).any(1)] work1 = work1[~numpy.isinf(work1).any(1)] barytime = numpy.array(work1[:,2],dtype='float64') data = numpy.array(work1[:,1],dtype='float32') dataerr = numpy.array(work1[:,0],dtype='float32') if len(barytime) == 0: message = 'ERROR -- KEPDRAW: Plotting arrays are full of NaN' status = kepmsg.err(logfile,message,verbose) # clean up x-axis unit if status == 0: barytime0 = float(int(tstart / 100) * 100.0) barytime -= barytime0 xlab = 'BJD $-$ %d' % barytime0 # clean up y-axis units try: nrm = len(str(int(numpy.nanmax(data))))-1 except: nrm = 0 data = data / 10**nrm if 'e$^-$ s$^{-1}$' in ylabel or 'default' in ylabel: if nrm == 0: ylab1 = 'e$^-$ s$^{-1}$' else: ylab1 = '10$^%d$ e$^-$ s$^{-1}$' % nrm else: ylab1 = re.sub('_','-',ylabel) # data limits xmin = numpy.nanmin(barytime) xmax = numpy.nanmax(barytime) ymin = numpy.nanmin(data) ymax = numpy.nanmax(data) xr = xmax - xmin yr = ymax - ymin barytime = insert(barytime,[0],[barytime[0]]) barytime = append(barytime,[barytime[-1]]) data = insert(data,[0],[0.0]) data = append(data,0.0) # define plot formats try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} pylab.rcParams.update(params) except: pass # define size of plot on monitor screen pylab.figure(figsize=[xsize,ysize]) # delete any fossil plots in the matplotlib window pylab.clf() # position axes inside the plotting window ax = pylab.subplot(111) pylab.subplots_adjust(0.07,0.1,0.92,0.88) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) # rotate y labels by 90 deg labels = ax.get_yticklabels() setp(labels, 'rotation', 90, fontsize=ticksize) # if plot type is 'fast' plot data time series as points if plottype == 'fast': pylab.plot(barytime,data,'o',color=lcolor) # if plot type is 'pretty' plot data time series as an unbroken line, retaining data gaps else: ltime = numpy.array([],dtype='float64') ldata = numpy.array([],dtype='float32') dt = 0 work1 = 2.0 * cadence / 86400 for i in range(1,len(data)-1): dt = barytime[i] - barytime[i-1] if dt < work1: ltime = numpy.append(ltime,barytime[i]) ldata = numpy.append(ldata,data[i]) else: pylab.plot(ltime,ldata,color=lcolor,linestyle='-',linewidth=lwidth) ltime = numpy.array([],dtype='float64') ldata = numpy.array([],dtype='float32') pylab.plot(ltime,ldata,color=lcolor,linestyle='-',linewidth=lwidth) # plot the fill color below data time series, with no data gaps pylab.fill(barytime,data,fc=fcolor,linewidth=0.0,alpha=falpha) # define plot x and y limits pylab.xlim(xmin-xr*0.01,xmax+xr*0.01) if ymin-yr*0.01 <= 0.0 or fullrange: pylab.ylim(1.0e-10,ymax+yr*0.01) else: pylab.ylim(ymin-yr*0.01,ymax+yr*0.01) if chooserange: pylab.ylim(y1,y2) # plot labels pylab.xlabel(xlab, {'color' : 'k'}) try: pylab.ylabel(ylab1, {'color' : 'k'}) except: ylab1 = '10**%d e-/s' % nrm pylab.ylabel(ylab1, {'color' : 'k'}) # make grid on plot if plotgrid: pylab.grid() # save plot to file if status == 0 and outfile.lower() != 'none': pylab.savefig(outfile) # render plot if cmdLine: # pylab.show() pylab.show(block=True) else: pylab.ion() pylab.plot([]) pylab.ioff() # end time if (status == 0): message = 'KEPDRAW completed at' else: message = '\nKEPDRAW aborted at' kepmsg.clock(message,logfile,verbose)
def kepfield(infile,plotfile,rownum,imscale,colmap,lcolor,srctab,verbose,logfile,status,cmdLine=False): # input arguments status = 0 seterr(all="ignore") # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPFIELD -- ' call += 'infile='+infile+' ' call += 'plotfile='+plotfile+' ' call += 'rownum='+str(rownum)+' ' call += 'imscale='+imscale+' ' call += 'colmap='+colmap+' ' call += 'lcolor='+lcolor+' ' srct = 'n' if (srctab): srct = 'y' call += 'srctab='+srct+' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPFIELD started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # reference color map if colmap == 'browse': status = cmap_plot(cmdLine) # open TPF FITS file if status == 0: try: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, barytime, status = \ kepio.readTPF(infile,'TIME',logfile,verbose) except: message = 'ERROR -- KEPFIELD: is %s a Target Pixel File? ' % infile status = kepmsg.err(logfile,message,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, tcorr, status = \ kepio.readTPF(infile,'TIMECORR',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, cadno, status = \ kepio.readTPF(infile,'CADENCENO',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, fluxpixels, status = \ kepio.readTPF(infile,'FLUX',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, errpixels, status = \ kepio.readTPF(infile,'FLUX_ERR',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, qual, status = \ kepio.readTPF(infile,'QUALITY',logfile,verbose) # read mask defintion data from TPF file if status == 0: maskimg, pixcoord1, pixcoord2, status = kepio.readMaskDefinition(infile,logfile,verbose) # observed or simulated data? if status == 0: coa = False instr = pyfits.open(infile,mode='readonly',memmap=True) filever, status = kepkey.get(infile,instr[0],'FILEVER',logfile,verbose) if filever == 'COA': coa = True # print target data if status == 0 and verbose: print('') print(' KepID: %s' % kepid) print(' BJD: %.2f' % (barytime[rownum-1] + 2454833.0)) print(' RA (J2000): %s' % ra) print('Dec (J2000): %s' % dec) print(' KepMag: %s' % kepmag) print(' SkyGroup: %2s' % skygroup) print(' Season: %2s' % str(season)) print(' Channel: %2s' % channel) print(' Module: %2s' % module) print(' Output: %1s' % output) print('') # is this a good row with finite timestamp and pixels? if status == 0: if not numpy.isfinite(barytime[rownum-1]) or not numpy.nansum(fluxpixels[rownum-1,:]): message = 'ERROR -- KEPFIELD: Row ' + str(rownum) + ' is a bad quality timestamp' status = kepmsg.err(logfile,message,verbose) # construct input pixel image if status == 0: flux = fluxpixels[rownum-1,:] # image scale and intensity limits of pixel data if status == 0: flux_pl, zminfl, zmaxfl = kepplot.intScale1D(flux,imscale) n = 0 imgflux_pl = empty((ydim+2,xdim+2)) for i in range(ydim+2): for j in range(xdim+2): imgflux_pl[i,j] = numpy.nan for i in range(ydim): for j in range(xdim): imgflux_pl[i+1,j+1] = flux_pl[n] n += 1 # cone search around target coordinates using the MAST target search form if status == 0: dr = max([ydim+2,xdim+2]) * 4.0 kepid,ra,dec,kepmag = MASTRADec(float(ra),float(dec),dr,srctab) # convert celestial coordinates to detector coordinates if status == 0: sx = numpy.array([]) sy = numpy.array([]) inf, status = kepio.openfits(infile,'readonly',logfile,verbose) try: crpix1, crpix2, crval1, crval2, cdelt1, cdelt2, pc, status = \ kepkey.getWCSs(infile,inf['APERTURE'],logfile,verbose) crpix1p, crpix2p, crval1p, crval2p, cdelt1p, cdelt2p, status = \ kepkey.getWCSp(infile,inf['APERTURE'],logfile,verbose) for i in range(len(kepid)): dra = (ra[i] - crval1) * math.cos(math.radians(dec[i])) / cdelt1 ddec = (dec[i] - crval2) / cdelt2 if coa: sx = numpy.append(sx,-(pc[0,0] * dra + pc[0,1] * ddec) + crpix1 + crval1p - 1.0) else: sx = numpy.append(sx,pc[0,0] * dra + pc[0,1] * ddec + crpix1 + crval1p - 1.0) sy = numpy.append(sy,pc[1,0] * dra + pc[1,1] * ddec + crpix2 + crval2p - 1.0) except: message = 'ERROR -- KEPFIELD: Non-compliant WCS information within file %s' % infile status = kepmsg.err(logfile,message,verbose) # plot style if status == 0: try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': 48, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': 20, 'ytick.labelsize': 20} pylab.rcParams.update(params) except: pass pylab.figure(figsize=[10,10]) pylab.clf() # pixel limits of the subimage if status == 0: ymin = copy(float(row)) ymax = ymin + ydim xmin = copy(float(column)) xmax = xmin + xdim # plot limits for flux image if status == 0: ymin = float(ymin) - 1.5 ymax = float(ymax) + 0.5 xmin = float(xmin) - 1.5 xmax = float(xmax) + 0.5 # plot the image window if status == 0: ax = pylab.axes([0.1,0.11,0.88,0.88]) pylab.imshow(imgflux_pl,aspect='auto',interpolation='nearest',origin='lower', vmin=zminfl,vmax=zmaxfl,extent=(xmin,xmax,ymin,ymax),cmap=colmap) pylab.gca().set_autoscale_on(False) labels = ax.get_yticklabels() setp(labels, 'rotation', 90) pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.xlabel('Pixel Column Number', {'color' : 'k'}) pylab.ylabel('Pixel Row Number', {'color' : 'k'}) # plot mask borders if status == 0: kepplot.borders(maskimg,xdim,ydim,pixcoord1,pixcoord2,1,lcolor,'--',0.5) # plot aperture borders if status == 0: kepplot.borders(maskimg,xdim,ydim,pixcoord1,pixcoord2,2,lcolor,'-',4.0) # list sources if status == 0: print('Column Row RA J2000 Dec J2000 Kp Kepler ID') print('----------------------------------------------------') for i in range(len(sx)-1,-1,-1): if sx[i] >= xmin and sx[i] < xmax and sy[i] >= ymin and sy[i] < ymax: if kepid[i] != 0 and kepmag[i] != 0.0: print('%6.1f %6.1f %9.5f %8.5f %5.2f KIC %d' % \ (float(sx[i]),float(sy[i]),float(ra[i]),float(dec[i]),float(kepmag[i]),int(kepid[i]))) elif kepid[i] != 0 and kepmag[i] == 0.0: print('%6.1f %6.1f %9.5f %8.5f KIC %d' % \ (float(sx[i]),float(sy[i]),float(ra[i]),float(dec[i]),int(kepid[i]))) else: print('%6.1f %6.1f %9.5f %8.5f' % (float(sx[i]),float(sy[i]),float(ra[i]),float(dec[i]))) # plot sources if status == 0: for i in range(len(sx)-1,-1,-1): if kepid[i] != 0 and kepmag[i] != 0.0: size = max(array([80.0,80.0 + (2.5**(18.0 - max(12.0,float(kepmag[i])))) * 250.0])) pylab.scatter(sx[i],sy[i],s=size,facecolors='g',edgecolors='k',alpha=0.4) else: pylab.scatter(sx[i],sy[i],s=80,facecolors='r',edgecolors='k',alpha=0.4) # render plot if status == 0 and len(plotfile) > 0 and plotfile.lower() != 'none': pylab.savefig(plotfile) if status == 0: if cmdLine: pylab.show(block=True) else: pylab.ion() pylab.plot([]) pylab.ioff() # stop time kepmsg.clock('\nKEPFIELD ended at',logfile,verbose) return
def kepbinary(infile,outfile,datacol,m1,m2,r1,r2,period,bjd0,eccn,omega,inclination, c1,c2,c3,c4,albedo,depth,contamination,gamma,fitparams,eclipses,dopboost, tides,job,clobber,verbose,logfile,status): # startup parameters status = 0 labelsize = 24; ticksize = 16; xsize = 17; ysize = 7 lcolor = '#0000ff'; lwidth = 1.0; fcolor = '#ffff00'; falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPBINARY -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+datacol+' ' call += 'm1='+str(m1)+' ' call += 'm2='+str(m2)+' ' call += 'r1='+str(r1)+' ' call += 'r2='+str(r2)+' ' call += 'period='+str(period)+' ' call += 'bjd0='+str(bjd0)+' ' call += 'eccn='+str(eccn)+' ' call += 'omega='+str(omega)+' ' call += 'inclination='+str(inclination)+' ' call += 'c1='+str(c1)+' ' call += 'c2='+str(c2)+' ' call += 'c3='+str(c3)+' ' call += 'c4='+str(c4)+' ' call += 'albedo='+str(albedo)+' ' call += 'depth='+str(depth)+' ' call += 'contamination='+str(contamination)+' ' call += 'gamma='+str(gamma)+' ' call += 'fitparams='+str(fitparams)+' ' eclp = 'n' if (eclipses): eclp = 'y' call += 'eclipses='+eclp+ ' ' boost = 'n' if (dopboost): boost = 'y' call += 'dopboost='+boost+ ' ' distort = 'n' if (tides): distort = 'y' call += 'tides='+distort+ ' ' call += 'job='+str(job)+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPBINARY started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # check and format the list of fit parameters if status == 0 and job == 'fit': allParams = [m1,m2,r1,r2,period,bjd0,eccn,omega,inclination] allNames = ['m1','m2','r1','r2','period','bjd0','eccn','omega','inclination'] fitparams = re.sub('\|',',',fitparams.strip()) fitparams = re.sub('\.',',',fitparams.strip()) fitparams = re.sub(';',',',fitparams.strip()) fitparams = re.sub(':',',',fitparams.strip()) fitparams = re.sub('\s+',',',fitparams.strip()) fitparams, status = kepio.parselist(fitparams,logfile,verbose) for fitparam in fitparams: if fitparam.strip() not in allNames: message = 'ERROR -- KEPBINARY: unknown field in list of fit parameters' status = kepmsg.err(logfile,message,verbose) # clobber output file if status == 0: if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPBINARY: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile,message,verbose) # open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # check the data column exists if status == 0: try: instr[1].data.field(datacol) except: message = 'ERROR -- KEPBINARY: ' + datacol + ' column does not exist in ' + infile + '[1]' status = kepmsg.err(logfile,message,verbose) # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # read table structure if status == 0: table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) # filter input data table if status == 0: try: nanclean = instr[1].header['NANCLEAN'] except: naxis2 = 0 try: for i in range(len(table.field(0))): if numpy.isfinite(table.field('barytime')[i]) and \ numpy.isfinite(table.field(datacol)[i]): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] except: for i in range(len(table.field(0))): if numpy.isfinite(table.field('time')[i]) and \ numpy.isfinite(table.field(datacol)[i]): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] comment = 'NaN cadences removed from data' status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose) # read table columns if status == 0: try: time = instr[1].data.field('barytime') except: time, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose) indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose) if status == 0: time = time + bjdref indata = indata / cadenom # limb-darkening cofficients if status == 0: limbdark = numpy.array([c1,c2,c3,c4],dtype='float32') # time details for model if status == 0: npt = len(time) exptime = numpy.zeros((npt),dtype='float64') dtype = numpy.zeros((npt),dtype='int') for i in range(npt): try: exptime[i] = time[i+1] - time[i] except: exptime[i] = time[i] - time[i-1] # calculate binary model if status == 0: tmodel = kepsim.transitModel(1.0,m1,m2,r1,r2,period,inclination,bjd0,eccn,omega,depth, albedo,c1,c2,c3,c4,gamma,contamination,npt,time,exptime, dtype,eclipses,dopboost,tides) # re-normalize binary model to data if status == 0 and (job == 'overlay' or job == 'fit'): dmedian = numpy.median(indata) tmodel = tmodel / numpy.median(tmodel) * dmedian # define arrays of floating and frozen parameters if status == 0 and job =='fit': params = []; paramNames = []; arguments = []; argNames = [] for i in range(len(allNames)): if allNames[i] in fitparams: params.append(allParams[i]) paramNames.append(allNames[i]) else: arguments.append(allParams[i]) argNames.append(allNames[i]) params.append(dmedian) params = numpy.array(params,dtype='float32') # subtract model from data if status == 0 and job == 'fit': deltam = numpy.abs(indata - tmodel) # fit statistics if status == 0 and job == 'fit': aveDelta = numpy.sum(deltam) / npt chi2 = math.sqrt(numpy.sum((indata - tmodel) * (indata - tmodel) / (npt - len(params)))) # fit model to data using downhill simplex if status == 0 and job == 'fit': print '' print '%4s %11s %11s' % ('iter', 'delta', 'chi^2') print '----------------------------' print '%4d %.5E %.5E' % (0,aveDelta,chi2) bestFit = scipy.optimize.fmin(fitModel,params,args=(paramNames,dmedian,m1,m2,r1,r2,period,bjd0,eccn, omega,inclination,depth,albedo,c1,c2,c3,c4, gamma,contamination,npt,time,exptime,indata, dtype,eclipses,dopboost,tides),maxiter=1e4) # calculate best fit binary model if status == 0 and job == 'fit': print '' for i in range(len(paramNames)): if 'm1' in paramNames[i].lower(): m1 = bestFit[i] print ' M1 = %.3f Msun' % bestFit[i] elif 'm2' in paramNames[i].lower(): m2 = bestFit[i] print ' M2 = %.3f Msun' % bestFit[i] elif 'r1' in paramNames[i].lower(): r1 = bestFit[i] print ' R1 = %.4f Rsun' % bestFit[i] elif 'r2' in paramNames[i].lower(): r2 = bestFit[i] print ' R2 = %.4f Rsun' % bestFit[i] elif 'period' in paramNames[i].lower(): period = bestFit[i] elif 'bjd0' in paramNames[i].lower(): bjd0 = bestFit[i] print 'BJD0 = %.8f' % bestFit[i] elif 'eccn' in paramNames[i].lower(): eccn = bestFit[i] print ' e = %.3f' % bestFit[i] elif 'omega' in paramNames[i].lower(): omega = bestFit[i] print ' w = %.3f deg' % bestFit[i] elif 'inclination' in paramNames[i].lower(): inclination = bestFit[i] print ' i = %.3f deg' % bestFit[i] flux = bestFit[-1] print '' tmodel = kepsim.transitModel(flux,m1,m2,r1,r2,period,inclination,bjd0,eccn,omega,depth, albedo,c1,c2,c3,c4,gamma,contamination,npt,time,exptime, dtype,eclipses,dopboost,tides) # subtract model from data if status == 0: deltaMod = indata - tmodel # standard deviation of model if status == 0: stdDev = math.sqrt(numpy.sum((indata - tmodel) * (indata - tmodel)) / npt) # clean up x-axis unit if status == 0: time0 = float(int(tstart / 100) * 100.0) ptime = time - time0 xlab = 'BJD $-$ %d' % time0 # clean up y-axis units if status == 0: nrm = len(str(int(indata.max())))-1 pout = indata / 10**nrm pmod = tmodel / 10**nrm pres = deltaMod / stdDev if job == 'fit' or job == 'overlay': try: ylab1 = 'Flux (10$^%d$ e$^-$ s$^{-1}$)' % nrm ylab2 = 'Residual ($\sigma$)' except: ylab1 = 'Flux (10**%d e-/s)' % nrm ylab2 = 'Residual (sigma)' else: ylab1 = 'Normalized Flux' # dynamic range of model plot if status == 0 and job == 'model': xmin = ptime.min() xmax = ptime.max() ymin = tmodel.min() ymax = tmodel.max() # dynamic range of model/data overlay or fit if status == 0 and (job == 'overlay' or job == 'fit'): xmin = ptime.min() xmax = ptime.max() ymin = pout.min() ymax = pout.max() tmin = pmod.min() tmax = pmod.max() ymin = numpy.array([ymin,tmin]).min() ymax = numpy.array([ymax,tmax]).max() rmin = pres.min() rmax = pres.max() # pad the dynamic range if status == 0: xr = (xmax - xmin) / 80 yr = (ymax - ymin) / 40 if job == 'overlay' or job == 'fit': rr = (rmax - rmin) / 40 # set up plot style if status == 0: labelsize = 24; ticksize = 16; xsize = 17; ysize = 7 lcolor = '#0000ff'; lwidth = 1.0; fcolor = '#ffff00'; falpha = 0.2 params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': 24, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': 16, 'ytick.labelsize': 16} pylab.rcParams.update(params) pylab.figure(figsize=[14,10]) pylab.clf() # main plot window ax = pylab.axes([0.05,0.3,0.94,0.68]) pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) labels = ax.get_yticklabels() setp(labels, 'rotation', 90, fontsize=12) # plot model time series if status == 0 and job == 'model': pylab.plot(ptime,tmodel,color='#0000ff',linestyle='-',linewidth=1.0) ptime = numpy.insert(ptime,[0.0],ptime[0]) ptime = numpy.append(ptime,ptime[-1]) tmodel = numpy.insert(tmodel,[0.0],0.0) tmodel = numpy.append(tmodel,0.0) pylab.fill(ptime,tmodel,fc='#ffff00',linewidth=0.0,alpha=0.2) # plot data time series and best fit if status == 0 and (job == 'overlay' or job == 'fit'): pylab.plot(ptime,pout,color='#0000ff',linestyle='-',linewidth=1.0) ptime = numpy.insert(ptime,[0.0],ptime[0]) ptime = numpy.append(ptime,ptime[-1]) pout = numpy.insert(pout,[0],0.0) pout = numpy.append(pout,0.0) pylab.fill(ptime,pout,fc='#ffff00',linewidth=0.0,alpha=0.2) pylab.plot(ptime[1:-1],pmod,color='r',linestyle='-',linewidth=2.0) # ranges and labels if status == 0: pylab.xlim(xmin-xr,xmax+xr) pylab.ylim(ymin-yr,ymax+yr) pylab.xlabel(xlab, {'color' : 'k'}) pylab.ylabel(ylab1, {'color' : 'k'}) # residual plot window if status == 0 and (job == 'overlay' or job == 'fit'): ax = pylab.axes([0.05,0.07,0.94,0.23]) pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) labels = ax.get_yticklabels() setp(labels, 'rotation', 90, fontsize=12) # plot residual time series if status == 0 and (job == 'overlay' or job == 'fit'): pylab.plot([ptime[0],ptime[-1]],[0.0,0.0],color='r',linestyle='--',linewidth=1.0) pylab.plot([ptime[0],ptime[-1]],[-1.0,-1.0],color='r',linestyle='--',linewidth=1.0) pylab.plot([ptime[0],ptime[-1]],[1.0,1.0],color='r',linestyle='--',linewidth=1.0) pylab.plot(ptime[1:-1],pres,color='#0000ff',linestyle='-',linewidth=1.0) pres = numpy.insert(pres,[0],rmin) pres = numpy.append(pres,rmin) pylab.fill(ptime,pres,fc='#ffff00',linewidth=0.0,alpha=0.2) # ranges and labels of residual time series if status == 0 and (job == 'overlay' or job == 'fit'): pylab.xlim(xmin-xr,xmax+xr) pylab.ylim(rmin-rr,rmax+rr) pylab.xlabel(xlab, {'color' : 'k'}) pylab.ylabel(ylab2, {'color' : 'k'}) # display the plot if status == 0: pylab.draw()
def kepcotrendsc(infile,outfile,bvfile,listbv,fitmethod,fitpower,iterate,sigma,maskfile,scinterp,plot,clobber,verbose,logfile, status,cmdLine=False): """ Setup the kepcotrend environment infile: the input file in the FITS format obtained from MAST outfile: The output will be a fits file in the same style as the input file but with two additional columns: CBVSAP_MODL and CBVSAP_FLUX. The first of these is the best fitting linear combination of basis vectors. The second is the new flux with the basis vector sum subtracted. This is the new flux value. plot: either True or False if you want to see a plot of the light curve The top plot shows the original light curve in blue and the sum of basis vectors in red The bottom plot has had the basis vector sum subracted bvfile: the name of the FITS file containing the basis vectors listbv: the basis vectors to fit to the data fitmethod: fit using either the 'llsq' or the 'simplex' method. 'llsq' is usually the correct one to use because as the basis vectors are orthogonal. Simplex gives you option of using a different merit function - ie. you can minimise the least absolute residual instead of the least squares which weights outliers less fitpower: if using a simplex you can chose your own power in the metir function - i.e. the merit function minimises abs(Obs - Mod)^P. P=2 is least squares, P = 1 minimises least absolutes iterate: should the program fit the basis vectors to the light curve data then remove data points further than 'sigma' from the fit and then refit maskfile: this is the name of a mask file which can be used to define regions of the flux time series to exclude from the fit. The easiest way to create this is by using keprange from the PyKE set of tools. You can also make this yourself with two BJDs on each line in the file specifying the beginning and ending date of the region to exclude. scinterp: the basis vectors are only calculated for long cadence data, therefore if you want to use short cadence data you have to interpolate the basis vectors. There are several methods to do this, the best of these probably being nearest which picks the value of the nearest long cadence data point. The options available are None|linear|nearest|zero|slinear|quadratic|cubic If you are using short cadence data don't choose none """ # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPCOTREND -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'bvfile='+bvfile+' ' # call += 'numpcomp= '+str(numpcomp)+' ' call += 'listbv= '+str(listbv)+' ' call += 'fitmethod=' +str(fitmethod)+ ' ' call += 'fitpower=' + str(fitpower)+ ' ' iterateit = 'n' if (iterate): iterateit = 'y' call += 'iterate='+iterateit+ ' ' call += 'sigma_clip='+str(sigma)+' ' call += 'mask_file='+maskfile+' ' call += 'scinterp=' + str(scinterp)+ ' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPCOTREND started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPCOTREND: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile,message,verbose) # open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr, infile,logfile,verbose,status) # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) if status == 0: if not kepio.fileexists(bvfile): message = 'ERROR -- KEPCOTREND: ' + bvfile + ' does not exist.' status = kepmsg.err(logfile,message,verbose) #lsq_sq - nonlinear least squares fitting and simplex_abs have been #removed from the options in PyRAF but they are still in the code! if status == 0: if fitmethod not in ['llsq','matrix','lst_sq','simplex_abs','simplex']: message = 'Fit method must either: llsq, matrix, lst_sq or simplex' status = kepmsg.err(logfile,message,verbose) if status == 0: if not is_numlike(fitpower) and fitpower is not None: message = 'Fit power must be an real number or None' status = kepmsg.err(logfile,message,verbose) if status == 0: if fitpower is None: fitpower = 1. # input data if status == 0: short = False try: test = str(instr[0].header['FILEVER']) version = 2 except KeyError: version = 1 table = instr[1].data if version == 1: if str(instr[1].header['DATATYPE']) == 'long cadence': #print 'Light curve was taken in Lond Cadence mode!' quarter = str(instr[1].header['QUARTER']) module = str(instr[1].header['MODULE']) output = str(instr[1].header['OUTPUT']) channel = str(instr[1].header['CHANNEL']) lc_cad_o = table.field('cadence_number') lc_date_o = table.field('barytime') lc_flux_o = table.field('ap_raw_flux') / 1625.3468 #convert to e-/s lc_err_o = table.field('ap_raw_err') / 1625.3468 #convert to e-/s elif str(instr[1].header['DATATYPE']) == 'short cadence': short = True #print 'Light curve was taken in Short Cadence mode!' quarter = str(instr[1].header['QUARTER']) module = str(instr[1].header['MODULE']) output = str(instr[1].header['OUTPUT']) channel = str(instr[1].header['CHANNEL']) lc_cad_o = table.field('cadence_number') lc_date_o = table.field('barytime') lc_flux_o = table.field('ap_raw_flux') / 54.178 #convert to e-/s lc_err_o = table.field('ap_raw_err') / 54.178 #convert to e-/s elif version >= 2: if str(instr[0].header['OBSMODE']) == 'long cadence': #print 'Light curve was taken in Long Cadence mode!' quarter = str(instr[0].header['QUARTER']) module = str(instr[0].header['MODULE']) output = str(instr[0].header['OUTPUT']) channel = str(instr[0].header['CHANNEL']) lc_cad_o = table.field('CADENCENO') lc_date_o = table.field('TIME') lc_flux_o = table.field('SAP_FLUX') lc_err_o = table.field('SAP_FLUX_ERR') elif str(instr[0].header['OBSMODE']) == 'short cadence': #print 'Light curve was taken in Short Cadence mode!' short = True quarter = str(instr[0].header['QUARTER']) module = str(instr[0].header['MODULE']) output = str(instr[0].header['OUTPUT']) channel = str(instr[0].header['CHANNEL']) lc_cad_o = table.field('CADENCENO') lc_date_o = table.field('TIME') lc_flux_o = table.field('SAP_FLUX') lc_err_o = table.field('SAP_FLUX_ERR') if str(quarter) == str(4) and version == 1: lc_cad_o = lc_cad_o[lc_cad_o >= 11914] lc_date_o = lc_date_o[lc_cad_o >= 11914] lc_flux_o = lc_flux_o[lc_cad_o >= 11914] lc_err_o = lc_err_o[lc_cad_o >= 11914] # bvfilename = '%s/Q%s_%s_%s_map.txt' %(bvfile,quarter,module,output) # if str(quarter) == str(5): # bvdata = genfromtxt(bvfilename) # elif str(quarter) == str(3) or str(quarter) == str(4): # bvdata = genfromtxt(bvfilename,skip_header=22) # elif str(quarter) == str(1): # bvdata = genfromtxt(bvfilename,skip_header=10) # else: # bvdata = genfromtxt(bvfilename,skip_header=13) if short and scinterp == 'None': message = 'You cannot select None as the interpolation method because you are using short cadence data and therefore must use some form of interpolation. I reccommend nearest if you are unsure.' status = kepmsg.err(logfile,message,verbose) bvfiledata = pyfits.open(bvfile) bvdata = bvfiledata['MODOUT_%s_%s' %(module,output)].data if int(bvfiledata[0].header['QUARTER']) != int(quarter): message = 'CBV file and light curve file are from different quarters. CBV file is from Q%s and light curve is from Q%s' %(int(bvfiledata[0].header['QUARTER']),int(quarter)) status = kepmsg.err(logfile,message,verbose) if status == 0: if int(quarter) == 4 and int(module) == 3: message = 'Approximately twenty days into Q4 Module 3 failed. As a result, Q4 light curves contain these 20 day of data. However, we do not calculate CBVs for this section of data.' status = kepmsg.err(logfile,message,verbose) if status == 0: #cut out infinites and zero flux columns lc_cad,lc_date,lc_flux,lc_err,bad_data = cutBadData(lc_cad_o, lc_date_o,lc_flux_o,lc_err_o) #get a list of basis vectors to use from the list given #accept different seperators listbv = listbv.strip() if listbv[1] in [' ',',',':',';','|',', ']: separator = str(listbv)[1] else: message = 'You must separate your basis vector numbers to use with \' \' \',\' \':\' \';\' or \'|\' and the first basis vector to use must be between 1 and 9' status = kepmsg.err(logfile,message,verbose) if status == 0: bvlist = fromstring(listbv,dtype=int,sep=separator) if bvlist[0] == 0: message = 'Must use at least one basis vector' status = kepmsg.err(logfile,message,verbose) if status == 0: #pcomps = get_pcomp(pcompdata,n_comps,lc_cad) # if str(quarter) == str(5): # bvectors = get_pcomp_list(bvdata,bvlist,lc_cad) # else: # bvectors = get_pcomp_list_newformat(bvdata,bvlist,lc_cad) if short: bvdata.field('CADENCENO')[:] = (((bvdata.field('CADENCENO')[:] + (7.5/15.) )* 30.) - 11540.).round() bvectors,in1derror = get_pcomp_list_newformat(bvdata,bvlist,lc_cad,short,scinterp) if in1derror: message = 'It seems that you have an old version of numpy which does not have the in1d function included. Please update your version of numpy to a version 1.4.0 or later' status = kepmsg.err(logfile,message,verbose) if status == 0: medflux = median(lc_flux) n_flux = (lc_flux /medflux)-1 n_err = sqrt(pow(lc_err,2)/ pow(medflux,2)) #plt.errorbar(lc_cad,n_flux,yerr=n_err) #plt.errorbar(lc_cad,lc_flux,yerr=lc_err) #n_err = median(lc_err/lc_flux) * n_flux #print n_err #does an iterative least squares fit #t1 = do_leastsq(pcomps,lc_cad,n_flux) # if maskfile != '': domasking = True if not kepio.fileexists(maskfile): message = 'Maskfile %s does not exist' %maskfile status = kepmsg.err(logfile,message,verbose) else: domasking = False if status == 0: if domasking: lc_date_masked = copy(lc_date) n_flux_masked = copy(n_flux) lc_cad_masked = copy(lc_cad) n_err_masked = copy(n_err) maskdata = atleast_2d(genfromtxt(maskfile,delimiter=',')) #make a mask of True values incase there are not regions in maskfile to exclude. mask = zeros(len(lc_date_masked)) == 0. for maskrange in maskdata: if version == 1: start = maskrange[0] - 2400000.0 end = maskrange[1] - 2400000.0 elif version == 2: start = maskrange[0] - 2454833. end = maskrange[1] - 2454833. masknew = logical_xor(lc_date < start,lc_date > end) mask = logical_and(mask,masknew) lc_date_masked = lc_date_masked[mask] n_flux_masked = n_flux_masked[mask] lc_cad_masked = lc_cad_masked[mask] n_err_masked = n_err_masked[mask] else: lc_date_masked = copy(lc_date) n_flux_masked = copy(n_flux) lc_cad_masked = copy(lc_cad) n_err_masked = copy(n_err) #pcomps = get_pcomp(pcompdata,n_comps,lc_cad) bvectors_masked,hasin1d = get_pcomp_list_newformat(bvdata,bvlist,lc_cad_masked,short,scinterp) if (iterate) and sigma is None: message = 'If fitting iteratively you must specify a clipping range' status = kepmsg.err(logfile,message,verbose) if status == 0: #uses Pvals = yhat * U_transpose if (iterate): coeffs,fittedmask = do_lst_iter(bvectors_masked,lc_cad_masked ,n_flux_masked,sigma,50.,fitmethod,fitpower) else: if fitmethod == 'matrix' and domasking: coeffs = do_lsq_uhat(bvectors_masked,lc_cad_masked,n_flux_masked,False) if fitmethod == 'llsq' and domasking: coeffs = do_lsq_uhat(bvectors_masked,lc_cad_masked,n_flux_masked,False) elif fitmethod == 'lst_sq': coeffs = do_lsq_nlin(bvectors_masked,lc_cad_masked,n_flux_masked) elif fitmethod == 'simplex_abs': coeffs = do_lsq_fmin(bvectors_masked,lc_cad_masked,n_flux_masked) elif fitmethod == 'simplex': coeffs = do_lsq_fmin_pow(bvectors_masked,lc_cad_masked,n_flux_masked,fitpower) else: coeffs = do_lsq_uhat(bvectors_masked,lc_cad_masked,n_flux_masked) flux_after = (get_newflux(n_flux,bvectors,coeffs) +1) * medflux flux_after_masked = (get_newflux(n_flux_masked,bvectors_masked,coeffs) +1) * medflux bvsum = get_pcompsum(bvectors,coeffs) bvsum_masked = get_pcompsum(bvectors_masked,coeffs) #print 'chi2: ' + str(chi2_gtf(n_flux,bvsum,n_err,2.*len(n_flux)-2)) #print 'rms: ' + str(rms(n_flux,bvsum)) bvsum_nans = putInNans(bad_data,bvsum) flux_after_nans = putInNans(bad_data,flux_after) if plot and status == 0: newmedflux = median(flux_after + 1) bvsum_un_norm = newmedflux*(1-bvsum) #bvsum_un_norm = 0-bvsum #lc_flux = n_flux do_plot(lc_date,lc_flux,flux_after, bvsum_un_norm,lc_cad,bad_data,lc_cad_o,version,cmdLine) if status== 0: make_outfile(instr,outfile,flux_after_nans,bvsum_nans,version) # close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) #print some results to screen: print ' ----- ' if iterate: flux_fit = n_flux_masked[fittedmask] sum_fit = bvsum_masked[fittedmask] err_fit = n_err_masked[fittedmask] else: flux_fit = n_flux_masked sum_fit = bvsum_masked err_fit = n_err_masked print 'reduced chi2: ' + str(chi2_gtf(flux_fit,sum_fit,err_fit,len(flux_fit)-len(coeffs))) print 'rms: ' + str(medflux*rms(flux_fit,sum_fit)) for i in range(len(coeffs)): print 'Coefficient of CBV #%s: %s' %(i+1,coeffs[i]) print ' ----- ' # end time if (status == 0): message = 'KEPCOTREND completed at' else: message = '\nKEPCOTTREND aborted at' kepmsg.clock(message,logfile,verbose) return
def kepfoldimg(infile,outfile,datacol,period,phasezero,binmethod,threshold,niter,nbins, plot,plotlab,clobber,verbose,logfile,status): # startup parameters status = 0 labelsize = 24; ticksize = 16; xsize = 17; ysize = 7 lcolor = '#0000ff'; lwidth = 1.0; fcolor = '#ffff00'; falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPFOLD -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+datacol+' ' call += 'period='+str(period)+' ' call += 'phasezero='+str(phasezero)+' ' call += 'binmethod='+binmethod+' ' call += 'threshold='+str(threshold)+' ' call += 'niter='+str(niter)+' ' call += 'nbins='+str(nbins)+' ' plotres = 'n' if (plot): plotres = 'y' call += 'plot='+plotres+ ' ' call += 'plotlab='+plotlab+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPFOLDIMG started at: ',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPFOLDIMG: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile,message,verbose) # open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,infile,logfile,verbose) # input data if status == 0: table = instr[1].data incards = instr[1].header.cards indata, status = kepio.readfitscol(infile,table,datacol,logfile,verbose) barytime, status = kepio.readtimecol(infile,table,logfile,verbose) # filter out NaNs work1 = []; work2 = [] if status == 0: for i in range(len(barytime)): if (numpy.isfinite(barytime[i]) and numpy.isfinite(indata[i]) and indata[i] != 0.0): work1.append(barytime[i]) work2.append(indata[i]) barytime = array(work1,dtype='float64') indata = array(work2,dtype='float32') # calculate phase if status == 0: phase2 = [] phase1 = (barytime - phasezero) / period for i in range(len(phase1)): phase2.append(phase1[i] - int(phase1[i])) if phase2[-1] < 0.0: phase2[-1] += 1.0 phase2 = array(phase2,'float32') # sort phases if status == 0: ptuple = [] phase3 = [] data3 = [] for i in range(len(phase2)): ptuple.append([phase2[i], indata[i]]) phsort = sorted(ptuple,key=lambda ph: ph[0]) for i in range(len(phsort)): phase3.append(phsort[i][0]) data3.append(phsort[i][1]) phase3 = array(phase3,'float32') data3 = array(data3,'float32') # bin phases if status == 0: work1 = array([data3[0]],'float32') phase4 = array([],'float32') data4 = array([],'float32') dt = (phase3[-1] - phase3[0]) / nbins nb = 0.0 for i in range(len(phase3)): if phase3[i] < phase3[0] + nb * dt or phase3[i] >= phase3[0] + (nb + 1.0) * dt: if len(work1) > 0: phase4 = append(phase4,phase3[0] + (nb + 0.5) * dt) if (binmethod == 'mean'): data4 = append(data4,kepstat.mean(work1)) elif (binmethod == 'median'): data4 = append(data4,kepstat.median(work1,logfile)) else: coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip('poly0',[1.0],arange(0.0,float(len(work1)),1.0),work1,None, threshold,threshold,niter,logfile,verbose) data4 = append(data4,coeffs[0]) work1 = array([],'float32') nb += 1.0 else: work1 = append(work1,data3[i]) # update HDU1 for output file if status == 0: cols = (instr[1].columns + ColDefs([Column(name='PHASE',format='E',array=phase1)])) instr[1] = pyfits.new_table(cols) instr[1].header.cards['TTYPE20'].comment = 'column title: phase' instr[1].header.cards['TFORM20'].comment = 'data type: float32' for i in range(len(incards)): if incards[i].key not in instr[1].header.keys(): instr[1].header.update(incards[i].key, incards[i].value, incards[i].comment) else: instr[1].header.cards[incards[i].key].comment = incards[i].comment instr[1].header.update('PERIOD',period,'period defining the phase [d]') instr[1].header.update('BJD0',phasezero,'time of phase zero [BJD]') # write new phased data extension for output file if status == 0: col1 = Column(name='PHASE',format='E',array=phase4) col2 = Column(name=datacol,format='E',unit='e/s',array=data4/cadence) cols = ColDefs([col1,col2]) instr.append(new_table(cols)) instr[-1].header.cards['TTYPE1'].comment = 'column title: phase' instr[-1].header.cards['TTYPE2'].comment = 'column title: simple aperture photometry' instr[-1].header.cards['TFORM1'].comment = 'column type: float32' instr[-1].header.cards['TFORM2'].comment = 'column type: float32' instr[-1].header.cards['TUNIT2'].comment = 'column units: electrons per second' instr[-1].header.update('EXTNAME','FOLDED','extension name') instr[-1].header.update('PERIOD',period,'period defining the phase [d]') instr[-1].header.update('BJD0',phasezero,'time of phase zero [BJD]') instr[-1].header.update('BINMETHD',binmethod,'phase binning method') if binmethod =='sigclip': instr[-1].header.update('THRSHOLD',threshold,'sigma-clipping threshold [sigma]') instr[-1].header.update('NITER',niter,'max number of sigma-clipping iterations') # history keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) instr.writeto(outfile) # close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) # clean up x-axis unit if status == 0: ptime = array([],'float32') pout = array([],'float32') work = data4 for i in range(len(phase4)): if (phase4[i] > 0.5): ptime = append(ptime,phase4[i] - 1.0) pout = append(pout,work[i] / cadence) ptime = append(ptime,phase4) pout = append(pout,work / cadence) for i in range(len(phase4)): if (phase4[i] <= 0.5): ptime = append(ptime,phase4[i] + 1.0) pout = append(pout,work[i] / cadence) xlab = 'Phase ($\phi$)' # clean up y-axis units if status == 0: nrm = len(str(int(pout.max())))-1 pout = pout / 10**nrm ylab = '10$^%d$ %s' % (nrm, plotlab) # data limits xmin = ptime.min() xmax = ptime.max() ymin = pout.min() ymax = pout.max() xr = xmax - xmin yr = ymax - ymin ptime = insert(ptime,[0],[ptime[0]]) ptime = append(ptime,[ptime[-1]]) pout = insert(pout,[0],[0.0]) pout = append(pout,0.0) # plot new light curve if status == 0 and plot: try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} pylab.rcParams.update(params) except: print 'ERROR -- KEPFOLD: install latex for scientific plotting' status = 1 if status == 0 and plot: pylab.figure(1,figsize=[17,7]) pylab.clf() pylab.axes([0.06,0.1,0.93,0.87]) pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.plot(ptime,pout,color=lcolor,linestyle='-',linewidth=lwidth) fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha) xlabel(xlab, {'color' : 'k'}) ylabel(ylab, {'color' : 'k'}) xlim(-0.49999,1.49999) if ymin >= 0.0: ylim(ymin-yr*0.01,ymax+yr*0.01) else: ylim(1.0e-10,ymax+yr*0.01) pylab.grid() pylab.draw() # stop time kepmsg.clock('KEPFOLDIMG ended at: ',logfile,verbose)
def kepwindow(infile, outfile, fcol, fmax, nfreq, plot, clobber, verbose, logfile, status, cmdLine=False): ## startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 18 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 ## log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPWINDOW -- ' call += 'infile=' + infile + ' ' call += 'outfile=' + outfile + ' ' call += 'fcol=' + fcol + ' ' call += 'fmax=' + str(fmax) + ' ' call += 'nfreq=' + str(nfreq) + ' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot=' + plotit + ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber=' + overwrite + ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose=' + chatter + ' ' call += 'logfile=' + logfile kepmsg.log(logfile, call + '\n', verbose) ## start time kepmsg.clock('KEPWINDOW started at', logfile, verbose) ## test log file logfile = kepmsg.test(logfile) ## clobber output file if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPWINDOW: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile, message, verbose) ## open input file if status == 0: instr, status = kepio.openfits(infile, 'readonly', logfile, verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys( instr, infile, logfile, verbose, status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence ## fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr, file, logfile, verbose) ## read table columns if status == 0: try: barytime = instr[1].data.field('barytime') except: barytime, status = kepio.readfitscol(infile, instr[1].data, 'time', logfile, verbose) signal, status = kepio.readfitscol(infile, instr[1].data, fcol, logfile, verbose) ## remove infinite data from time series if status == 0: incols = [barytime, signal] outcols = kepstat.removeinfinlc(signal, incols) barytime = outcols[0] signal = outcols[1] ## reset signal data to zero if status == 0: signal = ones(len(outcols[1])) ## frequency steps if status == 0: deltaf = fmax / nfreq ## loop through frequency steps; determine FT power if status == 0: fr, power = kepfourier.ft(barytime, signal, 0.0, fmax, deltaf, True) power[0] = 1.0 ## mirror window function around ordinate if status == 0: work1 = [] work2 = [] for i in range(len(fr) - 1, 0, -1): work1.append(-fr[i]) work2.append(power[i]) for i in range(len(fr)): work1.append(fr[i]) work2.append(power[i]) fr = array(work1, dtype='float32') power = array(work2, dtype='float32') ## write output file if status == 0: col1 = Column(name='FREQUENCY', format='E', unit='days', array=fr) col2 = Column(name='POWER', format='E', array=power) cols = ColDefs([col1, col2]) instr.append(new_table(cols)) instr[-1].header.update('EXTNAME', 'WINDOW FUNCTION', 'extension name') ## comment keyword in output file if status == 0: status = kepkey.comment(call, instr[0], outfile, logfile, verbose) instr.writeto(outfile) ## close input file if status == 0: status = kepio.closefits(instr, logfile, verbose) ## data limits if status == 0: nrm = len(str(int(power.max()))) - 1 power = power / 10**nrm ylab = 'Power (x10$^%d$)' % nrm xmin = fr.min() xmax = fr.max() ymin = power.min() ymax = power.max() xr = xmax - xmin yr = ymax - ymin fr = insert(fr, [0], fr[0]) fr = append(fr, fr[-1]) power = insert(power, [0], 0.0) power = append(power, 0.0) ## plot power spectrum if status == 0 and plot: try: params = { 'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight': 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize } rcParams.update(params) except: print('ERROR -- KEPWINDOW: install latex for scientific plotting') status = 1 if status == 0 and plot: pylab.figure(1, figsize=[xsize, ysize]) pylab.axes([0.06, 0.113, 0.93, 0.86]) pylab.plot(fr, power, color=lcolor, linestyle='-', linewidth=lwidth) fill(fr, power, color=fcolor, linewidth=0.0, alpha=falpha) xlim(xmin - xr * 0.01, xmax + xr * 0.01) if ymin - yr * 0.01 <= 0.0: ylim(1.0e-10, ymax + yr * 0.01) else: ylim(ymin - yr * 0.01, ymax + yr * 0.01) xlabel(r'Frequency (d$^{-1}$)', {'color': 'k'}) ylabel('Power', {'color': 'k'}) # render plot if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() ## end time if (status == 0): message = 'KEPWINDOW completed at' else: message = '\nKEPWINDOW aborted at' kepmsg.clock(message, logfile, verbose)
def kepfilter(infile,outfile,datacol,function,cutoff,passband,plot,plotlab, clobber,verbose,logfile,status,cmdLine=False): ## startup parameters status = 0 numpy.seterr(all="ignore") labelsize = 24 ticksize = 16 xsize = 16 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 ## log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPFILTER -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+str(datacol)+' ' call += 'function='+str(function)+' ' call += 'cutoff='+str(cutoff)+' ' call += 'passband='+str(passband)+' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' call += 'plotlab='+str(plotlab)+' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) ## start time kepmsg.clock('KEPFILTER started at',logfile,verbose) ## test log file logfile = kepmsg.test(logfile) ## clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPFILTER: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile,message,verbose) ## open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence ## fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) ## read table structure if status == 0: table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) # read time and flux columns if status == 0: barytime, status = kepio.readtimecol(infile,table,logfile,verbose) flux, status = kepio.readsapcol(infile,table,logfile,verbose) # filter input data table if status == 0: try: nanclean = instr[1].header['NANCLEAN'] except: naxis2 = 0 for i in range(len(table.field(0))): if (numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i]) and flux[i] != 0.0): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] comment = 'NaN cadences removed from data' status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose) ## read table columns if status == 0: intime, status = kepio.readtimecol(infile,instr[1].data,logfile,verbose) if status == 0: indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose) if status == 0: intime = intime + bjdref indata = indata / cadenom ## define data sampling if status == 0: tr = 1.0 / (cadence / 86400) timescale = 1.0 / (cutoff / tr) ## define convolution function if status == 0: if function == 'boxcar': filtfunc = numpy.ones(numpy.ceil(timescale)) elif function == 'gauss': timescale /= 2 dx = numpy.ceil(timescale * 10 + 1) filtfunc = kepfunc.gauss() filtfunc = filtfunc([1.0,dx/2-1.0,timescale],linspace(0,dx-1,dx)) elif function == 'sinc': dx = numpy.ceil(timescale * 12 + 1) fx = linspace(0,dx-1,dx) fx = fx - dx / 2 + 0.5 fx /= timescale filtfunc = numpy.sinc(fx) filtfunc /= numpy.sum(filtfunc) ## pad time series at both ends with noise model if status == 0: ave, sigma = kepstat.stdev(indata[:len(filtfunc)]) padded = append(kepstat.randarray(np.ones(len(filtfunc)) * ave, np.ones(len(filtfunc)) * sigma), indata) ave, sigma = kepstat.stdev(indata[-len(filtfunc):]) padded = append(padded, kepstat.randarray(np.ones(len(filtfunc)) * ave, np.ones(len(filtfunc)) * sigma)) ## convolve data if status == 0: convolved = convolve(padded,filtfunc,'same') ## remove padding from the output array if status == 0: if function == 'boxcar': outdata = convolved[len(filtfunc):-len(filtfunc)] else: outdata = convolved[len(filtfunc):-len(filtfunc)] ## subtract low frequencies if status == 0 and passband == 'high': outmedian = median(outdata) outdata = indata - outdata + outmedian ## comment keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) ## clean up x-axis unit if status == 0: intime0 = float(int(tstart / 100) * 100.0) if intime0 < 2.4e6: intime0 += 2.4e6 ptime = intime - intime0 xlab = 'BJD $-$ %d' % intime0 ## clean up y-axis units if status == 0: pout = indata * 1.0 pout2 = outdata * 1.0 nrm = len(str(int(numpy.nanmax(pout))))-1 pout = pout / 10**nrm pout2 = pout2 / 10**nrm ylab = '10$^%d$ %s' % (nrm, plotlab) ## data limits xmin = ptime.min() xmax = ptime.max() ymin = numpy.nanmin(pout) ymax = numpy.nanmax(pout) xr = xmax - xmin yr = ymax - ymin ptime = insert(ptime,[0],[ptime[0]]) ptime = append(ptime,[ptime[-1]]) pout = insert(pout,[0],[0.0]) pout = append(pout,0.0) pout2 = insert(pout2,[0],[0.0]) pout2 = append(pout2,0.0) ## plot light curve if status == 0 and plot: try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} rcParams.update(params) except: print 'ERROR -- KEPFILTER: install latex for scientific plotting' status = 1 if status == 0 and plot: pylab.figure(figsize=[xsize,ysize]) pylab.clf() ## plot filtered data ax = pylab.axes([0.06,0.1,0.93,0.87]) pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) labels = ax.get_yticklabels() setp(labels, 'rotation', 90, fontsize=12) pylab.plot(ptime,pout,color='#ff9900',linestyle='-',linewidth=lwidth) fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha) if passband == 'low': pylab.plot(ptime[1:-1],pout2[1:-1],color=lcolor,linestyle='-',linewidth=lwidth) else: pylab.plot(ptime,pout2,color=lcolor,linestyle='-',linewidth=lwidth) fill(ptime,pout2,color=lcolor,linewidth=0.0,alpha=falpha) xlabel(xlab, {'color' : 'k'}) ylabel(ylab, {'color' : 'k'}) xlim(xmin-xr*0.01,xmax+xr*0.01) if ymin >= 0.0: ylim(ymin-yr*0.01,ymax+yr*0.01) else: ylim(1.0e-10,ymax+yr*0.01) pylab.grid() # render plot if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() ## write output file if status == 0: for i in range(len(outdata)): instr[1].data.field(datacol)[i] = outdata[i] instr.writeto(outfile) ## close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) ## end time if (status == 0): message = 'KEPFILTER completed at' else: message = '\nKEPFILTER aborted at' kepmsg.clock(message,logfile,verbose)
def kepcotrendsc(infile, outfile, bvfile, listbv, fitmethod, fitpower, iterate, sigma, maskfile, scinterp, plot, clobber, verbose, logfile, status): """ Setup the kepcotrend environment infile: the input file in the FITS format obtained from MAST outfile: The output will be a fits file in the same style as the input file but with two additional columns: CBVSAP_MODL and CBVSAP_FLUX. The first of these is the best fitting linear combination of basis vectors. The second is the new flux with the basis vector sum subtracted. This is the new flux value. plot: either True or False if you want to see a plot of the light curve The top plot shows the original light curve in blue and the sum of basis vectors in red The bottom plot has had the basis vector sum subracted bvfile: the name of the FITS file containing the basis vectors listbv: the basis vectors to fit to the data fitmethod: fit using either the 'llsq' or the 'simplex' method. 'llsq' is usually the correct one to use because as the basis vectors are orthogonal. Simplex gives you option of using a different merit function - ie. you can minimise the least absolute residual instead of the least squares which weights outliers less fitpower: if using a simplex you can chose your own power in the metir function - i.e. the merit function minimises abs(Obs - Mod)^P. P=2 is least squares, P = 1 minimises least absolutes iterate: should the program fit the basis vectors to the light curve data then remove data points further than 'sigma' from the fit and then refit maskfile: this is the name of a mask file which can be used to define regions of the flux time series to exclude from the fit. The easiest way to create this is by using keprange from the PyKE set of tools. You can also make this yourself with two BJDs on each line in the file specifying the beginning and ending date of the region to exclude. scinterp: the basis vectors are only calculated for long cadence data, therefore if you want to use short cadence data you have to interpolate the basis vectors. There are several methods to do this, the best of these probably being nearest which picks the value of the nearest long cadence data point. The options available are None|linear|nearest|zero|slinear|quadratic|cubic If you are using short cadence data don't choose none """ # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPCOTREND -- ' call += 'infile=' + infile + ' ' call += 'outfile=' + outfile + ' ' call += 'bvfile=' + bvfile + ' ' # call += 'numpcomp= '+str(numpcomp)+' ' call += 'listbv= ' + str(listbv) + ' ' call += 'fitmethod=' + str(fitmethod) + ' ' call += 'fitpower=' + str(fitpower) + ' ' iterateit = 'n' if (iterate): iterateit = 'y' call += 'iterate=' + iterateit + ' ' call += 'sigma_clip=' + str(sigma) + ' ' call += 'mask_file=' + maskfile + ' ' call += 'scinterp=' + str(scinterp) + ' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot=' + plotit + ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber=' + overwrite + ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose=' + chatter + ' ' call += 'logfile=' + logfile kepmsg.log(logfile, call + '\n', verbose) # start time kepmsg.clock('KEPCOTREND started at', logfile, verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPCOTREND: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile, message, verbose) # open input file if status == 0: instr, status = kepio.openfits(infile, 'readonly', logfile, verbose) tstart, tstop, bjdref, cadence, status = kepio.timekeys( instr, infile, logfile, verbose, status) # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr, file, logfile, verbose) if status == 0: if not kepio.fileexists(bvfile): message = 'ERROR -- KEPCOTREND: ' + bvfile + ' does not exist.' status = kepmsg.err(logfile, message, verbose) #lsq_sq - nonlinear least squares fitting and simplex_abs have been removed from the option in PyRAF but they are still in the code! if status == 0: if fitmethod not in [ 'llsq', 'matrix', 'lst_sq', 'simplex_abs', 'simplex' ]: message = 'Fit method must either: llsq, matrix, lst_sq or simplex' status = kepmsg.err(logfile, message, verbose) if status == 0: if not is_numlike(fitpower) and fitpower is not None: message = 'Fit power must be an real number or None' status = kepmsg.err(logfile, message, verbose) if status == 0: if fitpower is None: fitpower = 1. # input data if status == 0: short = False try: test = str(instr[0].header['FILEVER']) version = 2 except KeyError: version = 1 table = instr[1].data if version == 1: if str(instr[1].header['DATATYPE']) == 'long cadence': #print 'Light curve was taken in Lond Cadence mode!' quarter = str(instr[1].header['QUARTER']) module = str(instr[1].header['MODULE']) output = str(instr[1].header['OUTPUT']) channel = str(instr[1].header['CHANNEL']) lc_cad_o = table.field('cadence_number') lc_date_o = table.field('barytime') lc_flux_o = table.field( 'ap_raw_flux') / 1625.3468 #convert to e-/s lc_err_o = table.field( 'ap_raw_err') / 1625.3468 #convert to e-/s elif str(instr[1].header['DATATYPE']) == 'short cadence': short = True #print 'Light curve was taken in Short Cadence mode!' quarter = str(instr[1].header['QUARTER']) module = str(instr[1].header['MODULE']) output = str(instr[1].header['OUTPUT']) channel = str(instr[1].header['CHANNEL']) lc_cad_o = table.field('cadence_number') lc_date_o = table.field('barytime') lc_flux_o = table.field( 'ap_raw_flux') / 54.178 #convert to e-/s lc_err_o = table.field('ap_raw_err') / 54.178 #convert to e-/s elif version == 2: if str(instr[0].header['OBSMODE']) == 'long cadence': #print 'Light curve was taken in Long Cadence mode!' quarter = str(instr[0].header['QUARTER']) module = str(instr[0].header['MODULE']) output = str(instr[0].header['OUTPUT']) channel = str(instr[0].header['CHANNEL']) lc_cad_o = table.field('CADENCENO') lc_date_o = table.field('TIME') lc_flux_o = table.field('SAP_FLUX') lc_err_o = table.field('SAP_FLUX_ERR') elif str(instr[0].header['OBSMODE']) == 'short cadence': #print 'Light curve was taken in Short Cadence mode!' short = True quarter = str(instr[0].header['QUARTER']) module = str(instr[0].header['MODULE']) output = str(instr[0].header['OUTPUT']) channel = str(instr[0].header['CHANNEL']) lc_cad_o = table.field('CADENCENO') lc_date_o = table.field('TIME') lc_flux_o = table.field('SAP_FLUX') lc_err_o = table.field('SAP_FLUX_ERR') if str(quarter) == str(4) and version == 1: lc_cad_o = lc_cad_o[lc_cad_o >= 11914] lc_date_o = lc_date_o[lc_cad_o >= 11914] lc_flux_o = lc_flux_o[lc_cad_o >= 11914] lc_err_o = lc_err_o[lc_cad_o >= 11914] # bvfilename = '%s/Q%s_%s_%s_map.txt' %(bvfile,quarter,module,output) # if str(quarter) == str(5): # bvdata = genfromtxt(bvfilename) # elif str(quarter) == str(3) or str(quarter) == str(4): # bvdata = genfromtxt(bvfilename,skip_header=22) # elif str(quarter) == str(1): # bvdata = genfromtxt(bvfilename,skip_header=10) # else: # bvdata = genfromtxt(bvfilename,skip_header=13) if short and scinterp == 'None': message = 'You cannot select None as the interpolation method because you are using short cadence data and therefore must use some form of interpolation. I reccommend nearest if you are unsure.' status = kepmsg.err(logfile, message, verbose) bvfiledata = pyfits.open(bvfile) bvdata = bvfiledata['MODOUT_%s_%s' % (module, output)].data if int(bvfiledata[0].header['QUARTER']) != int(quarter): message = 'CBV file and light curve file are from different quarters. CBV file is from Q%s and light curve is from Q%s' % ( int(bvfiledata[0].header['QUARTER']), int(quarter)) status = kepmsg.err(logfile, message, verbose) if status == 0: if int(quarter) == 4 and int(module) == 3: message = 'Approximately twenty days into Q4 Module 3 failed. As a result, Q4 light curves contain these 20 day of data. However, we do not calculate CBVs for this section of data.' status = kepmsg.err(logfile, message, verbose) if status == 0: #cut out infinites and zero flux columns lc_cad, lc_date, lc_flux, lc_err, bad_data = cutBadData( lc_cad_o, lc_date_o, lc_flux_o, lc_err_o) #get a list of basis vectors to use from the list given #accept different seperators listbv = listbv.strip() if listbv[1] in [' ', ',', ':', ';', '|', ', ']: separator = str(listbv)[1] else: message = 'You must separate your basis vector numbers to use with \' \' \',\' \':\' \';\' or \'|\' and the first basis vector to use must be between 1 and 9' status = kepmsg.err(logfile, message, verbose) if status == 0: bvlist = fromstring(listbv, dtype=int, sep=separator) if bvlist[0] == 0: message = 'Must use at least one basis vector' status = kepmsg.err(logfile, message, verbose) if status == 0: #pcomps = get_pcomp(pcompdata,n_comps,lc_cad) # if str(quarter) == str(5): # bvectors = get_pcomp_list(bvdata,bvlist,lc_cad) # else: # bvectors = get_pcomp_list_newformat(bvdata,bvlist,lc_cad) if short: bvdata.field('CADENCENO')[:] = (((bvdata.field('CADENCENO')[:] + (7.5 / 15.)) * 30.) - 11540.).round() bvectors, in1derror = get_pcomp_list_newformat(bvdata, bvlist, lc_cad, short, scinterp) if in1derror: message = 'It seems that you have an old version of numpy which does not have the in1d function included. Please update your version of numpy to a version 1.4.0 or later' status = kepmsg.err(logfile, message, verbose) if status == 0: medflux = median(lc_flux) n_flux = (lc_flux / medflux) - 1 n_err = sqrt(pow(lc_err, 2) / pow(medflux, 2)) #plt.errorbar(lc_cad,n_flux,yerr=n_err) #plt.errorbar(lc_cad,lc_flux,yerr=lc_err) #n_err = median(lc_err/lc_flux) * n_flux #print n_err #does an iterative least squares fit #t1 = do_leastsq(pcomps,lc_cad,n_flux) # if maskfile != '': domasking = True if not kepio.fileexists(maskfile): message = 'Maskfile %s does not exist' % maskfile status = kepmsg.err(logfile, message, verbose) else: domasking = False if status == 0: if domasking: lc_date_masked = copy(lc_date) n_flux_masked = copy(n_flux) lc_cad_masked = copy(lc_cad) n_err_masked = copy(n_err) maskdata = atleast_2d(genfromtxt(maskfile, delimiter=',')) #make a mask of True values incase there are not regions in maskfile to exclude. mask = zeros(len(lc_date_masked)) == 0. for maskrange in maskdata: if version == 1: start = maskrange[0] - 2400000.0 end = maskrange[1] - 2400000.0 elif version == 2: start = maskrange[0] - 2454833. end = maskrange[1] - 2454833. masknew = logical_xor(lc_date < start, lc_date > end) mask = logical_and(mask, masknew) lc_date_masked = lc_date_masked[mask] n_flux_masked = n_flux_masked[mask] lc_cad_masked = lc_cad_masked[mask] n_err_masked = n_err_masked[mask] else: lc_date_masked = copy(lc_date) n_flux_masked = copy(n_flux) lc_cad_masked = copy(lc_cad) n_err_masked = copy(n_err) #pcomps = get_pcomp(pcompdata,n_comps,lc_cad) bvectors_masked, hasin1d = get_pcomp_list_newformat( bvdata, bvlist, lc_cad_masked, short, scinterp) if (iterate) and sigma is None: message = 'If fitting iteratively you must specify a clipping range' status = kepmsg.err(logfile, message, verbose) if status == 0: #uses Pvals = yhat * U_transpose if (iterate): coeffs, fittedmask = do_lst_iter(bvectors_masked, lc_cad_masked, n_flux_masked, sigma, 50., fitmethod, fitpower) else: if fitmethod == 'matrix' and domasking: coeffs = do_lsq_uhat(bvectors_masked, lc_cad_masked, n_flux_masked, False) if fitmethod == 'llsq' and domasking: coeffs = do_lsq_uhat(bvectors_masked, lc_cad_masked, n_flux_masked, False) elif fitmethod == 'lst_sq': coeffs = do_lsq_nlin(bvectors_masked, lc_cad_masked, n_flux_masked) elif fitmethod == 'simplex_abs': coeffs = do_lsq_fmin(bvectors_masked, lc_cad_masked, n_flux_masked) elif fitmethod == 'simplex': coeffs = do_lsq_fmin_pow(bvectors_masked, lc_cad_masked, n_flux_masked, fitpower) else: coeffs = do_lsq_uhat(bvectors_masked, lc_cad_masked, n_flux_masked) flux_after = (get_newflux(n_flux, bvectors, coeffs) + 1) * medflux flux_after_masked = ( get_newflux(n_flux_masked, bvectors_masked, coeffs) + 1) * medflux bvsum = get_pcompsum(bvectors, coeffs) bvsum_masked = get_pcompsum(bvectors_masked, coeffs) #print 'chi2: ' + str(chi2_gtf(n_flux,bvsum,n_err,2.*len(n_flux)-2)) #print 'rms: ' + str(rms(n_flux,bvsum)) bvsum_nans = putInNans(bad_data, bvsum) flux_after_nans = putInNans(bad_data, flux_after) if plot and status == 0: bvsum_un_norm = medflux * (1 - bvsum) #bvsum_un_norm = 0-bvsum #lc_flux = n_flux do_plot(lc_date, lc_flux, flux_after, bvsum_un_norm, lc_cad, bad_data, lc_cad_o, version) if status == 0: make_outfile(instr, outfile, flux_after_nans, bvsum_nans, version) # close input file if status == 0: status = kepio.closefits(instr, logfile, verbose) #print some results to screen: print(' ----- ') if iterate: flux_fit = n_flux_masked[fittedmask] sum_fit = bvsum_masked[fittedmask] err_fit = n_err_masked[fittedmask] else: flux_fit = n_flux_masked sum_fit = bvsum_masked err_fit = n_err_masked print('reduced chi2: ' + str( chi2_gtf(flux_fit, sum_fit, err_fit, len(flux_fit) - len(coeffs)))) print('rms: ' + str(medflux * rms(flux_fit, sum_fit))) for i in range(len(coeffs)): print('Coefficient of CBV #%s: %s' % (i + 1, coeffs[i])) print(' ----- ') # end time if (status == 0): message = 'KEPCOTREND completed at' else: message = '\nKEPCOTTREND aborted at' kepmsg.clock(message, logfile, verbose) return
def keptrial(infile,outfile,datacol,errcol,fmin,fmax,nfreq,method, ntrials,plot,clobber,verbose,logfile,status,cmdLine=False): # startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 18 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPTRIAL -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+datacol+' ' call += 'errcol='+errcol+' ' call += 'fmin='+str(fmin)+' ' call += 'fmax='+str(fmax)+' ' call += 'nfreq='+str(nfreq)+' ' call += 'method='+method+' ' call += 'ntrials='+str(ntrials)+' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPTRIAL started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPTRIAL: ' + outfile + ' exists. Use clobber=yes' kepmsg.err(logfile,message,verbose) status = 1 # open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # input data if status == 0: try: barytime = instr[1].data.field('barytime') except: barytime, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose) if status == 0: signal, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose) if status == 0: err, status = kepio.readfitscol(infile,instr[1].data,errcol,logfile,verbose) # remove infinite data from time series if status == 0: try: nanclean = instr[1].header['NANCLEAN'] except: incols = [barytime, signal, err] [barytime, signal, err] = kepstat.removeinfinlc(signal, incols) # set up plot if status == 0: plotLatex = True try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} rcParams.update(params) except: print('WARNING: install latex for scientific plotting') plotLatex = False # frequency steps and Monte Carlo iterations if status == 0: deltaf = (fmax - fmin) / nfreq freq = []; pmax = []; trial = [] for i in range(ntrials): trial.append(i+1) # adjust data within the error bars work1 = kepstat.randarray(signal,err) # determine FT power fr, power = kepfourier.ft(barytime,work1,fmin,fmax,deltaf,False) # determine peak in FT pmax.append(-1.0e30) for j in range(len(fr)): if (power[j] > pmax[-1]): pmax[-1] = power[j] f1 = fr[j] freq.append(f1) # plot stop-motion histogram pylab.ion() pylab.figure(1,figsize=[7,10]) clf() pylab.axes([0.08,0.08,0.88,0.89]) pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) n,bins,patches = pylab.hist(freq,bins=nfreq,range=[fmin,fmax], align='mid',rwidth=1,ec='#0000ff', fc='#ffff00',lw=2) # fit normal distribution to histogram x = zeros(len(bins)) for j in range(1,len(bins)): x[j] = (bins[j] + bins[j-1]) / 2 pinit = numpy.array([float(i),freq[-1],deltaf]) if i > 3: n = array(n,dtype='float32') coeffs, errors, covar, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.leastsquare('gauss',pinit,x[1:],n,None,logfile,verbose) fitfunc = kepfunc.gauss() f = arange(fmin,fmax,(fmax-fmin)/100) fit = fitfunc(coeffs,f) pylab.plot(f,fit,'r-',linewidth=2) if plotLatex: xlabel(r'Frequency (d$^{-1}$)', {'color' : 'k'}) else: xlabel(r'Frequency (1/d)', {'color' : 'k'}) ylabel('N', {'color' : 'k'}) xlim(fmin,fmax) grid() # render plot if plot: if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() # period results if status == 0: p = 1.0 / coeffs[1] perr = p * coeffs[2] / coeffs[1] f1 = fmin; f2 = fmax gotbin = False for i in range(len(n)): if n[i] > 0 and not gotbin: f1 = bins[i] gotbin = True gotbin = False for i in range(len(n)-1,0,-1): if n[i] > 0 and not gotbin: f2 = bins[i+1] gotbin = True powave, powstdev = kepstat.stdev(pmax) # print result if status == 0: print(' best period: %.10f days (%.7f min)' % (p, p * 1440.0)) print(' 1-sigma period error: %.10f days (%.7f min)' % (perr, perr * 1440.0)) print(' search range: %.10f - %.10f days ' % (1.0 / fmax, 1.0 / fmin)) print(' 100%% confidence range: %.10f - %.10f days ' % (1.0 / f2, 1.0 / f1)) # print ' detection confidence: %.2f sigma' % (powave / powstdev) print(' number of trials: %d' % ntrials) print(' number of frequency bins: %d' % nfreq) # history keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) ## write output file if status == 0: col1 = Column(name='TRIAL',format='J',array=trial) col2 = Column(name='FREQUENCY',format='E',unit='1/day',array=freq) col3 = Column(name='POWER',format='E',array=pmax) cols = ColDefs([col1,col2,col3]) instr.append(new_table(cols)) try: instr[-1].header.update('EXTNAME','TRIALS','Extension name') except: status = 1 try: instr[-1].header.update('SEARCHR1',1.0 / fmax,'Search range lower bound (days)') except: status = 1 try: instr[-1].header.update('SEARCHR2',1.0 / fmin,'Search range upper bound (days)') except: status = 1 try: instr[-1].header.update('NFREQ',nfreq,'Number of frequency bins') except: status = 1 try: instr[-1].header.update('PERIOD',p,'Best period (days)') except: status = 1 try: instr[-1].header.update('PERIODE',perr,'1-sigma period error (days)') except: status = 1 # instr[-1].header.update('DETNCONF',powave/powstdev,'Detection significance (sigma)') try: instr[-1].header.update('CONFIDR1',1.0 / f2,'Trial confidence lower bound (days)') except: status = 1 try: instr[-1].header.update('CONFIDR2',1.0 / f1,'Trial confidence upper bound (days)') except: status = 1 try: instr[-1].header.update('NTRIALS',ntrials,'Number of trials') except: status = 1 instr.writeto(outfile) # close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) ## end time if (status == 0): message = 'KEPTRAIL completed at' else: message = '\nKEPTRIAL aborted at' kepmsg.clock(message,logfile,verbose)
def keptrial(infile, outfile, datacol, errcol, fmin, fmax, nfreq, method, ntrials, plot, clobber, verbose, logfile, status, cmdLine=False): # startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 18 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPTRIAL -- ' call += 'infile=' + infile + ' ' call += 'outfile=' + outfile + ' ' call += 'datacol=' + datacol + ' ' call += 'errcol=' + errcol + ' ' call += 'fmin=' + str(fmin) + ' ' call += 'fmax=' + str(fmax) + ' ' call += 'nfreq=' + str(nfreq) + ' ' call += 'method=' + method + ' ' call += 'ntrials=' + str(ntrials) + ' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot=' + plotit + ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber=' + overwrite + ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose=' + chatter + ' ' call += 'logfile=' + logfile kepmsg.log(logfile, call + '\n', verbose) # start time kepmsg.clock('KEPTRIAL started at', logfile, verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPTRIAL: ' + outfile + ' exists. Use clobber=yes' kepmsg.err(logfile, message, verbose) status = 1 # open input file if status == 0: instr, status = kepio.openfits(infile, 'readonly', logfile, verbose) # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr, file, logfile, verbose) # input data if status == 0: try: barytime = instr[1].data.field('barytime') except: barytime, status = kepio.readfitscol(infile, instr[1].data, 'time', logfile, verbose) if status == 0: signal, status = kepio.readfitscol(infile, instr[1].data, datacol, logfile, verbose) if status == 0: err, status = kepio.readfitscol(infile, instr[1].data, errcol, logfile, verbose) # remove infinite data from time series if status == 0: try: nanclean = instr[1].header['NANCLEAN'] except: incols = [barytime, signal, err] [barytime, signal, err] = kepstat.removeinfinlc(signal, incols) # set up plot if status == 0: plotLatex = True try: params = { 'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight': 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize } rcParams.update(params) except: print('WARNING: install latex for scientific plotting') plotLatex = False # frequency steps and Monte Carlo iterations if status == 0: deltaf = (fmax - fmin) / nfreq freq = [] pmax = [] trial = [] for i in range(ntrials): trial.append(i + 1) # adjust data within the error bars work1 = kepstat.randarray(signal, err) # determine FT power fr, power = kepfourier.ft(barytime, work1, fmin, fmax, deltaf, False) # determine peak in FT pmax.append(-1.0e30) for j in range(len(fr)): if (power[j] > pmax[-1]): pmax[-1] = power[j] f1 = fr[j] freq.append(f1) # plot stop-motion histogram pylab.ion() pylab.figure(1, figsize=[7, 10]) clf() pylab.axes([0.08, 0.08, 0.88, 0.89]) pylab.gca().xaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) n, bins, patches = pylab.hist(freq, bins=nfreq, range=[fmin, fmax], align='mid', rwidth=1, ec='#0000ff', fc='#ffff00', lw=2) # fit normal distribution to histogram x = zeros(len(bins)) for j in range(1, len(bins)): x[j] = (bins[j] + bins[j - 1]) / 2 pinit = numpy.array([float(i), freq[-1], deltaf]) if i > 3: n = array(n, dtype='float32') coeffs, errors, covar, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.leastsquare('gauss',pinit,x[1:],n,None,logfile,verbose) fitfunc = kepfunc.gauss() f = arange(fmin, fmax, (fmax - fmin) / 100) fit = fitfunc(coeffs, f) pylab.plot(f, fit, 'r-', linewidth=2) if plotLatex: xlabel(r'Frequency (d$^{-1}$)', {'color': 'k'}) else: xlabel(r'Frequency (1/d)', {'color': 'k'}) ylabel('N', {'color': 'k'}) xlim(fmin, fmax) grid() # render plot if plot: if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() # period results if status == 0: p = 1.0 / coeffs[1] perr = p * coeffs[2] / coeffs[1] f1 = fmin f2 = fmax gotbin = False for i in range(len(n)): if n[i] > 0 and not gotbin: f1 = bins[i] gotbin = True gotbin = False for i in range(len(n) - 1, 0, -1): if n[i] > 0 and not gotbin: f2 = bins[i + 1] gotbin = True powave, powstdev = kepstat.stdev(pmax) # print result if status == 0: print(' best period: %.10f days (%.7f min)' % (p, p * 1440.0)) print(' 1-sigma period error: %.10f days (%.7f min)' % (perr, perr * 1440.0)) print(' search range: %.10f - %.10f days ' % (1.0 / fmax, 1.0 / fmin)) print(' 100%% confidence range: %.10f - %.10f days ' % (1.0 / f2, 1.0 / f1)) # print ' detection confidence: %.2f sigma' % (powave / powstdev) print(' number of trials: %d' % ntrials) print(' number of frequency bins: %d' % nfreq) # history keyword in output file if status == 0: status = kepkey.history(call, instr[0], outfile, logfile, verbose) ## write output file if status == 0: col1 = Column(name='TRIAL', format='J', array=trial) col2 = Column(name='FREQUENCY', format='E', unit='1/day', array=freq) col3 = Column(name='POWER', format='E', array=pmax) cols = ColDefs([col1, col2, col3]) instr.append(new_table(cols)) try: instr[-1].header.update('EXTNAME', 'TRIALS', 'Extension name') except: status = 1 try: instr[-1].header.update('SEARCHR1', 1.0 / fmax, 'Search range lower bound (days)') except: status = 1 try: instr[-1].header.update('SEARCHR2', 1.0 / fmin, 'Search range upper bound (days)') except: status = 1 try: instr[-1].header.update('NFREQ', nfreq, 'Number of frequency bins') except: status = 1 try: instr[-1].header.update('PERIOD', p, 'Best period (days)') except: status = 1 try: instr[-1].header.update('PERIODE', perr, '1-sigma period error (days)') except: status = 1 # instr[-1].header.update('DETNCONF',powave/powstdev,'Detection significance (sigma)') try: instr[-1].header.update('CONFIDR1', 1.0 / f2, 'Trial confidence lower bound (days)') except: status = 1 try: instr[-1].header.update('CONFIDR2', 1.0 / f1, 'Trial confidence upper bound (days)') except: status = 1 try: instr[-1].header.update('NTRIALS', ntrials, 'Number of trials') except: status = 1 instr.writeto(outfile) # close input file if status == 0: status = kepio.closefits(instr, logfile, verbose) ## end time if (status == 0): message = 'KEPTRAIL completed at' else: message = '\nKEPTRIAL aborted at' kepmsg.clock(message, logfile, verbose)
def kepdip(infile,outfile,datacol,dmethod,kneighb,hstd,plot,plotlab, clobber,verbose,logfile,status): """ Perform a k-nearest neighbor regression analysis. """ ## startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 16 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#9AFF9A' falpha = 0.3 ## log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPDIP -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+str(datacol)+' ' call += 'dmethod='+dmethod+' ' call += 'hstd='+str(hstd)+' ' call += 'kneighb='+str(kneighb)+' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' call += 'plotlab='+str(plotlab)+' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) ## start time kepmsg.clock('KEPDIP started at',logfile,verbose) ## test log file logfile = kepmsg.test(logfile) ## clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPDIP: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile,message,verbose) ## open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if cadence == 0.0: tstart, tstop, ncad, cadence, status = kepio.cadence(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence ## fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) ## read table structure if status == 0: table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) # read time and flux columns if status == 0: barytime, status = kepio.readtimecol(infile,table,logfile,verbose) if status == 0: flux, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose) # filter input data table if status == 0: try: nanclean = instr[1].header['NANCLEAN'] except: naxis2 = 0 for i in range(len(table.field(0))): if (numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i]) and flux[i] != 0.0): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] comment = 'NaN cadences removed from data' status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose) ## read table columns if status == 0: try: intime = instr[1].data.field('barytime') except: intime, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose) indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose) if status == 0: intime = intime + bjdref indata = indata / cadenom ## smooth data if status == 0: # outdata = knn_predict(intime, indata, kmethod, kneighb) outdata_t, outdata_l, outdata_fmt = _find_dips(intime, indata, dmethod, kneighb, hstd) ## comment keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) ## clean up x-axis unit if status == 0: intime0 = float(int(tstart / 100) * 100.0) if intime0 < 2.4e6: intime0 += 2.4e6 ptime = intime - intime0 ptime2 = outdata_t - intime0 # print ptime,intime,intime0 xlab = 'BJD $-$ %d' % intime0 ## clean up y-axis units if status == 0: pout = indata * 1.0 pout2 = outdata_l * 1.0 nrm = len(str(int(numpy.nanmax(pout))))-1 pout = pout / 10**nrm pout2 = pout2 / 10**nrm ylab = '10$^%d$ %s' % (nrm, plotlab) ## data limits xmin = numpy.nanmin(ptime) xmax = numpy.nanmax(ptime) ymin = numpy.min(pout) ymax = numpy.nanmax(pout) xr = xmax - xmin yr = ymax - ymin ptime = insert(ptime,[0],[ptime[0]]) ptime = append(ptime,[ptime[-1]]) pout = insert(pout,[0],[0.0]) pout = append(pout,0.0) if (len(ptime2) > 0): ptime2 = insert(ptime2,[0],[ptime2[0]]) ptime2 = append(ptime2,[ptime2[-1]]) pout2 = insert(pout2,[0],[0.0]) pout2 = append(pout2,0.0) ## plot light curve if status == 0 and plot: try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} rcParams.update(params) except: print('ERROR -- KEPDIP: install latex for scientific plotting') status = 1 if status == 0 and plot: pylab.figure(1,figsize=[xsize,ysize]) ## plot regression data ax = pylab.axes([0.06,0.1,0.93,0.87]) pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.scatter(ptime, pout, color='#214CAE', s=2) if (len(ptime2) > 0): pylab.scatter(ptime2, pout2, color='#47AE10', s=35, marker='o', linewidths=2, alpha=0.4) xlabel(xlab, {'color' : 'k'}) ylabel(ylab, {'color' : 'k'}) xlim(xmin-xr*0.01,xmax+xr*0.01) if ymin >= 0.0: ylim(ymin-yr*0.01,ymax+yr*0.01) else: ylim(1.0e-10,ymax+yr*0.01) pylab.grid() pylab.draw() pylab.savefig(re.sub('\.\S+','.png',outfile),dpi=100) ## write output file if status == 0: for i in range(len(outdata_fmt)): instr[1].data.field(datacol)[i] = outdata_fmt[i] instr.writeto(outfile) ## close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) ## end time if (status == 0): message = 'KEPDIP completed at' else: message = '\nKEPDIP aborted at' kepmsg.clock(message,logfile,verbose)
def kepstitch(infiles,outfile,clobber,verbose,logfile,status): # startup parameters status = 0 lct = []; bjd = [] # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPSTITCH -- ' call += 'infiles='+infiles+' ' call += 'outfile='+outfile+' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPSTITCH started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # parse input file list infiles, status = kepio.parselist(infiles,logfile,verbose) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPSTITCH: ' + outfile + ' exists. Use clobber=yes' kepmsg.err(logfile,message,verbose) status = 1 # open output file if status == 0: outstr, status = kepio.openfits(infiles[0],'readonly',logfile,verbose) nrows1 = outstr[1].data.shape[0] # fudge non-compliant FITS keywords with no values if status == 0: outstr = kepkey.emptykeys(outstr,file,logfile,verbose) head0 = outstr[0].header head1 = outstr[1].header # open input files nfiles = 0 if status == 0: for infile in infiles: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) # append table data if nfiles > 0: nrows2 = instr[1].data.shape[0] nrows = nrows1 + nrows2 outtab = pyfits.new_table(outstr[1].columns,nrows=nrows) for name in outstr[1].columns.names: try: outtab.data.field(name)[nrows1:]=instr[1].data.field(name) except: message = 'ERROR -- KEPSTITCH: column ' + name + ' missing from some files.' kepmsg.warn(logfile,message) pass outstr[1] = outtab outstr[0].header = head0 outstr[1].header = head1 nrows1 = nrows # start and stop times of data fitsvers = 1.0 lc_start, status = kepkey.get(infile,instr[1],'LC_START',logfile,verbose) lc_end, status = kepkey.get(infile,instr[1],'LC_END',logfile,verbose) try: startbjd = instr[1].header['STARTBJD'] except: startbjd, status = kepkey.get(infile,instr[1],'TSTART',logfile,verbose) fitsvers = 2.0 try: endbjd = instr[1].header['ENDBJD'] except: endbjd, status = kepkey.get(infile,instr[1],'TSTOP',logfile,verbose) fitsvers = 2.0 lct.append(lc_start); lct.append(lc_end) bjd.append(startbjd); bjd.append(endbjd) # close input files status = kepio.closefits(instr,logfile,verbose) nfiles += 1 # maxmimum and minimum times in file sample if status == 0: lc_start = kepstat.min(lct) lc_end = kepstat.max(lct) startbjd = kepstat.min(bjd) endbjd = kepstat.max(bjd) status = kepkey.change('LC_START',lc_start,outstr[1],outfile,logfile,verbose) status = kepkey.change('LC_END',lc_end,outstr[1],outfile,logfile,verbose) if fitsvers == 1.0: status = kepkey.change('STARTBJD',startbjd,outstr[1],outfile,logfile,verbose) status = kepkey.change('ENDBJD',endbjd,outstr[1],outfile,logfile,verbose) else: status = kepkey.change('TSTART',startbjd,outstr[1],outfile,logfile,verbose) status = kepkey.change('TSTOP',endbjd,outstr[1],outfile,logfile,verbose) # comment keyword in output file if status == 0: status = kepkey.comment(call,outstr[0],outfile,logfile,verbose) # close output file if status == 0: outstr.writeto(outfile) status = kepio.closefits(outstr,logfile,verbose) ## end time if (status == 0): message = 'KEPSTITCH completed at' else: message = '\nKEPSTITCH aborted at' kepmsg.clock(message,logfile,verbose)
def kepregr(infile, outfile, datacol, kmethod, kneighb, plot, plotlab, clobber, verbose, logfile, status): """ Perform a k-nearest neighbor regression analysis. """ ## startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 16 ysize = 6 lcolor = '#47AE10' lwidth = 1.0 fcolor = '#9AFF9A' falpha = 0.3 ## log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPREGR -- ' call += 'infile=' + infile + ' ' call += 'outfile=' + outfile + ' ' call += 'datacol=' + str(datacol) + ' ' call += 'kmethod=' + str(kmethod) + ' ' call += 'kneighb=' + str(kneighb) + ' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot=' + plotit + ' ' call += 'plotlab=' + str(plotlab) + ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber=' + overwrite + ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose=' + chatter + ' ' call += 'logfile=' + logfile kepmsg.log(logfile, call + '\n', verbose) ## start time kepmsg.clock('KEPREGR started at', logfile, verbose) ## test log file logfile = kepmsg.test(logfile) ## clobber output file if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPREGR: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile, message, verbose) ## open input file if status == 0: instr, status = kepio.openfits(infile, 'readonly', logfile, verbose) tstart, tstop, bjdref, cadence, status = kepio.timekeys( instr, infile, logfile, verbose, status) if cadence == 0.0: tstart, tstop, ncad, cadence, status = kepio.cadence( instr, infile, logfile, verbose, status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence ## fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr, file, logfile, verbose) ## read table structure if status == 0: table, status = kepio.readfitstab(infile, instr[1], logfile, verbose) # read time and flux columns if status == 0: barytime, status = kepio.readtimecol(infile, table, logfile, verbose) if status == 0: flux, status = kepio.readfitscol(infile, instr[1].data, datacol, logfile, verbose) # filter input data table if status == 0: try: nanclean = instr[1].header['NANCLEAN'] except: naxis2 = 0 for i in range(len(table.field(0))): if (numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i]) and flux[i] != 0.0): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] comment = 'NaN cadences removed from data' status = kepkey.new('NANCLEAN', True, comment, instr[1], outfile, logfile, verbose) ## read table columns if status == 0: try: intime = instr[1].data.field('barytime') except: intime, status = kepio.readfitscol(infile, instr[1].data, 'time', logfile, verbose) indata, status = kepio.readfitscol(infile, instr[1].data, datacol, logfile, verbose) if status == 0: intime = intime + bjdref indata = indata / cadenom if status == 0: outdata = knn_predict(intime, indata, kmethod, kneighb) ## comment keyword in output file if status == 0: status = kepkey.history(call, instr[0], outfile, logfile, verbose) ## clean up x-axis unit if status == 0: intime0 = float(int(tstart / 100) * 100.0) if intime0 < 2.4e6: intime0 += 2.4e6 ptime = intime - intime0 # print ptime,intime,intime0 xlab = 'BJD $-$ %d' % intime0 ## clean up y-axis units if status == 0: pout = indata * 1.0 pout2 = outdata * 1.0 nrm = len(str(int(numpy.nanmax(pout)))) - 1 pout = pout / 10**nrm pout2 = pout2 / 10**nrm ylab = '10$^%d$ %s' % (nrm, plotlab) ## data limits xmin = numpy.nanmin(ptime) xmax = numpy.nanmax(ptime) ymin = numpy.min(pout) ymax = numpy.nanmax(pout) xr = xmax - xmin yr = ymax - ymin ptime = insert(ptime, [0], [ptime[0]]) ptime = append(ptime, [ptime[-1]]) pout = insert(pout, [0], [0.0]) pout = append(pout, 0.0) pout2 = insert(pout2, [0], [0.0]) pout2 = append(pout2, 0.0) ## plot light curve if status == 0 and plot: try: params = { 'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight': 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize } rcParams.update(params) except: print('ERROR -- KEPREGR: install latex for scientific plotting') status = 1 if status == 0 and plot: pylab.figure(1, figsize=[xsize, ysize]) ## plot regression data ax = pylab.axes([0.06, 0.1, 0.93, 0.87]) pylab.gca().xaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) # pylab.plot(ptime,pout,color='#ff9900',linestyle='-',linewidth=lwidth) pylab.scatter(ptime, pout, color='#214CAE', s=5) fill(ptime, pout, color=fcolor, linewidth=0.0, alpha=falpha) pylab.plot(ptime[kneighb:-kneighb], pout2[kneighb:-kneighb], color=lcolor, linestyle='-', linewidth=lwidth * 2.0) xlabel(xlab, {'color': 'k'}) ylabel(ylab, {'color': 'k'}) xlim(xmin - xr * 0.01, xmax + xr * 0.01) if ymin >= 0.0: ylim(ymin - yr * 0.01, ymax + yr * 0.01) else: ylim(1.0e-10, ymax + yr * 0.01) pylab.grid() pylab.draw() pylab.savefig(re.sub('\.\S+', '.png', outfile), dpi=100) ## write output file if status == 0: for i in range(len(outdata)): instr[1].data.field(datacol)[i] = outdata[i] instr.writeto(outfile) ## close input file if status == 0: status = kepio.closefits(instr, logfile, verbose) ## end time if (status == 0): message = 'KEPREGR completed at' else: message = '\nKEPREGR aborted at' kepmsg.clock(message, logfile, verbose)
def kepmask(infile,mfile,pfile,tabrow,imin,imax,iscale,cmap,verbose,logfile,status,cLine=False): global pimg, zscale, zmin, zmax, xmin, xmax, ymin, ymax, quarter global pxdim, pydim, kepmag, skygroup, season, channel global module, output, row, column, maskfile, plotfile global pkepid, pkepmag, pra, pdec, colmap, cmdLine # input arguments status = 0 numpy.seterr(all="ignore") zmin = imin; zmax = imax; zscale = iscale; colmap = cmap maskfile = mfile; plotfile = pfile cmdLine = cLine # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPMASK -- ' call += 'infile='+infile+' ' call += 'maskfile='+mfile+' ' call += 'plotfile='+pfile+' ' call += 'tabrow='+str(tabrow)+' ' call += 'imin='+str(imin)+' ' call += 'imax='+str(imax)+' ' call += 'iscale='+str(iscale)+' ' call += 'cmap='+str(cmap)+' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPMASK started at',logfile,verbose) # reference color map if cmap == 'browse': status = cmap_plot() # open TPF FITS file and check tabrow exists if status == 0: tpf, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: try: naxis2 = tpf['TARGETTABLES'].header['NAXIS2'] except: txt = 'ERROR -- KEPMASK: No NAXIS2 keyword in ' + infile + '[TARGETTABLES]' status = kepmsg.err(logfile,txt,True) if status == 0 and tabrow > naxis2: txt = 'ERROR -- KEPMASK: tabrow is too large. There are ' + str(naxis2) + ' rows in the table.' status = kepmsg.err(logfile,txt,True) if status == 0: status = kepio.closefits(tpf,logfile,verbose) # read TPF data pixel image if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, pixels, status = \ kepio.readTPF(infile,'FLUX',logfile,verbose) img = pixels[tabrow] pkepid = copy(kepid) pra = copy(ra) pdec = copy(dec) pkepmag = copy(kepmag) pxdim = copy(xdim) pydim = copy(ydim) pimg = copy(img) # print target data if status == 0: print('') print(' KepID: %s' % kepid) print(' RA (J2000): %s' % ra) print('Dec (J2000): %s' % dec) print(' KepMag: %s' % kepmag) print(' SkyGroup: %2s' % skygroup) print(' Season: %2s' % str(season)) print(' Channel: %2s' % channel) print(' Module: %2s' % module) print(' Output: %1s' % output) print('') # subimage of channel for plot if status == 0: ymin = copy(row) ymax = ymin + ydim xmin = copy(column) xmax = xmin + xdim # intensity scale if status == 0: pimg, imin, imax = kepplot.intScale1D(pimg,zscale) if zmin and zmax and 'log' in zscale: zmin = log10(zmin) zmax = log10(zmax) elif zmin and zmax and 'sq' in zscale: zmin = sqrt(zmin) zmax = sqrt(zmax) elif zmin and zmax and 'li' in zscale: zmin *= 1.0 zmax *= 1.0 else: zmin = copy(imin) zmax = copy(imax) # nstat = 2; pixels = [] # work = array(sort(img),dtype=float32) # for i in range(len(work)): # if 'nan' not in str(work[i]): # pixels.append(work[i]) # pixels = array(pixels,dtype=float32) # if int(float(len(pixels)) / 10 + 0.5) > nstat: # nstat = int(float(len(pixels)) / 10 + 0.5) # if not zmin: # zmin = median(pixels[:nstat]) # if not zmax: # zmax = median(pixels[-nstat:]) # if 'log' in zscale: # pimg = log10(pimg) # if 'sq' in zscale: # pimg = sqrt(pimg) # plot limits ymin = float(ymin) - 0.5 ymax = float(ymax) - 0.5 xmin = float(xmin) - 0.5 xmax = float(xmax) - 0.5 # plot style try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': 24, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': 14, 'ytick.labelsize': 14} pylab.rcParams.update(params) except: pass if status == 0: pylab.figure(figsize=[10,7]) plotimage(cmdLine) return
def kepdynamic(infile,outfile,fcol,pmin,pmax,nfreq,deltat,nslice, plot,plotscale,cmap,clobber,verbose,logfile,status,cmdLine=False): # startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 12 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 numpy.seterr(all="ignore") # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPDYNAMIC -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'fcol='+fcol+' ' call += 'pmin='+str(pmin)+' ' call += 'pmax='+str(pmax)+' ' call += 'nfreq='+str(nfreq)+' ' call += 'deltat='+str(deltat)+' ' call += 'nslice='+str(nslice)+' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' call += 'plotscale='+plotscale+ ' ' call += 'cmap='+str(cmap)+' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('Start time is',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # error checking if status == 0 and pmin >= pmax: message = 'ERROR -- KEPDYNAMIC: PMIN must be less than PMAX' status = kepmsg.err(logfile,message,verbose) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPDYNAMIC: ' + outfile + ' exists. Use clobber' status = kepmsg.err(logfile,message,verbose) # plot color map if status == 0 and cmap == 'browse': status = keplab.cmap_plot() # open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # read table columns if status == 0: barytime, status = kepio.readtimecol(infile,instr[1].data,logfile,verbose) if status == 0: signal, status = kepio.readfitscol(infile,instr[1].data,fcol,logfile,verbose) if status == 0: barytime = barytime + bjdref signal = signal / cadenom # remove infinite data from time series if status == 0: incols = [barytime, signal] outcols = kepstat.removeinfinlc(signal, incols) barytime = outcols[0] signal = outcols[1] # period to frequency conversion if status == 0: fmin = 1.0 / pmax fmax = 1.0 / pmin deltaf = (fmax - fmin) / nfreq # determine bounds of time slices if status == 0: t1 = []; t2 = [] dt = barytime[-1] - barytime[0] dt -= deltat if dt < 0: message = 'ERROR -- KEPDYNAMIC: time slices are larger than data range' status = kepmsg.err(logfile,message,verbose) ds = dt / (nslice - 1) for i in range(nslice): t1.append(barytime[0] + ds * float(i)) t2.append(barytime[0] + deltat + ds * float(i)) # loop through time slices if status == 0: dynam = [] for i in range(nslice): x = []; y = [] for j in range(len(barytime)): if (barytime[j] >= t1[i] and barytime[j] <= t2[i]): x.append(barytime[j]) y.append(signal[j]) x = array(x,dtype='float64') y = array(y,dtype='float32') y = y - median(y) # determine FT power fr, power = kepfourier.ft(x,y,fmin,fmax,deltaf,False) for j in range(len(power)): dynam.append(power[j]) print('Timeslice: %.4f Pmax: %.2E' % ((t2[i] + t1[i]) / 2, power.max())) # define shape of results array dynam = array(dynam,dtype='float64') dynam.shape = len(t1),len(power) # write output file if status == 0: instr.append(ImageHDU()) instr[-1].data = dynam.transpose() instr[-1].header.update('EXTNAME','DYNAMIC FT','extension name') instr[-1].header.update('WCSAXES',2,'number of WCS axes') instr[-1].header.update('CRPIX1',0.5,'reference pixel along axis 1') instr[-1].header.update('CRPIX2',0.5,'reference pixel along axis 2') instr[-1].header.update('CRVAL1',t1[0],'time at reference pixel (BJD)') instr[-1].header.update('CRVAL2',fmin,'frequency at reference pixel (1/day)') instr[-1].header.update('CDELT1',(barytime[-1] - barytime[0]) / nslice, 'pixel scale in dimension 1 (days)') instr[-1].header.update('CDELT2',deltaf,'pixel scale in dimension 2 (1/day)') instr[-1].header.update('CTYPE1','BJD','data type of dimension 1') instr[-1].header.update('CTYPE2','FREQUENCY','data type of dimension 2') instr.writeto(outfile) # history keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) # close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) # clean up x-axis unit if status == 0: time0 = float(int(barytime[0] / 100) * 100.0) barytime = barytime - time0 xlab = 'BJD $-$ %d' % time0 # image intensity min and max if status == 0: if 'rithmic' in plotscale: dynam = numpy.log10(dynam) elif 'sq' in plotscale: dynam = numpy.sqrt(dynam) elif 'logoflog' in plotscale: dynam = numpy.log10(numpy.abs(numpy.log10(dynam))) # dynam = -dynam nstat = 2; pixels = [] for i in range(dynam.shape[0]): for j in range(dynam.shape[1]): pixels.append(dynam[i,j]) pixels = array(sort(pixels),dtype=float32) if int(float(len(pixels)) * 0.1 + 0.5) > nstat: nstat = int(float(len(pixels)) * 0.1 + 0.5) zmin = median(pixels[:nstat]) zmax = median(pixels[-1:]) if isnan(zmax): zmax = median(pixels[-nstat/2:]) if isnan(zmax): zmax = numpy.nanmax(pixels) # plot power spectrum if status == 0 and plot: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} rcParams.update(params) pylab.figure(1,figsize=[xsize,ysize]) pylab.clf() pylab.axes([0.08,0.113,0.91,0.86]) dynam = dynam.transpose() pylab.imshow(dynam,origin='lower',aspect='auto',cmap=cmap,vmin=zmin,vmax=zmax, extent=[barytime[0],barytime[-1],fmin,fmax],interpolation='bilinear') xlabel(xlab, {'color' : 'k'}) ylabel(r'Frequency (d$^{-1}$)', {'color' : 'k'}) grid() pylab.savefig(re.sub('\.\S+','.png',outfile),dpi=100) # render plot if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() return status ## end time if (status == 0): message = 'KEPDYNAMIC completed at' else: message = '\nKEPDYNAMIC aborted at' kepmsg.clock(message,logfile,verbose)
def kepclip(infile, outfile, ranges, plot, plotcol, clobber, verbose, logfile, status, cmdLine=False): # startup parameters status = 0 labelsize = 32 ticksize = 24 xsize = 18 ysize = 10 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPCLIP -- ' call += 'infile=' + infile + ' ' call += 'outfile=' + outfile + ' ' call += 'ranges=' + ranges + ' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot=' + plotit + ' ' call += 'plotcol=' + plotcol + ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber=' + overwrite + ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose=' + chatter + ' ' call += 'logfile=' + logfile kepmsg.log(logfile, call + '\n', verbose) # start time kepmsg.clock('KEPCLIP started at', logfile, verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPCLIP: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile, message, verbose) # time ranges for region if status == 0: t1 = [] t2 = [] t1, t2, status = kepio.timeranges(ranges, logfile, verbose) # open input file if status == 0: instr, status = kepio.openfits(infile, 'readonly', logfile, verbose) tstart, tstop, bjdref, cadence, status = kepio.timekeys( instr, infile, logfile, verbose, status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr, file, logfile, verbose) # input data if status == 0: table = instr[1].data # read time and flux columns if status == 0: barytime, status = kepio.readtimecol(infile, table, logfile, verbose) if status == 0: flux, status = kepio.readfitscol(infile, table, plotcol, logfile, verbose) if status == 0: barytime = barytime + bjdref if 'flux' in plotcol.lower(): flux = flux / cadenom # filter input data table if status == 0: naxis2 = 0 work1 = array([], 'float64') work2 = array([], 'float32') for i in range(len(barytime)): if (numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i]) and flux[i] != 0.0): reject = False for j in range(len(t1)): if (barytime[i] >= t1[j] and barytime[i] <= t2[j]): reject = True if not reject: table[naxis2] = table[i] work1 = append(work1, barytime[i]) work2 = append(work2, flux[i]) naxis2 += 1 # comment keyword in output file if status == 0: status = kepkey.history(call, instr[0], outfile, logfile, verbose) # write output file if status == 0: instr[1].data = table[:naxis2] comment = 'NaN cadences removed from data' status = kepkey.new('NANCLEAN', True, comment, instr[1], outfile, logfile, verbose) instr.writeto(outfile) # clean up x-axis unit if status == 0: barytime0 = float(int(tstart / 100) * 100.0) barytime = work1 - barytime0 xlab = 'BJD $-$ %d' % barytime0 # clean up y-axis units if status == 0: try: nrm = len(str(int(work2.max()))) - 1 except: nrm = 0 flux = work2 / 10**nrm ylab = '10$^%d$ e$^-$ s$^{-1}$' % nrm # data limits xmin = barytime.min() xmax = barytime.max() ymin = flux.min() ymax = flux.max() xr = xmax - xmin yr = ymax - ymin # plotting arguments if status == 0 and plot: try: params = { 'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight': 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize } rcParams.update(params) except: print('ERROR -- KEPCLIP: install latex for scientific plotting') status = 1 # clear window, plot box if status == 0 and plot: pylab.figure(figsize=[xsize, ysize]) pylab.clf() ax = pylab.axes([0.05, 0.1, 0.94, 0.88]) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) # rotate y labels by 90 deg labels = ax.get_yticklabels() setp(labels, 'rotation', 90, fontsize=12) # plot line data ltime = [barytime[0]] ldata = [flux[0]] for i in range(1, len(flux)): if (barytime[i - 1] > barytime[i] - 0.025): ltime.append(barytime[i]) ldata.append(flux[i]) else: ltime = array(ltime, dtype=float64) ldata = array(ldata, dtype=float64) pylab.plot(ltime, ldata, color=lcolor, linestyle='-', linewidth=lwidth) ltime = [] ldata = [] ltime = array(ltime, dtype=float64) ldata = array(ldata, dtype=float64) pylab.plot(ltime, ldata, color=lcolor, linestyle='-', linewidth=lwidth) # plot fill data barytime = insert(barytime, [0], [barytime[0]]) barytime = append(barytime, [barytime[-1]]) flux = insert(flux, [0], [0.0]) flux = append(flux, [0.0]) fill(barytime, flux, fc=fcolor, linewidth=0.0, alpha=falpha) xlim(xmin - xr * 0.01, xmax + xr * 0.01) if ymin - yr * 0.01 <= 0.0: ylim(1.0e-10, ymax + yr * 0.01) else: ylim(ymin - yr * 0.01, ymax + yr * 0.01) xlabel(xlab, {'color': 'k'}) ylabel(ylab, {'color': 'k'}) grid() # render plot if status == 0 and plot: if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() # close input file if status == 0: status = kepio.closefits(instr, logfile, verbose) # end time if (status == 0): message = 'KEPCLIP completed at' else: message = '\nKEPCLIP aborted at' kepmsg.clock(message, logfile, verbose)
def kepconvert(infile, outfile, conversion, columns, baddata, clobber, verbose, logfile, status): # startup parameters status = 0 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPCONVERT -- ' call += 'infile=' + infile + ' ' call += 'outfile=' + outfile + ' ' call += 'conversion=' + conversion + ' ' call += 'columns=' + columns + ' ' writebad = 'n' if (baddata): writebad = 'y' call += 'baddata=' + writebad + ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber=' + overwrite + ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose=' + chatter + ' ' call += 'logfile=' + logfile kepmsg.log(logfile, call + '\n', verbose) # start time kepmsg.clock('KEPCONVERT started at', logfile, verbose) # test log file logfile = kepmsg.test(logfile) # data columns if status == 0: colnames = columns.strip().split(',') ncol = len(colnames) if ncol < 1: message = 'ERROR -- KEPCONVERT: no data columns specified' status = kepmsg.err(logfile, message, verbose) # input file exists if status == 0 and not kepio.fileexists(infile): message = 'ERROR -- KEPCONVERT: input file ' + infile + ' does not exist' status = kepmsg.err(logfile, message, verbose) # clobber output file if status == 0: if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPCONVERT: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile, message, verbose) # open FITS input file if status == 0 and conversion == 'fits2asc': instr, status = kepio.openfits(infile, 'readonly', logfile, verbose) tstart, tstop, bjdref, cadence, status = kepio.timekeys( instr, infile, logfile, verbose, status) # read FITS table data if status == 0 and conversion == 'fits2asc': table, status = kepio.readfitstab(infile, instr[1], logfile, verbose) # check columns exist in FITS file if not baddata and status == 0 and conversion == 'fits2asc': try: qualcol = table.field('SAP_QUALITY') == 0 except: message = 'No SAP_QUALITY column in data, are you using an old FITS file?' status = kepmsg.err(logfile, message, verbose) if status == 0 and conversion == 'fits2asc': work = [] for colname in colnames: try: if colname.lower() == 'time': work.append(table.field(colname) + bjdref) else: work.append(table.field(colname)) except: message = 'ERROR -- KEPCONVERT: no column ' + colname + ' in ' + infile status = kepmsg.err(logfile, message, verbose) if not baddata: for i in range(len(work)): work[i] = work[i][qualcol] # close input file if status == 0 and conversion == 'fits2asc': status = kepio.closefits(instr, logfile, verbose) ## write output file if status == 0 and conversion == 'fits2asc': # table, status = kepio.openascii(outfile,'w',logfile,verbose) # for i in range(len(work[0])): # txt = '' # for j in range(len(work)): # if numpy.isfinite(work[j][i]): # txt += str(work[j][i]) + ' ' # txt = txt.strip() # if len(re.sub('\s+',',',txt).split(',')) == ncol: # table.write(txt + '\n') # status = kepio.closeascii(table,logfile,verbose) savetxt(outfile, array(work).T) ## open and read ASCII input file if status == 0 and conversion == 'asc2fits': table, status = kepio.openascii(infile, 'r', logfile, verbose) ## organize ASCII table into arrays if status == 0 and conversion == 'asc2fits': work = [] for i in range(ncol): work.append([]) nline = 0 for line in table: line = line.strip() line = re.sub('\s+', ',', line) line = re.sub('\|', ',', line) line = re.sub(';', ',', line) if '#' not in line: nline + 1 line = line.split(',') if len(line) == ncol: for i in range(len(line)): try: work[i].append(float(line[i])) except: message = 'ERROR --KEPCONVERT: ' + str( line[i]) + ' is not float' status = kepmsg.err(logfile, message, verbose) break else: message = 'ERROR --KEPCONVERT: ' + str( ncol) + ' columns required but ' message += str( len(line)) + ' columns supplied by ' + infile message += ' at line' + str(nline) status = kepmsg.err(logfile, message, verbose) break for i in range(ncol): work[i] = numpy.array(work[i], dtype='float64') ## timing keywords for output file if status == 0 and conversion == 'asc2fits': for i in range(ncol): if 'time' in colnames[i].lower(): if work[i][1] > 54000.0 and work[i][1] < 60000.0: work[i] += 2.4e6 # work[i] += 2.4553e6 tstart = work[i].min() tstop = work[i].max() lc_start = tstart lc_end = tstop if lc_start > 2.4e6: lc_start -= 2.4e6 if lc_end > 2.4e6: lc_end -= 2.4e6 dts = [] for j in range(1, len(work[i])): dts.append(work[i][j] - work[i][j - 1]) dts = numpy.array(dts, dtype='float32') cadence = numpy.median(dts) if cadence * 86400.0 > 58.0 and cadence * 86400.0 < 61.0: obsmode = 'short cadence' elif cadence * 86400.0 > 1600.0 and cadence * 86400.0 < 2000.0: obsmode = 'long cadence' else: obsmode = 'unknown' ## Create the outfile primary extension if status == 0 and conversion == 'asc2fits': hdu0 = PrimaryHDU() try: hdu0.header.update('EXTNAME', 'PRIMARY', 'name of extension') hdu0.header.update('EXTVER', 1.0, 'extension version number') hdu0.header.update('ORIGIN', 'NASA/Ames', 'organization that generated this file') hdu0.header.update('DATE', time.asctime(time.localtime()), 'file creation date') hdu0.header.update('CREATOR', 'kepconvert', 'SW version used to create this file') hdu0.header.update('PROCVER', 'None', 'processing script version') hdu0.header.update('FILEVER', '2.0', 'file format version') hdu0.header.update('TIMVERSN', 'OGIP/93-003', 'OGIP memo number for file format') hdu0.header.update('TELESCOP', 'Kepler', 'telescope') hdu0.header.update('INSTRUME', 'Kepler photometer', 'detector type') hdu0.header.update('OBJECT', 'Unknown', 'string version of kepID') hdu0.header.update('KEPLERID', 'Unknown', 'unique Kepler target identifier') hdu0.header.update('CHANNEL', 'Unknown', 'CCD channel') hdu0.header.update('SKYGROUP', 'Unknown', 'roll-independent location of channel') hdu0.header.update('MODULE', 'Unknown', 'CCD module') hdu0.header.update('OUTPUT', 'Unknown', 'CCD output') hdu0.header.update( 'QUARTER', 'Unknown', 'mission quarter during which data was collected') hdu0.header.update( 'SEASON', 'Unknown', 'mission season during which data was collected') hdu0.header.update( 'DATA_REL', 'Unknown', 'version of data release notes describing data') hdu0.header.update('OBSMODE', obsmode, 'observing mode') hdu0.header.update('RADESYS', 'Unknown', 'reference frame of celestial coordinates') hdu0.header.update('RA_OBJ', 'Unknown', '[deg] right ascension from KIC') hdu0.header.update('DEC_OBJ', 'Unknown', '[deg] declination from KIC') hdu0.header.update('EQUINOX', 2000.0, 'equinox of celestial coordinate system') hdu0.header.update('PMRA', 'Unknown', '[arcsec/yr] RA proper motion') hdu0.header.update('PMDEC', 'Unknown', '[arcsec/yr] Dec proper motion') hdu0.header.update('PMTOTAL', 'Unknown', '[arcsec/yr] total proper motion') hdu0.header.update('PARALLAX', 'Unknown', '[arcsec] parallax') hdu0.header.update('GLON', 'Unknown', '[deg] galactic longitude') hdu0.header.update('GLAT', 'Unknown', '[deg] galactic latitude') hdu0.header.update('GMAG', 'Unknown', '[mag] SDSS g band magnitude from KIC') hdu0.header.update('RMAG', 'Unknown', '[mag] SDSS r band magnitude from KIC') hdu0.header.update('IMAG', 'Unknown', '[mag] SDSS i band magnitude from KIC') hdu0.header.update('ZMAG', 'Unknown', '[mag] SDSS z band magnitude from KIC') hdu0.header.update('D51MAG', 'Unknown', '[mag] D51 magnitude, from KIC') hdu0.header.update('JMAG', 'Unknown', '[mag] J band magnitude from 2MASS') hdu0.header.update('HMAG', 'Unknown', '[mag] H band magnitude from 2MASS') hdu0.header.update('KMAG', 'Unknown', '[mag] K band magnitude from 2MASS') hdu0.header.update('KEPMAG', 'Unknown', '[mag] Kepler magnitude (Kp) from KIC') hdu0.header.update('GRCOLOR', 'Unknown', '[mag] (g-r) color, SDSS bands') hdu0.header.update('JKCOLOR', 'Unknown', '[mag] (J-K) color, 2MASS bands') hdu0.header.update('GKCOLOR', 'Unknown', '[mag] (g-K) color, SDSS g - 2MASS K') hdu0.header.update('TEFF', 'Unknown', '[K] effective temperature from KIC') hdu0.header.update('LOGG', 'Unknown', '[cm/s2] log10 surface gravity from KIC') hdu0.header.update('FEH', 'Unknown', '[log10([Fe/H])] metallicity from KIC') hdu0.header.update('EBMINUSV', 'Unknown', '[mag] E(B-V) redenning from KIC') hdu0.header.update('AV', 'Unknown', '[mag] A_v extinction from KIC') hdu0.header.update('RADIUS', 'Unknown', '[solar radii] stellar radius from KIC') hdu0.header.update('TMINDEX', 'Unknown', 'unique 2MASS catalog ID from KIC') hdu0.header.update('SCPID', 'Unknown', 'unique SCP processing ID from KIC') hdulist = HDUList(hdu0) except: message = 'ERROR -- KEPCONVERT: cannot create primary extension in ' + outfile status = kepmsg.err(logfile, message, verbose) ## create the outfile HDU 1 extension if status == 0 and conversion == 'asc2fits': try: fitscol = [] for i in range(ncol): fitscol.append( Column(name=colnames[i], format='D', array=work[i])) fitscols = ColDefs(fitscol) hdu1 = new_table(fitscols) hdulist.append(hdu1) hdu1.header.update('INHERIT', True, 'inherit primary keywords') hdu1.header.update('EXTNAME', 'LIGHTCURVE', 'name of extension') hdu1.header.update('EXTVER', 1, 'extension version number') hdu1.header.update('TELESCOP', 'Kepler', 'telescope') hdu1.header.update('INSTRUME', 'Kepler photometer', 'detector type') hdu1.header.update('OBJECT', 'Unknown', 'string version of kepID') hdu1.header.update('KEPLERID', 'Unknown', 'unique Kepler target identifier') hdu1.header.update('RADESYS', 'Unknown', 'reference frame of celestial coordinates') hdu1.header.update('RA_OBJ', 'Unknown', '[deg] right ascension from KIC') hdu1.header.update('DEC_OBJ', 'Unknown', '[deg] declination from KIC') hdu1.header.update('EQUINOX', 2000.0, 'equinox of celestial coordinate system') hdu1.header.update('TIMEREF', 'Unknown', 'barycentric correction applied to times') hdu1.header.update('TASSIGN', 'Unknown', 'where time is assigned') hdu1.header.update('TIMESYS', 'Unknown', 'time system is barycentric JD') hdu1.header.update('BJDREFI', 0.0, 'integer part of BJD reference date') hdu1.header.update('BJDREFF', 0.0, 'fraction of day in BJD reference date') hdu1.header.update('TIMEUNIT', 'Unknown', 'time unit for TIME, TSTART and TSTOP') hdu1.header.update('TSTART', tstart, 'observation start time in JD - BJDREF') hdu1.header.update('TSTOP', tstop, 'observation stop time in JD - BJDREF') hdu1.header.update('LC_START', lc_start, 'observation start time in MJD') hdu1.header.update('LC_END', lc_end, 'observation stop time in MJD') hdu1.header.update('TELAPSE', tstop - tstart, '[d] TSTOP - TSTART') hdu1.header.update('LIVETIME', 'Unknown', '[d] TELAPSE multiplied by DEADC') hdu1.header.update('EXPOSURE', 'Unknown', '[d] time on source') hdu1.header.update('DEADC', 'Unknown', 'deadtime correction') hdu1.header.update('TIMEPIXR', 'Unknown', 'bin time beginning=0 middle=0.5 end=1') hdu1.header.update('TIERRELA', 'Unknown', '[d] relative time error') hdu1.header.update('TIERABSO', 'Unknown', '[d] absolute time error') hdu1.header.update('INT_TIME', 'Unknown', '[s] photon accumulation time per frame') hdu1.header.update('READTIME', 'Unknown', '[s] readout time per frame') hdu1.header.update('FRAMETIM', 'Unknown', '[s] frame time (INT_TIME + READTIME)') hdu1.header.update('NUM_FRM', 'Unknown', 'number of frames per time stamp') hdu1.header.update('TIMEDEL', 'Unknown', '[d] time resolution of data') hdu1.header.update('DATE-OBS', 'Unknown', 'TSTART as UT calendar date') hdu1.header.update('DATE-END', 'Unknown', 'TSTOP as UT calendar date') hdu1.header.update('BACKAPP', 'Unknown', 'background is subtracted') hdu1.header.update('DEADAPP', 'Unknown', 'deadtime applied') hdu1.header.update('VIGNAPP', 'Unknown', 'vignetting or collimator correction applied') hdu1.header.update('GAIN', 'Unknown', 'channel gain [electrons/count]') hdu1.header.update('READNOIS', 'Unknown', 'read noise [electrons]') hdu1.header.update('NREADOUT', 'Unknown', 'number of reads per cadence') hdu1.header.update('TIMSLICE', 'Unknown', 'time-slice readout sequence section') hdu1.header.update('MEANBLCK', 'Unknown', 'FSW mean black level [count]') hdu1.header.update('PDCSAPFL', 'Unknown', 'SAP PDC processing flags (bit code)') hdu1.header.update('PDCDIAFL', 'Unknown', 'DIA PDC processing flags (bit code)') hdu1.header.update( 'MISPXSAP', 'Unknown', 'no of optimal aperture pixels missing from SAP') hdu1.header.update( 'MISPXDIA', 'Unknown', 'no of optimal aperture pixels missing from DIA') hdu1.header.update('CROWDSAP', 'Unknown', 'crowding metric evaluated over SAP opt. ap.') hdu1.header.update('CROWDDIA', 'Unknown', 'crowding metric evaluated over DIA aperture') except: message = 'ERROR -- KEPCONVERT: cannot create light curve extension in ' + outfile status = kepmsg.err(logfile, message, verbose) ## history keyword in output file if status == 0 and conversion == 'asc2fits': status = kepkey.history(call, hdu0, outfile, logfile, verbose) ## filter data table if status == 0 and conversion == 'asc2fits': instr, status = kepio.filterNaN( hdulist, colnames[min(array([1, len(colnames) - 1], dtype='int'))], outfile, logfile, verbose) ## write output FITS file if status == 0 and conversion == 'asc2fits': hdulist.writeto(outfile, checksum=True) ## end time if (status == 0): message = 'KEPCONVERT completed at' else: message = '\nKEPCONVERT aborted at' kepmsg.clock(message, logfile, verbose)