def kepstddev(infile,outfile,datacol,timescale,clobber,verbose,logfile,status,cmdLine=False): # startup parameters status = 0 labelsize = 44 ticksize = 36 xsize = 16 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPSTDDEV -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+str(datacol)+' ' call += 'timescale='+str(timescale)+' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPSTDDEV started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPSTDDEV: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile,message,verbose) # open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # read table structure if status == 0: table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) # filter input data table if status == 0: work1 = numpy.array([table.field('time'), table.field(datacol)]) work1 = numpy.rot90(work1,3) work1 = work1[~numpy.isnan(work1).any(1)] # read table columns if status == 0: intime = work1[:,1] + bjdref indata = work1[:,0] # calculate STDDEV in units of ppm if status == 0: stddev = running_frac_std(intime,indata,timescale/24) * 1.0e6 astddev = numpy.std(indata) * 1.0e6 cdpp = stddev / sqrt(timescale * 3600.0 / cadence) # filter cdpp if status == 0: for i in range(len(cdpp)): if cdpp[i] > median(cdpp) * 10.0: cdpp[i] = cdpp[i-1] # calculate median STDDEV if status == 0: medcdpp = ones((len(cdpp)),dtype='float32') * median(cdpp[:]) # print '\nMedian %.1fhr standard deviation = %d ppm' % (timescale, median(stddev[:])) print('\nStandard deviation = %d ppm' % astddev) # calculate median STDDEV if status == 0: medcdpp = ones((len(cdpp)),dtype='float32') * median(cdpp[:]) print('Median %.1fhr CDPP = %d ppm' % (timescale, median(cdpp[:]))) # calculate RMS STDDEV if status == 0: rms, status = kepstat.rms(cdpp,zeros(len(stddev)),logfile,verbose) rmscdpp = ones((len(cdpp)),dtype='float32') * rms print(' RMS %.1fhr CDPP = %d ppm\n' % (timescale, rms)) # clean up x-axis unit if status == 0: intime0 = float(int(tstart / 100) * 100.0) ptime = intime - intime0 xlab = 'BJD $-$ %d' % intime0 # clean up y-axis units if status == 0: pout = copy(cdpp) nrm = math.ceil(math.log10(median(cdpp))) - 1.0 # pout = pout / 10**nrm # ylab = '%.1fhr $\sigma$ (10$^%d$ ppm)' % (timescale,nrm) ylab = '%.1fhr $\sigma$ (ppm)' % timescale # data limits xmin = ptime.min() xmax = ptime.max() ymin = pout.min() ymax = pout.max() xr = xmax - xmin yr = ymax - ymin ptime = insert(ptime,[0],[ptime[0]]) ptime = append(ptime,[ptime[-1]]) pout = insert(pout,[0],[0.0]) pout = append(pout,0.0) # plot style if status == 0: try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': 36, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': 32, 'ytick.labelsize': 36} pylab.rcParams.update(params) except: pass # define size of plot on monitor screen pylab.figure(figsize=[xsize,ysize]) # delete any fossil plots in the matplotlib window pylab.clf() # position first axes inside the plotting window ax = pylab.axes([0.07,0.15,0.92,0.83]) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) ax.yaxis.set_major_locator(MaxNLocator(5)) # rotate y labels by 90 deg labels = ax.get_yticklabels() pylab.setp(labels, 'rotation', 90,fontsize=36) # plot flux vs time ltime = array([],dtype='float64') ldata = array([],dtype='float32') dt = 0 work1 = 2.0 * cadence / 86400 for i in range(1,len(ptime)-1): dt = ptime[i] - ptime[i-1] if dt < work1: ltime = append(ltime,ptime[i]) ldata = append(ldata,pout[i]) else: pylab.plot(ltime,ldata,color='#0000ff',linestyle='-',linewidth=1.0) ltime = array([],dtype='float64') ldata = array([],dtype='float32') pylab.plot(ltime,ldata,color='#0000ff',linestyle='-',linewidth=1.0) # plot the fill color below data time series, with no data gaps pylab.fill(ptime,pout,fc='#ffff00',linewidth=0.0,alpha=0.2) # plot median CDPP # pylab.plot(intime - intime0,medcdpp / 10**nrm,color='r',linestyle='-',linewidth=2.0) # pylab.plot(intime - intime0,medcdpp,color='r',linestyle='-',linewidth=2.0) # plot RMS CDPP # pylab.plot(intime - intime0,rmscdpp / 10**nrm,color='r',linestyle='--',linewidth=2.0) # define plot x and y limits pylab.xlim(xmin - xr * 0.01, xmax + xr * 0.01) if ymin - yr * 0.01 <= 0.0: pylab.ylim(1.0e-10, ymax + yr * 0.01) else: pylab.ylim(ymin - yr * 0.01, ymax + yr * 0.01) # plot labels pylab.xlabel(xlab, {'color' : 'k'}) pylab.ylabel(ylab, {'color' : 'k'}) # make grid on plot pylab.grid() # render plot if status == 0: if cmdLine: pylab.show(block=True) else: pylab.ion() pylab.plot([]) pylab.ioff() # add NaNs back into data if status == 0: n = 0 work1 = array([],dtype='float32') instr, status = kepio.openfits(infile,'readonly',logfile,verbose) table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) for i in range(len(table.field(0))): if isfinite(table.field('time')[i]) and isfinite(table.field(datacol)[i]): work1 = append(work1,cdpp[n]) n += 1 else: work1 = append(work1,nan) # write output file if status == 0: status = kepkey.new('MCDPP%d' % (timescale * 10.0),medcdpp[0], 'Median %.1fhr CDPP (ppm)' % timescale, instr[1],outfile,logfile,verbose) status = kepkey.new('RCDPP%d' % (timescale * 10.0),rmscdpp[0], 'RMS %.1fhr CDPP (ppm)' % timescale, instr[1],outfile,logfile,verbose) colname = 'CDPP_%d' % (timescale * 10) col1 = pyfits.Column(name=colname,format='E13.7',array=work1) cols = instr[1].data.columns + col1 instr[1] = pyfits.new_table(cols,header=instr[1].header) instr.writeto(outfile) # comment keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) # close FITS if status == 0: status = kepio.closefits(instr,logfile,verbose) # end time if (status == 0): message = 'KEPSTDDEV completed at' else: message = '\nKEPSTDDEV aborted at' kepmsg.clock(message,logfile,verbose)
def keptrial(infile,outfile,datacol,errcol,fmin,fmax,nfreq,method, ntrials,plot,clobber,verbose,logfile,status,cmdLine=False): # startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 18 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPTRIAL -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+datacol+' ' call += 'errcol='+errcol+' ' call += 'fmin='+str(fmin)+' ' call += 'fmax='+str(fmax)+' ' call += 'nfreq='+str(nfreq)+' ' call += 'method='+method+' ' call += 'ntrials='+str(ntrials)+' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPTRIAL started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPTRIAL: ' + outfile + ' exists. Use clobber=yes' kepmsg.err(logfile,message,verbose) status = 1 # open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # input data if status == 0: try: barytime = instr[1].data.field('barytime') except: barytime, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose) if status == 0: signal, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose) if status == 0: err, status = kepio.readfitscol(infile,instr[1].data,errcol,logfile,verbose) # remove infinite data from time series if status == 0: try: nanclean = instr[1].header['NANCLEAN'] except: incols = [barytime, signal, err] [barytime, signal, err] = kepstat.removeinfinlc(signal, incols) # set up plot if status == 0: plotLatex = True try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} rcParams.update(params) except: print('WARNING: install latex for scientific plotting') plotLatex = False # frequency steps and Monte Carlo iterations if status == 0: deltaf = (fmax - fmin) / nfreq freq = []; pmax = []; trial = [] for i in range(ntrials): trial.append(i+1) # adjust data within the error bars work1 = kepstat.randarray(signal,err) # determine FT power fr, power = kepfourier.ft(barytime,work1,fmin,fmax,deltaf,False) # determine peak in FT pmax.append(-1.0e30) for j in range(len(fr)): if (power[j] > pmax[-1]): pmax[-1] = power[j] f1 = fr[j] freq.append(f1) # plot stop-motion histogram pylab.ion() pylab.figure(1,figsize=[7,10]) clf() pylab.axes([0.08,0.08,0.88,0.89]) pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) n,bins,patches = pylab.hist(freq,bins=nfreq,range=[fmin,fmax], align='mid',rwidth=1,ec='#0000ff', fc='#ffff00',lw=2) # fit normal distribution to histogram x = zeros(len(bins)) for j in range(1,len(bins)): x[j] = (bins[j] + bins[j-1]) / 2 pinit = numpy.array([float(i),freq[-1],deltaf]) if i > 3: n = array(n,dtype='float32') coeffs, errors, covar, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.leastsquare('gauss',pinit,x[1:],n,None,logfile,verbose) fitfunc = kepfunc.gauss() f = arange(fmin,fmax,(fmax-fmin)/100) fit = fitfunc(coeffs,f) pylab.plot(f,fit,'r-',linewidth=2) if plotLatex: xlabel(r'Frequency (d$^{-1}$)', {'color' : 'k'}) else: xlabel(r'Frequency (1/d)', {'color' : 'k'}) ylabel('N', {'color' : 'k'}) xlim(fmin,fmax) grid() # render plot if plot: if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() # period results if status == 0: p = 1.0 / coeffs[1] perr = p * coeffs[2] / coeffs[1] f1 = fmin; f2 = fmax gotbin = False for i in range(len(n)): if n[i] > 0 and not gotbin: f1 = bins[i] gotbin = True gotbin = False for i in range(len(n)-1,0,-1): if n[i] > 0 and not gotbin: f2 = bins[i+1] gotbin = True powave, powstdev = kepstat.stdev(pmax) # print result if status == 0: print(' best period: %.10f days (%.7f min)' % (p, p * 1440.0)) print(' 1-sigma period error: %.10f days (%.7f min)' % (perr, perr * 1440.0)) print(' search range: %.10f - %.10f days ' % (1.0 / fmax, 1.0 / fmin)) print(' 100%% confidence range: %.10f - %.10f days ' % (1.0 / f2, 1.0 / f1)) # print ' detection confidence: %.2f sigma' % (powave / powstdev) print(' number of trials: %d' % ntrials) print(' number of frequency bins: %d' % nfreq) # history keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) ## write output file if status == 0: col1 = Column(name='TRIAL',format='J',array=trial) col2 = Column(name='FREQUENCY',format='E',unit='1/day',array=freq) col3 = Column(name='POWER',format='E',array=pmax) cols = ColDefs([col1,col2,col3]) instr.append(new_table(cols)) try: instr[-1].header.update('EXTNAME','TRIALS','Extension name') except: status = 1 try: instr[-1].header.update('SEARCHR1',1.0 / fmax,'Search range lower bound (days)') except: status = 1 try: instr[-1].header.update('SEARCHR2',1.0 / fmin,'Search range upper bound (days)') except: status = 1 try: instr[-1].header.update('NFREQ',nfreq,'Number of frequency bins') except: status = 1 try: instr[-1].header.update('PERIOD',p,'Best period (days)') except: status = 1 try: instr[-1].header.update('PERIODE',perr,'1-sigma period error (days)') except: status = 1 # instr[-1].header.update('DETNCONF',powave/powstdev,'Detection significance (sigma)') try: instr[-1].header.update('CONFIDR1',1.0 / f2,'Trial confidence lower bound (days)') except: status = 1 try: instr[-1].header.update('CONFIDR2',1.0 / f1,'Trial confidence upper bound (days)') except: status = 1 try: instr[-1].header.update('NTRIALS',ntrials,'Number of trials') except: status = 1 instr.writeto(outfile) # close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) ## end time if (status == 0): message = 'KEPTRAIL completed at' else: message = '\nKEPTRIAL aborted at' kepmsg.clock(message,logfile,verbose)
def kepregr(infile, outfile, datacol, kmethod, kneighb, plot, plotlab, clobber, verbose, logfile, status): """ Perform a k-nearest neighbor regression analysis. """ ## startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 16 ysize = 6 lcolor = '#47AE10' lwidth = 1.0 fcolor = '#9AFF9A' falpha = 0.3 ## log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPREGR -- ' call += 'infile=' + infile + ' ' call += 'outfile=' + outfile + ' ' call += 'datacol=' + str(datacol) + ' ' call += 'kmethod=' + str(kmethod) + ' ' call += 'kneighb=' + str(kneighb) + ' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot=' + plotit + ' ' call += 'plotlab=' + str(plotlab) + ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber=' + overwrite + ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose=' + chatter + ' ' call += 'logfile=' + logfile kepmsg.log(logfile, call + '\n', verbose) ## start time kepmsg.clock('KEPREGR started at', logfile, verbose) ## test log file logfile = kepmsg.test(logfile) ## clobber output file if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPREGR: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile, message, verbose) ## open input file if status == 0: instr, status = kepio.openfits(infile, 'readonly', logfile, verbose) tstart, tstop, bjdref, cadence, status = kepio.timekeys( instr, infile, logfile, verbose, status) if cadence == 0.0: tstart, tstop, ncad, cadence, status = kepio.cadence( instr, infile, logfile, verbose, status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence ## fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr, file, logfile, verbose) ## read table structure if status == 0: table, status = kepio.readfitstab(infile, instr[1], logfile, verbose) # read time and flux columns if status == 0: barytime, status = kepio.readtimecol(infile, table, logfile, verbose) if status == 0: flux, status = kepio.readfitscol(infile, instr[1].data, datacol, logfile, verbose) # filter input data table if status == 0: try: nanclean = instr[1].header['NANCLEAN'] except: naxis2 = 0 for i in range(len(table.field(0))): if (numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i]) and flux[i] != 0.0): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] comment = 'NaN cadences removed from data' status = kepkey.new('NANCLEAN', True, comment, instr[1], outfile, logfile, verbose) ## read table columns if status == 0: try: intime = instr[1].data.field('barytime') except: intime, status = kepio.readfitscol(infile, instr[1].data, 'time', logfile, verbose) indata, status = kepio.readfitscol(infile, instr[1].data, datacol, logfile, verbose) if status == 0: intime = intime + bjdref indata = indata / cadenom if status == 0: outdata = knn_predict(intime, indata, kmethod, kneighb) ## comment keyword in output file if status == 0: status = kepkey.history(call, instr[0], outfile, logfile, verbose) ## clean up x-axis unit if status == 0: intime0 = float(int(tstart / 100) * 100.0) if intime0 < 2.4e6: intime0 += 2.4e6 ptime = intime - intime0 # print ptime,intime,intime0 xlab = 'BJD $-$ %d' % intime0 ## clean up y-axis units if status == 0: pout = indata * 1.0 pout2 = outdata * 1.0 nrm = len(str(int(numpy.nanmax(pout)))) - 1 pout = pout / 10**nrm pout2 = pout2 / 10**nrm ylab = '10$^%d$ %s' % (nrm, plotlab) ## data limits xmin = numpy.nanmin(ptime) xmax = numpy.nanmax(ptime) ymin = numpy.min(pout) ymax = numpy.nanmax(pout) xr = xmax - xmin yr = ymax - ymin ptime = insert(ptime, [0], [ptime[0]]) ptime = append(ptime, [ptime[-1]]) pout = insert(pout, [0], [0.0]) pout = append(pout, 0.0) pout2 = insert(pout2, [0], [0.0]) pout2 = append(pout2, 0.0) ## plot light curve if status == 0 and plot: try: params = { 'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight': 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize } rcParams.update(params) except: print('ERROR -- KEPREGR: install latex for scientific plotting') status = 1 if status == 0 and plot: pylab.figure(1, figsize=[xsize, ysize]) ## plot regression data ax = pylab.axes([0.06, 0.1, 0.93, 0.87]) pylab.gca().xaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) # pylab.plot(ptime,pout,color='#ff9900',linestyle='-',linewidth=lwidth) pylab.scatter(ptime, pout, color='#214CAE', s=5) fill(ptime, pout, color=fcolor, linewidth=0.0, alpha=falpha) pylab.plot(ptime[kneighb:-kneighb], pout2[kneighb:-kneighb], color=lcolor, linestyle='-', linewidth=lwidth * 2.0) xlabel(xlab, {'color': 'k'}) ylabel(ylab, {'color': 'k'}) xlim(xmin - xr * 0.01, xmax + xr * 0.01) if ymin >= 0.0: ylim(ymin - yr * 0.01, ymax + yr * 0.01) else: ylim(1.0e-10, ymax + yr * 0.01) pylab.grid() pylab.draw() pylab.savefig(re.sub('\.\S+', '.png', outfile), dpi=100) ## write output file if status == 0: for i in range(len(outdata)): instr[1].data.field(datacol)[i] = outdata[i] instr.writeto(outfile) ## close input file if status == 0: status = kepio.closefits(instr, logfile, verbose) ## end time if (status == 0): message = 'KEPREGR completed at' else: message = '\nKEPREGR aborted at' kepmsg.clock(message, logfile, verbose)
def kepoutlier(infile,outfile,datacol,nsig,stepsize,npoly,niter, operation,ranges,plot,plotfit,clobber,verbose,logfile,status, cmdLine=False): # startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 16 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPOUTLIER -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+str(datacol)+' ' call += 'nsig='+str(nsig)+' ' call += 'stepsize='+str(stepsize)+' ' call += 'npoly='+str(npoly)+' ' call += 'niter='+str(niter)+' ' call += 'operation='+str(operation)+' ' call += 'ranges='+str(ranges)+' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' plotf = 'n' if (plotfit): plotf = 'y' call += 'plotfit='+plotf+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPOUTLIER started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPOUTLIER: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile,message,verbose) # open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # read table structure if status == 0: table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) # filter input data table if status == 0: try: nanclean = instr[1].header['NANCLEAN'] except: naxis2 = 0 try: for i in range(len(table.field(0))): if numpy.isfinite(table.field('barytime')[i]) and \ numpy.isfinite(table.field(datacol)[i]): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] except: for i in range(len(table.field(0))): if numpy.isfinite(table.field('time')[i]) and \ numpy.isfinite(table.field(datacol)[i]): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] comment = 'NaN cadences removed from data' status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose) # read table columns if status == 0: try: intime = instr[1].data.field('barytime') + 2.4e6 except: intime, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose) indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose) if status == 0: intime = intime + bjdref indata = indata / cadenom # time ranges for region to be corrected if status == 0: t1, t2, status = kepio.timeranges(ranges,logfile,verbose) cadencelis, status = kepstat.filterOnRange(intime,t1,t2) # find limits of each time step if status == 0: tstep1 = []; tstep2 = [] work = intime[0] while work < intime[-1]: tstep1.append(work) tstep2.append(array([work+stepsize,intime[-1]],dtype='float64').min()) work += stepsize # find cadence limits of each time step if status == 0: cstep1 = []; cstep2 = [] work1 = 0; work2 = 0 for i in range(len(intime)): if intime[i] >= intime[work1] and intime[i] < intime[work1] + stepsize: work2 = i else: cstep1.append(work1) cstep2.append(work2) work1 = i; work2 = i cstep1.append(work1) cstep2.append(work2) outdata = indata * 1.0 # comment keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) # clean up x-axis unit if status == 0: intime0 = float(int(tstart / 100) * 100.0) ptime = intime - intime0 xlab = 'BJD $-$ %d' % intime0 # clean up y-axis units if status == 0: pout = indata * 1.0 nrm = len(str(int(pout.max())))-1 pout = pout / 10**nrm ylab = '10$^%d$ e$^-$ s$^{-1}$' % nrm # data limits xmin = ptime.min() xmax = ptime.max() ymin = pout.min() ymax = pout.max() xr = xmax - xmin yr = ymax - ymin ptime = insert(ptime,[0],[ptime[0]]) ptime = append(ptime,[ptime[-1]]) pout = insert(pout,[0],[0.0]) pout = append(pout,0.0) # plot light curve if status == 0 and plot: plotLatex = True try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} rcParams.update(params) except: plotLatex = False if status == 0 and plot: pylab.figure(figsize=[xsize,ysize]) pylab.clf() # plot data ax = pylab.axes([0.06,0.1,0.93,0.87]) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) # rotate y labels by 90 deg labels = ax.get_yticklabels() setp(labels, 'rotation', 90, fontsize=12) pylab.plot(ptime,pout,color=lcolor,linestyle='-',linewidth=lwidth) fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha) xlabel(xlab, {'color' : 'k'}) if not plotLatex: ylab = '10**%d electrons/sec' % nrm ylabel(ylab, {'color' : 'k'}) grid() # loop over each time step, fit data, determine rms if status == 0: masterfit = indata * 0.0 mastersigma = zeros(len(masterfit)) functype = 'poly' + str(npoly) for i in range(len(cstep1)): pinit = [indata[cstep1[i]:cstep2[i]+1].mean()] if npoly > 0: for j in range(npoly): pinit.append(0.0) pinit = array(pinit,dtype='float32') try: coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip(functype,pinit,intime[cstep1[i]:cstep2[i]+1]-intime[cstep1[i]], indata[cstep1[i]:cstep2[i]+1],None,nsig,nsig,niter,logfile, verbose) for j in range(len(coeffs)): masterfit[cstep1[i]:cstep2[i]+1] += coeffs[j] * \ (intime[cstep1[i]:cstep2[i]+1] - intime[cstep1[i]])**j for j in range(cstep1[i],cstep2[i]+1): mastersigma[j] = sigma if plotfit: pylab.plot(plotx+intime[cstep1[i]]-intime0,ploty / 10**nrm, 'g',lw='3') except: for j in range(cstep1[i],cstep2[i]+1): masterfit[j] = indata[j] mastersigma[j] = 1.0e10 message = 'WARNING -- KEPOUTLIER: could not fit range ' message += str(intime[cstep1[i]]) + '-' + str(intime[cstep2[i]]) kepmsg.warn(None,message) # reject outliers if status == 0: rejtime = []; rejdata = []; naxis2 = 0 for i in range(len(masterfit)): if abs(indata[i] - masterfit[i]) > nsig * mastersigma[i] and i in cadencelis: rejtime.append(intime[i]) rejdata.append(indata[i]) if operation == 'replace': [rnd] = kepstat.randarray([masterfit[i]],[mastersigma[i]]) table[naxis2] = table[i] table.field(datacol)[naxis2] = rnd naxis2 += 1 else: table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] rejtime = array(rejtime,dtype='float64') rejdata = array(rejdata,dtype='float32') pylab.plot(rejtime-intime0,rejdata / 10**nrm,'ro') # plot ranges xlim(xmin-xr*0.01,xmax+xr*0.01) if ymin >= 0.0: ylim(ymin-yr*0.01,ymax+yr*0.01) else: ylim(1.0e-10,ymax+yr*0.01) # render plot if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() # write output file if status == 0: instr.writeto(outfile) # close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) ## end time if (status == 0): message = 'KEPOUTLIER completed at' else: message = '\nKEPOUTLIER aborted at' kepmsg.clock(message,logfile,verbose)
def kepfilter(infile,outfile,datacol,function,cutoff,passband,plot,plotlab, clobber,verbose,logfile,status,cmdLine=False): ## startup parameters status = 0 numpy.seterr(all="ignore") labelsize = 24 ticksize = 16 xsize = 16 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 ## log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPFILTER -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+str(datacol)+' ' call += 'function='+str(function)+' ' call += 'cutoff='+str(cutoff)+' ' call += 'passband='+str(passband)+' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' call += 'plotlab='+str(plotlab)+' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) ## start time kepmsg.clock('KEPFILTER started at',logfile,verbose) ## test log file logfile = kepmsg.test(logfile) ## clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPFILTER: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile,message,verbose) ## open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence ## fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) ## read table structure if status == 0: table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) # read time and flux columns if status == 0: barytime, status = kepio.readtimecol(infile,table,logfile,verbose) flux, status = kepio.readsapcol(infile,table,logfile,verbose) # filter input data table if status == 0: try: nanclean = instr[1].header['NANCLEAN'] except: naxis2 = 0 for i in range(len(table.field(0))): if (numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i]) and flux[i] != 0.0): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] comment = 'NaN cadences removed from data' status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose) ## read table columns if status == 0: intime, status = kepio.readtimecol(infile,instr[1].data,logfile,verbose) if status == 0: indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose) if status == 0: intime = intime + bjdref indata = indata / cadenom ## define data sampling if status == 0: tr = 1.0 / (cadence / 86400) timescale = 1.0 / (cutoff / tr) ## define convolution function if status == 0: if function == 'boxcar': filtfunc = numpy.ones(numpy.ceil(timescale)) elif function == 'gauss': timescale /= 2 dx = numpy.ceil(timescale * 10 + 1) filtfunc = kepfunc.gauss() filtfunc = filtfunc([1.0,dx/2-1.0,timescale],linspace(0,dx-1,dx)) elif function == 'sinc': dx = numpy.ceil(timescale * 12 + 1) fx = linspace(0,dx-1,dx) fx = fx - dx / 2 + 0.5 fx /= timescale filtfunc = numpy.sinc(fx) filtfunc /= numpy.sum(filtfunc) ## pad time series at both ends with noise model if status == 0: ave, sigma = kepstat.stdev(indata[:len(filtfunc)]) padded = append(kepstat.randarray(np.ones(len(filtfunc)) * ave, np.ones(len(filtfunc)) * sigma), indata) ave, sigma = kepstat.stdev(indata[-len(filtfunc):]) padded = append(padded, kepstat.randarray(np.ones(len(filtfunc)) * ave, np.ones(len(filtfunc)) * sigma)) ## convolve data if status == 0: convolved = convolve(padded,filtfunc,'same') ## remove padding from the output array if status == 0: if function == 'boxcar': outdata = convolved[len(filtfunc):-len(filtfunc)] else: outdata = convolved[len(filtfunc):-len(filtfunc)] ## subtract low frequencies if status == 0 and passband == 'high': outmedian = median(outdata) outdata = indata - outdata + outmedian ## comment keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) ## clean up x-axis unit if status == 0: intime0 = float(int(tstart / 100) * 100.0) if intime0 < 2.4e6: intime0 += 2.4e6 ptime = intime - intime0 xlab = 'BJD $-$ %d' % intime0 ## clean up y-axis units if status == 0: pout = indata * 1.0 pout2 = outdata * 1.0 nrm = len(str(int(numpy.nanmax(pout))))-1 pout = pout / 10**nrm pout2 = pout2 / 10**nrm ylab = '10$^%d$ %s' % (nrm, plotlab) ## data limits xmin = ptime.min() xmax = ptime.max() ymin = numpy.nanmin(pout) ymax = numpy.nanmax(pout) xr = xmax - xmin yr = ymax - ymin ptime = insert(ptime,[0],[ptime[0]]) ptime = append(ptime,[ptime[-1]]) pout = insert(pout,[0],[0.0]) pout = append(pout,0.0) pout2 = insert(pout2,[0],[0.0]) pout2 = append(pout2,0.0) ## plot light curve if status == 0 and plot: try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} rcParams.update(params) except: print('ERROR -- KEPFILTER: install latex for scientific plotting') status = 1 if status == 0 and plot: pylab.figure(figsize=[xsize,ysize]) pylab.clf() ## plot filtered data ax = pylab.axes([0.06,0.1,0.93,0.87]) pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) labels = ax.get_yticklabels() setp(labels, 'rotation', 90, fontsize=12) pylab.plot(ptime,pout,color='#ff9900',linestyle='-',linewidth=lwidth) fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha) if passband == 'low': pylab.plot(ptime[1:-1],pout2[1:-1],color=lcolor,linestyle='-',linewidth=lwidth) else: pylab.plot(ptime,pout2,color=lcolor,linestyle='-',linewidth=lwidth) fill(ptime,pout2,color=lcolor,linewidth=0.0,alpha=falpha) xlabel(xlab, {'color' : 'k'}) ylabel(ylab, {'color' : 'k'}) xlim(xmin-xr*0.01,xmax+xr*0.01) if ymin >= 0.0: ylim(ymin-yr*0.01,ymax+yr*0.01) else: ylim(1.0e-10,ymax+yr*0.01) pylab.grid() # render plot if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() ## write output file if status == 0: for i in range(len(outdata)): instr[1].data.field(datacol)[i] = outdata[i] instr.writeto(outfile) ## close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) ## end time if (status == 0): message = 'KEPFILTER completed at' else: message = '\nKEPFILTER aborted at' kepmsg.clock(message,logfile,verbose)
def keptransit(inputfile,outputfile,datacol,errorcol,periodini_d,rprsini,T0ini, Eccini,arsini,incini,omegaini,LDparams,secini,fixperiod,fixrprs,fixT0, fixEcc,fixars,fixinc,fixomega,fixsec,fixfluxoffset,removeflaggeddata,ftol=0.0001,fitter='nothing',norm=False, clobber=False, plot=True,verbose=0,logfile='logfile.dat',status=0,cmdLine=False): """ tmod.lightcurve(xdata,period,rprs,T0,Ecc,ars, incl, omega, ld, sec) input transit parameters are Period in days T0 rplanet / rstar a / rstar inclination limb darkening code number: 0 = uniform 1 = linear 2 = quadratic 3 = square root 4 = non linear LDarr: u -- linear limb-darkening (set NL=1) a, b -- quadratic limb-darkening (set NL=2) c, d -- root-square limb-darkening (set NL= -2) a1, a2, a3, a4 -- nonlinear limb-darkening (set NL=4) Nothing at all -- uniform limb-darkening (set NL=0) """ np.seterr(all="ignore") #write to a logfile hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPTRANSIT -- ' call += 'inputfile='+inputfile+' ' call += 'outputfile='+outputfile+' ' call += 'datacol='+str(datacol)+' ' call += 'errorcol='+str(errorcol)+' ' call += 'periodini_d='+str(periodini_d)+' ' call += 'rprsini='+str(rprsini)+' ' call += 'T0ini='+str(T0ini)+' ' call += 'Eccini='+str(Eccini)+' ' call += 'arsini='+str(arsini)+' ' call += 'incini='+str(incini)+' ' call += 'omegaini='+str(omegaini)+' ' call += 'LDparams='+str(LDparams)+' ' call += 'secini='+str(secini)+' ' call += 'fixperiod='+str(fixperiod)+' ' call += 'fixrprs='+str(fixrprs)+' ' call += 'fixT0='+str(fixT0)+' ' call += 'fixEcc='+str(fixEcc)+' ' call += 'fixars='+str(fixars)+' ' call += 'fixinc='+str(fixinc)+' ' call += 'fixomega='+str(fixomega)+' ' call += 'fixsec='+str(fixsec)+' ' call += 'fixfluxoffset='+str(fixfluxoffset)+' ' call += 'removeflaggeddata='+str(removeflaggeddata)+' ' call += 'ftol='+str(ftol)+' ' call += 'fitter='+str(fitter)+' ' call += 'norm='+str(norm)+' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' #chatter = 'n' #if (verbose): chatter = 'y' #call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) kepmsg.clock('KEPTRANSIT started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outputfile,logfile,verbose) if kepio.fileexists(outputfile): message = 'ERROR -- KEPTRANSIT: ' + outputfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile,message,verbose) # open input file if status == 0: instr, status = kepio.openfits(inputfile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr, inputfile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # read table structure if status == 0: table, status = kepio.readfitstab(inputfile,instr[1],logfile,verbose) if status == 0: intime_o = table.field('time') influx_o = table.field(datacol) inerr_o = table.field(errorcol) try: qualflag = table.field('SAP_QUALITY') except: qualflag = np.zeros(len(intime_o)) if status == 0: intime, indata, inerr, baddata = cutBadData(intime_o, influx_o, inerr_o,removeflaggeddata,qualflag) if status == 0 and norm: #first remove outliers before normalizing threesig = 3.* np.std(indata) mask = np.logical_and(indata< indata + threesig,indata > indata - threesig) #now normalize indata = indata / np.median(indata[mask]) if status == 0: #need to check if LD params are sensible and in right format LDparams = [float(i) for i in LDparams.split()] incini = incini * np.pi / 180. omegaini = omegaini * np.pi / 180. if arsini*np.cos(incini) > 1.0 + rprsini: message = 'The guess inclination and a/r* values result in a non-transing planet' status = kepmsg.err(logfile,message,verbose) if status == 0: fixed_dict = fix_params(fixperiod,fixrprs,fixT0, fixEcc,fixars,fixinc,fixomega,fixsec,fixfluxoffset) #force flux offset to be guessed at zero fluxoffsetini = 0.0 if status == 0: guess_params = [periodini_d,rprsini,T0ini,Eccini,arsini, incini, omegaini, secini,fluxoffsetini] print('cleaning done: about to fit transit') if fitter == 'leastsq': fit_output = leastsq(fit_tmod,guess_params, args=[LDparams,intime,indata,inerr,fixed_dict,guess_params], full_output=True,ftol=ftol) elif fitter == 'fmin': fit_output = fmin(fit_tmod2,guess_params, args=[LDparams,intime,indata,inerr,fixed_dict,guess_params], full_output=True,ftol=ftol,xtol=ftol) elif fitter == 'anneal': fit_output = anneal(fit_tmod2,guess_params, args=[LDparams,intime,indata,inerr,fixed_dict,guess_params], full_output=True) if status == 0: if fixed_dict['period'] == True: newperiod = guess_params[0] print('Fixed period (days) = ' + str(newperiod)) else: newperiod = fit_output[0][0] print('Fit period (days) = ' + str(newperiod)) if fixed_dict['rprs'] == True: newrprs = guess_params[1] print('Fixed R_planet / R_star = ' + str(newrprs)) else: newrprs = fit_output[0][1] print('Fit R_planet / R_star = ' + str(newrprs)) if fixed_dict['T0'] == True: newT0 = guess_params[2] print('Fixed T0 (BJD) = ' + str(newT0)) else: newT0 = fit_output[0][2] print('Fit T0 (BJD) = ' + str(newT0)) if fixed_dict['Ecc'] == True: newEcc = guess_params[3] print('Fixed eccentricity = ' + str(newEcc)) else: newEcc = fit_output[0][3] print('Fit eccentricity = ' + str(newEcc)) if fixed_dict['ars'] == True: newars = guess_params[4] print('Fixed a / R_star = ' + str(newars)) else: newars = fit_output[0][4] print('Fit a / R_star = ' + str(newars)) if fixed_dict['inc'] == True: newinc = guess_params[5] print('Fixed inclination (deg) = ' + str(newinc* 180. / np.pi)) else: newinc = fit_output[0][5] print('Fit inclination (deg) = ' + str(newinc* 180. / np.pi)) if fixed_dict['omega'] == True: newomega = guess_params[6] print('Fixed omega = ' + str(newomega)) else: newomega = fit_output[0][6] print('Fit omega = ' + str(newomega)) if fixed_dict['sec'] == True: newsec = guess_params[7] print('Fixed seconary eclipse depth = ' + str(newsec)) else: newsec = fit_output[0][7] print('Fit seconary eclipse depth = ' + str(newsec)) if fixfluxoffset == False: newfluxoffset = fit_output[0][8] print('Fit flux offset = ' + str(newfluxoffset)) modelfit = tmod.lightcurve(intime,newperiod,newrprs,newT0,newEcc, newars,newinc,newomega,LDparams,newsec) if fixfluxoffset == False: modelfit += newfluxoffset #output to a file phi, fluxfold, modelfold, errorfold, phiNotFold = fold_data(intime, modelfit,indata,inerr,newperiod,newT0) make_outfile(instr,outputfile,phiNotFold,modelfit, baddata) # end time if (status == 0): message = 'KEPTRANSIT completed at' else: message = '\nKEPTRANSIT aborted at' kepmsg.clock(message,logfile,verbose) if plot and status == 0: do_plot(intime,modelfit,indata,inerr,newperiod,newT0,cmdLine)
def kepimages(infile,outfix,imtype,ranges,clobber,verbose,logfile,status): # startup parameters status = 0 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPIMAGES -- ' call += 'infile='+infile+' ' call += 'outfix='+outfix+' ' call += 'imtype='+imtype+' ' call += 'ranges='+str(ranges)+' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPIMAGES started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # open input file status = 0 print ' ' instr = pyfits.open(infile,mode='readonly',memmap=True) cards0 = instr[0].header.cards cards1 = instr[1].header.cards cards2 = instr[2].header.cards # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # ingest time series data if status == 0: time = instr[1].data.field('TIME')[:] + 2454833.0 timecorr = instr[1].data.field('TIMECORR')[:] cadenceno = instr[1].data.field('CADENCENO')[:] raw_cnts = instr[1].data.field('RAW_CNTS')[:] flux = instr[1].data.field('FLUX')[:] flux_err = instr[1].data.field('FLUX_ERR')[:] flux_bkg = instr[1].data.field('FLUX_BKG')[:] flux_bkg_err = instr[1].data.field('FLUX_BKG_ERR')[:] cosmic_rays = instr[1].data.field('COSMIC_RAYS')[:] quality = instr[1].data.field('QUALITY')[:] pos_corr1 = instr[1].data.field('POS_CORR1')[:] pos_corr2 = instr[1].data.field('POS_CORR2')[:] # choose output image if status == 0: if imtype.lower() == 'raw_cnts': outim = raw_cnts elif imtype.lower() == 'flux_err': outim = flux_err elif imtype.lower() == 'flux_bkg': outim = flux_bkg elif imtype.lower() == 'flux_bkg_err': outim = flux_bkg_err elif imtype.lower() == 'cosmic_rays': outim = cosmic_rays else: outim = flux # identify images to be exported if status == 0: tim = array([]); dat = array([]); err = array([]) tstart, tstop, status = kepio.timeranges(ranges,logfile,verbose) if status == 0: cadencelis, status = kepstat.filterOnRange(time,tstart,tstop) # provide name for each output file and clobber if file exists if status == 0: for cadence in cadencelis: outfile = outfix + '_BJD%.4f' % time[cadence] + '.fits' if clobber and status == 0: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile) and status == 0: message = 'ERROR -- KEPIMAGES: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile,message,True) # construct output primary extension if status == 0: ncad = 0 for cadence in cadencelis: outfile = outfix + '_BJD%.4f' % time[cadence] + '.fits' hdu0 = pyfits.PrimaryHDU() for i in range(len(cards0)): try: if cards0[i].key not in hdu0.header.keys(): hdu0.header.update(cards0[i].key, cards0[i].value, cards0[i].comment) else: hdu0.header.cards[cards0[i].key].comment = cards0[i].comment except: pass status = kepkey.history(call,hdu0,outfile,logfile,verbose) outstr = HDUList(hdu0) # construct output image extension hdu1 = ImageHDU(flux[cadence]) for i in range(len(cards2)): try: if cards2[i].key not in hdu1.header.keys(): hdu1.header.update(cards2[i].key, cards2[i].value, cards2[i].comment) except: pass for i in range(len(cards1)): if (cards1[i].key not in hdu1.header.keys() and cards1[i].key[:4] not in ['TTYP','TFOR','TUNI','TDIS','TDIM','WCAX','1CTY', '2CTY','1CRP','2CRP','1CRV','2CRV','1CUN','2CUN', '1CDE','2CDE','1CTY','2CTY','1CDL','2CDL','11PC', '12PC','21PC','22PC','WCSN','TFIE']): hdu1.header.update(cards1[i].key, cards1[i].value, cards1[i].comment) try: int_time = cards1['INT_TIME'].value except: kepmsg.warn(logfile,'WARNING -- KEPIMAGES: cannot find INT_TIME keyword') try: frametim = cards1['FRAMETIM'].value except: kepmsg.warn(logfile,'WARNING -- KEPIMAGES: cannot find FRAMETIM keyword') try: num_frm = cards1['NUM_FRM'].value except: kepmsg.warn(logfile,'WARNING -- KEPIMAGES: cannot find NUM_FRM keyword') hdu1.header.update('EXTNAME','IMAGE','name of extension') try: hdu1.header.update('TELAPSE',frametim * num_frm,'[s] elapsed time for exposure') except: hdu1.header.update('TELAPSE',-999,'[s] elapsed time for exposure') try: hdu1.header.update('LIVETIME',int_time * num_frm,'[s] TELASPE multiplied by DEADC') except: hdu1.header.update('LIVETIME',-999,'[s] TELASPE multiplied by DEADC') try: hdu1.header.update('EXPOSURE',int_time * num_frm,'[s] time on source') except: hdu1.header.update('EXPOSURE',-999,'[s] time on source') try: hdu1.header.update('MIDTIME',time[cadence],'[BJD] mid-time of exposure') except: hdu1.header.update('MIDTIME',-999,'[BJD] mid-time of exposure') try: hdu1.header.update('TIMECORR',timecorr[cadence],'[d] barycenter - timeslice correction') except: hdu1.header.update('TIMECORR',-999,'[d] barycenter - timeslice correction') try: hdu1.header.update('CADENCEN',cadenceno[cadence],'unique cadence number') except: hdu1.header.update('CADENCEN',-999,'unique cadence number') try: hdu1.header.update('QUALITY',quality[cadence],'pixel quality flag') except: hdu1.header.update('QUALITY',-999,'pixel quality flag') try: if True in numpy.isfinite(cosmic_rays[cadence]): hdu1.header.update('COSM_RAY',True,'cosmic ray detected?') else: hdu1.header.update('COSM_RAY',False,'cosmic ray detected?') except: hdu1.header.update('COSM_RAY',-999,'cosmic ray detected?') try: pc1 = str(pos_corr1[cadence]) pc2 = str(pos_corr2[cadence]) hdu1.header.update('POSCORR1',pc1,'[pix] column position correction') hdu1.header.update('POSCORR2',pc2,'[pix] row position correction') except: hdu1.header.update('POSCORR1',-999,'[pix] column position correction') hdu1.header.update('POSCORR2',-999,'[pix] row position correction') outstr.append(hdu1) # write output file if status == 0: outstr.writeto(outfile,checksum=True) ncad += 1 txt = '\r%3d%% ' % (float(ncad) / float(len(cadencelis)) * 100.0) txt += '%s ' % outfile sys.stdout.write(txt) sys.stdout.flush() # close input structure if status == 0: status = kepio.closefits(instr,logfile,verbose) print '\n' # end time kepmsg.clock('KEPIMAGES finished at',logfile,verbose)
def kepdetrend(infile,outfile,datacol,errcol,ranges1,npoly1,nsig1,niter1, ranges2,npoly2,nsig2,niter2,popnans,plot,clobber,verbose,logfile, status,cmdLine=False): # startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 16 ysize = 9 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPDETREND -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+str(datacol)+' ' call += 'errcol='+str(errcol)+' ' call += 'ranges1='+str(ranges1)+' ' call += 'npoly1='+str(npoly1)+' ' call += 'nsig1='+str(nsig1)+' ' call += 'niter1='+str(niter1)+' ' call += 'ranges2='+str(ranges2)+' ' call += 'npoly2='+str(npoly2)+' ' call += 'nsig2='+str(nsig2)+' ' call += 'niter2='+str(niter2)+' ' popn = 'n' if (popnans): popn = 'y' call += 'popnans='+popn+ ' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPDETREND started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPDETREND: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile,message,verbose) # open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # read table structure if status == 0: table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) # filter input data table if status == 0: work1 = numpy.array([table.field('time'), table.field(datacol), table.field(errcol)]) work1 = numpy.rot90(work1,3) work1 = work1[~numpy.isnan(work1).any(1)] # read table columns if status == 0: intime = work1[:,2] + bjdref indata = work1[:,1] inerr = work1[:,0] print(intime) # time ranges for region 1 (region to be corrected) if status == 0: time1 = []; data1 = []; err1 = [] t1start, t1stop, status = kepio.timeranges(ranges1,logfile,verbose) if status == 0: cadencelis1, status = kepstat.filterOnRange(intime,t1start,t1stop) if status == 0: for i in range(len(cadencelis1)): time1.append(intime[cadencelis1[i]]) data1.append(indata[cadencelis1[i]]) if errcol.lower() != 'none': err1.append(inerr[cadencelis1[i]]) t0 = time1[0] time1 = array(time1,dtype='float64') - t0 data1 = array(data1,dtype='float32') if errcol.lower() != 'none': err1 = array(err1,dtype='float32') else: err1 = None # fit function to range 1 if status == 0: functype = 'poly' + str(npoly1) pinit = [data1.mean()] if npoly1 > 0: for i in range(npoly1): pinit.append(0) pinit = array(pinit,dtype='float32') coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx1, ploty1, status = \ kepfit.lsqclip(functype,pinit,time1,data1,err1,nsig1,nsig1,niter1, logfile,verbose) fit1 = indata * 0.0 for i in range(len(coeffs)): fit1 += coeffs[i] * (intime - t0)**i for i in range(len(intime)): if i not in cadencelis1: fit1[i] = 0.0 plotx1 += t0 print(coeffs) # time ranges for region 2 (region that is correct) if status == 0: time2 = []; data2 = []; err2 = [] t2start, t2stop, status = kepio.timeranges(ranges2,logfile,verbose) cadencelis2, status = kepstat.filterOnRange(intime,t2start,t2stop) for i in range(len(cadencelis2)): time2.append(intime[cadencelis2[i]]) data2.append(indata[cadencelis2[i]]) if errcol.lower() != 'none': err2.append(inerr[cadencelis2[i]]) t0 = time2[0] time2 = array(time2,dtype='float64') - t0 data2 = array(data2,dtype='float32') if errcol.lower() != 'none': err2 = array(err2,dtype='float32') else: err2 = None # fit function to range 2 if status == 0: functype = 'poly' + str(npoly2) pinit = [data2.mean()] if npoly2 > 0: for i in range(npoly2): pinit.append(0) pinit = array(pinit,dtype='float32') coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx2, ploty2, status = \ kepfit.lsqclip(functype,pinit,time2,data2,err2,nsig2,nsig2,niter2, logfile,verbose) fit2 = indata * 0.0 for i in range(len(coeffs)): fit2 += coeffs[i] * (intime - t0)**i for i in range(len(intime)): if i not in cadencelis1: fit2[i] = 0.0 plotx2 += t0 # normalize data if status == 0: outdata = indata - fit1 + fit2 if errcol.lower() != 'none': outerr = inerr * 1.0 # comment keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) # clean up x-axis unit if status == 0: intime0 = float(int(tstart / 100) * 100.0) if intime0 < 2.4e6: intime0 += 2.4e6 ptime = intime - intime0 plotx1 = plotx1 - intime0 plotx2 = plotx2 - intime0 xlab = 'BJD $-$ %d' % intime0 # clean up y-axis units if status == 0: pout = outdata ploty1 ploty2 nrm = len(str(int(numpy.nanmax(indata))))-1 indata = indata / 10**nrm pout = pout / 10**nrm ploty1 = ploty1 / 10**nrm ploty2 = ploty2 / 10**nrm ylab = '10$^%d$ e$^-$ s$^{-1}$' % nrm # data limits xmin = ptime.min() xmax = ptime.max() ymin = indata.min() ymax = indata.max() omin = pout.min() omax = pout.max() xr = xmax - xmin yr = ymax - ymin oo = omax - omin ptime = insert(ptime,[0],[ptime[0]]) ptime = append(ptime,[ptime[-1]]) indata = insert(indata,[0],[0.0]) indata = append(indata,[0.0]) pout = insert(pout,[0],[0.0]) pout = append(pout,0.0) # plot light curve if status == 0 and plot: try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} rcParams.update(params) except: pass pylab.figure(figsize=[xsize,ysize]) pylab.clf() # plot original data ax = pylab.axes([0.06,0.523,0.93,0.45]) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) # rotate y labels by 90 deg labels = ax.get_yticklabels() pylab.setp(labels, 'rotation', 90, fontsize=12) pylab.plot(ptime,indata,color=lcolor,linestyle='-',linewidth=lwidth) pylab.fill(ptime,indata,color=fcolor,linewidth=0.0,alpha=falpha) pylab.plot(plotx1,ploty1,color='r',linestyle='-',linewidth=2.0) pylab.plot(plotx2,ploty2,color='g',linestyle='-',linewidth=2.0) pylab.xlim(xmin-xr*0.01,xmax+xr*0.01) if ymin > 0.0: pylab.ylim(ymin-yr*0.01,ymax+yr*0.01) else: pylab.ylim(1.0e-10,ymax+yr*0.01) pylab.ylabel(ylab, {'color' : 'k'}) pylab.grid() # plot detrended data ax = pylab.axes([0.06,0.073,0.93,0.45]) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) # rotate y labels by 90 deg labels = ax.get_yticklabels() pylab.setp(labels, 'rotation', 90, fontsize=12) pylab.plot(ptime,pout,color=lcolor,linestyle='-',linewidth=lwidth) pylab.fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha) pylab.xlim(xmin-xr*0.01,xmax+xr*0.01) if ymin > 0.0: pylab.ylim(omin-oo*0.01,omax+oo*0.01) else: pylab.ylim(1.0e-10,omax+oo*0.01) pylab.xlabel(xlab, {'color' : 'k'}) try: pylab.ylabel(ylab, {'color' : 'k'}) except: ylab = '10**%d e-/s' % nrm pylab.ylabel(ylab, {'color' : 'k'}) # render plot if status == 0: if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() # write output file if status == 0 and popnans: instr[1].data.field(datacol)[good_data] = outdata instr[1].data.field(errcol)[good_data] = outerr instr[1].data.field(datacol)[bad_data] = None instr[1].data.field(errcol)[bad_data] = None instr.writeto(outfile) elif status == 0 and not popnans: for i in range(len(outdata)): instr[1].data.field(datacol)[i] = outdata[i] if errcol.lower() != 'none': instr[1].data.field(errcol)[i] = outerr[i] instr.writeto(outfile) # close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) ## end time if (status == 0): message = 'KEPDETREND completed at' else: message = '\nKEPDETREND aborted at' kepmsg.clock(message,logfile,verbose)
def kepsmooth(infile,outfile,datacol,function,fscale,plot,plotlab, clobber,verbose,logfile,status, cmdLine=False): ## startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 18 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 ## log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPSMOOTH -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+str(datacol)+' ' call += 'function='+str(function)+' ' call += 'fscale='+str(fscale)+' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' call += 'plotlab='+str(plotlab)+' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) ## start time kepmsg.clock('KEPSMOOTH started at',logfile,verbose) ## test log file logfile = kepmsg.test(logfile) ## clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPSMOOTH: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile,message,verbose) ## open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if cadence == 0.0: tstart, tstop, ncad, cadence, status = kepio.cadence(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence ## fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) ## read table structure if status == 0: table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) # read time and flux columns if status == 0: barytime, status = kepio.readtimecol(infile,table,logfile,verbose) if status == 0: flux, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose) # filter input data table if status == 0: try: nanclean = instr[1].header['NANCLEAN'] except: naxis2 = 0 for i in range(len(table.field(0))): if (numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i]) and flux[i] != 0.0): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] comment = 'NaN cadences removed from data' status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose) ## read table columns if status == 0: try: intime = instr[1].data.field('barytime') except: intime, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose) indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose) if status == 0: intime = intime + bjdref indata = indata / cadenom ## smooth data if status == 0: outdata = kepfunc.smooth(indata,fscale/(cadence/86400),function) ## comment keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) ## clean up x-axis unit if status == 0: intime0 = float(int(tstart / 100) * 100.0) if intime0 < 2.4e6: intime0 += 2.4e6 ptime = intime - intime0 xlab = 'BJD $-$ %d' % intime0 ## clean up y-axis units if status == 0: pout = indata * 1.0 pout2 = outdata * 1.0 nrm = len(str(int(numpy.nanmax(pout))))-1 pout = pout / 10**nrm pout2 = pout2 / 10**nrm ylab = '10$^%d$ %s' % (nrm, re.sub('_','-',plotlab)) ## data limits xmin = numpy.nanmin(ptime) xmax = numpy.nanmax(ptime) ymin = numpy.min(pout) ymax = numpy.nanmax(pout) xr = xmax - xmin yr = ymax - ymin ptime = insert(ptime,[0],[ptime[0]]) ptime = append(ptime,[ptime[-1]]) pout = insert(pout,[0],[0.0]) pout = append(pout,0.0) pout2 = insert(pout2,[0],[0.0]) pout2 = append(pout2,0.0) ## plot light curve if status == 0 and plot: try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} rcParams.update(params) except: print 'ERROR -- KEPSMOOTH: install latex for scientific plotting' status = 1 if status == 0 and plot: pylab.figure(1,figsize=[xsize,ysize]) # delete any fossil plots in the matplotlib window pylab.clf() # position axes inside the plotting window ax = pylab.subplot(111) pylab.subplots_adjust(0.06,0.1,0.93,0.88) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) # rotate y labels by 90 deg labels = ax.get_yticklabels() setp(labels, 'rotation', 90) pylab.plot(ptime[1:-1],pout[1:-1],color='#ff9900',linestyle='-',linewidth=lwidth) fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha) pylab.plot(ptime,pout2,color=lcolor,linestyle='-',linewidth=lwidth*4.0) pylab.xlabel(xlab, {'color' : 'k'}) pylab.ylabel(ylab, {'color' : 'k'}) xlim(xmin-xr*0.01,xmax+xr*0.01) if ymin >= 0.0: ylim(ymin-yr*0.01,ymax+yr*0.01) else: ylim(1.0e-10,ymax+yr*0.01) pylab.grid() # render plot if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() ## write output file if status == 0: for i in range(len(outdata)): instr[1].data.field(datacol)[i] = outdata[i] instr.writeto(outfile) ## close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) ## end time if (status == 0): message = 'KEPSMOOTH completed at' else: message = '\nKEPSMOOTH aborted at' kepmsg.clock(message,logfile,verbose)
def keprange(infile,rinfile,outfile,column,clobber,verbose,logfile,status,cLine=False): # startup parameters status = 0 global instr, cadence, barytime0, nrm, barytime, flux global xmin, xmax, ymin, ymax, xr, yr, xlab, ylab global clobb, outf, verb, logf, rinf, col, bjdref, cade, cmdLine # log the call if rinfile.lower() == 'none': rinfile = '' hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPRANGE -- ' call += 'infile='+infile+' ' call += 'rinfile='+rinfile+' ' call += 'outfile='+outfile+' ' call += 'column='+column+' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) clobb = clobber outf = outfile verb = verbose logf = logfile rinf = rinfile cmdLine = cLine # start time kepmsg.clock('KEPRANGE started at: ',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPRANGE: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile,message,verbose) ## open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence cade = cadenom # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,infile,logfile,verbose) # input data if status == 0: table = instr[1].data # filter out NaNs work1 = []; work2 = [] col = column if status == 0: barytime, status = kepio.readtimecol(infile,table,logfile,verbose) if status == 0: try: flux = instr[1].data.field(col) except: message = 'ERROR -- KEPRANGE: no column named ' + col + ' in table ' + infile + '[1]' status = kepmsg.err(file,message,verbose) if status == 0: for i in range(len(barytime)): if (numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i]) and flux[i] != 0.0): work1.append(barytime[i] + bjdref) work2.append(flux[i]) barytime = array(work1,dtype='float64') flux = array(work2,dtype='float32') / cadenom # clean up x-axis unit if status == 0: barytime0 = float(int(tstart / 100) * 100.0) barytime = barytime - barytime0 xlab = 'BJD $-$ %d' % barytime0 # clean up y-axis units if status == 0: nrm = len(str(int(flux.max())))-1 flux = flux / 10**nrm ylab = '10$^%d$ e$^-$ s$^{-1}$' % nrm # data limits xmin = barytime.min() xmax = barytime.max() ymin = flux.min() ymax = flux.max() xr = xmax - xmin yr = ymax - ymin flux[0] = 0.0 flux[-1] = 0.0 # plot new light curve if status == 0: try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} pylab.rcParams.update(params) except: print 'ERROR -- KEPRANGE: install latex for scientific plotting' status = 1 if status == 0: pylab.figure(figsize=[xsize,ysize]) pylab.clf() plotlc(cmdLine) # close input file if status == 0: status = kepio.closefits(instr,logfile,verbose)
def kepbinary(infile, outfile, datacol, m1, m2, r1, r2, period, bjd0, eccn, omega, inclination, c1, c2, c3, c4, albedo, depth, contamination, gamma, fitparams, eclipses, dopboost, tides, job, clobber, verbose, logfile, status): # startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 17 ysize = 7 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPBINARY -- ' call += 'infile=' + infile + ' ' call += 'outfile=' + outfile + ' ' call += 'datacol=' + datacol + ' ' call += 'm1=' + str(m1) + ' ' call += 'm2=' + str(m2) + ' ' call += 'r1=' + str(r1) + ' ' call += 'r2=' + str(r2) + ' ' call += 'period=' + str(period) + ' ' call += 'bjd0=' + str(bjd0) + ' ' call += 'eccn=' + str(eccn) + ' ' call += 'omega=' + str(omega) + ' ' call += 'inclination=' + str(inclination) + ' ' call += 'c1=' + str(c1) + ' ' call += 'c2=' + str(c2) + ' ' call += 'c3=' + str(c3) + ' ' call += 'c4=' + str(c4) + ' ' call += 'albedo=' + str(albedo) + ' ' call += 'depth=' + str(depth) + ' ' call += 'contamination=' + str(contamination) + ' ' call += 'gamma=' + str(gamma) + ' ' call += 'fitparams=' + str(fitparams) + ' ' eclp = 'n' if (eclipses): eclp = 'y' call += 'eclipses=' + eclp + ' ' boost = 'n' if (dopboost): boost = 'y' call += 'dopboost=' + boost + ' ' distort = 'n' if (tides): distort = 'y' call += 'tides=' + distort + ' ' call += 'job=' + str(job) + ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber=' + overwrite + ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose=' + chatter + ' ' call += 'logfile=' + logfile kepmsg.log(logfile, call + '\n', verbose) # start time kepmsg.clock('KEPBINARY started at', logfile, verbose) # test log file logfile = kepmsg.test(logfile) # check and format the list of fit parameters if status == 0 and job == 'fit': allParams = [m1, m2, r1, r2, period, bjd0, eccn, omega, inclination] allNames = [ 'm1', 'm2', 'r1', 'r2', 'period', 'bjd0', 'eccn', 'omega', 'inclination' ] fitparams = re.sub('\|', ',', fitparams.strip()) fitparams = re.sub('\.', ',', fitparams.strip()) fitparams = re.sub(';', ',', fitparams.strip()) fitparams = re.sub(':', ',', fitparams.strip()) fitparams = re.sub('\s+', ',', fitparams.strip()) fitparams, status = kepio.parselist(fitparams, logfile, verbose) for fitparam in fitparams: if fitparam.strip() not in allNames: message = 'ERROR -- KEPBINARY: unknown field in list of fit parameters' status = kepmsg.err(logfile, message, verbose) # clobber output file if status == 0: if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPBINARY: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile, message, verbose) # open input file if status == 0: instr, status = kepio.openfits(infile, 'readonly', logfile, verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys( instr, infile, logfile, verbose, status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # check the data column exists if status == 0: try: instr[1].data.field(datacol) except: message = 'ERROR -- KEPBINARY: ' + datacol + ' column does not exist in ' + infile + '[1]' status = kepmsg.err(logfile, message, verbose) # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr, file, logfile, verbose) # read table structure if status == 0: table, status = kepio.readfitstab(infile, instr[1], logfile, verbose) # filter input data table if status == 0: try: nanclean = instr[1].header['NANCLEAN'] except: naxis2 = 0 try: for i in range(len(table.field(0))): if numpy.isfinite(table.field('barytime')[i]) and \ numpy.isfinite(table.field(datacol)[i]): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] except: for i in range(len(table.field(0))): if numpy.isfinite(table.field('time')[i]) and \ numpy.isfinite(table.field(datacol)[i]): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] comment = 'NaN cadences removed from data' status = kepkey.new('NANCLEAN', True, comment, instr[1], outfile, logfile, verbose) # read table columns if status == 0: try: time = instr[1].data.field('barytime') except: time, status = kepio.readfitscol(infile, instr[1].data, 'time', logfile, verbose) indata, status = kepio.readfitscol(infile, instr[1].data, datacol, logfile, verbose) if status == 0: time = time + bjdref indata = indata / cadenom # limb-darkening cofficients if status == 0: limbdark = numpy.array([c1, c2, c3, c4], dtype='float32') # time details for model if status == 0: npt = len(time) exptime = numpy.zeros((npt), dtype='float64') dtype = numpy.zeros((npt), dtype='int') for i in range(npt): try: exptime[i] = time[i + 1] - time[i] except: exptime[i] = time[i] - time[i - 1] # calculate binary model if status == 0: tmodel = kepsim.transitModel(1.0, m1, m2, r1, r2, period, inclination, bjd0, eccn, omega, depth, albedo, c1, c2, c3, c4, gamma, contamination, npt, time, exptime, dtype, eclipses, dopboost, tides) # re-normalize binary model to data if status == 0 and (job == 'overlay' or job == 'fit'): dmedian = numpy.median(indata) tmodel = tmodel / numpy.median(tmodel) * dmedian # define arrays of floating and frozen parameters if status == 0 and job == 'fit': params = [] paramNames = [] arguments = [] argNames = [] for i in range(len(allNames)): if allNames[i] in fitparams: params.append(allParams[i]) paramNames.append(allNames[i]) else: arguments.append(allParams[i]) argNames.append(allNames[i]) params.append(dmedian) params = numpy.array(params, dtype='float32') # subtract model from data if status == 0 and job == 'fit': deltam = numpy.abs(indata - tmodel) # fit statistics if status == 0 and job == 'fit': aveDelta = numpy.sum(deltam) / npt chi2 = math.sqrt( numpy.sum( (indata - tmodel) * (indata - tmodel) / (npt - len(params)))) # fit model to data using downhill simplex if status == 0 and job == 'fit': print '' print '%4s %11s %11s' % ('iter', 'delta', 'chi^2') print '----------------------------' print '%4d %.5E %.5E' % (0, aveDelta, chi2) bestFit = scipy.optimize.fmin( fitModel, params, args=(paramNames, dmedian, m1, m2, r1, r2, period, bjd0, eccn, omega, inclination, depth, albedo, c1, c2, c3, c4, gamma, contamination, npt, time, exptime, indata, dtype, eclipses, dopboost, tides), maxiter=1e4) # calculate best fit binary model if status == 0 and job == 'fit': print '' for i in range(len(paramNames)): if 'm1' in paramNames[i].lower(): m1 = bestFit[i] print ' M1 = %.3f Msun' % bestFit[i] elif 'm2' in paramNames[i].lower(): m2 = bestFit[i] print ' M2 = %.3f Msun' % bestFit[i] elif 'r1' in paramNames[i].lower(): r1 = bestFit[i] print ' R1 = %.4f Rsun' % bestFit[i] elif 'r2' in paramNames[i].lower(): r2 = bestFit[i] print ' R2 = %.4f Rsun' % bestFit[i] elif 'period' in paramNames[i].lower(): period = bestFit[i] elif 'bjd0' in paramNames[i].lower(): bjd0 = bestFit[i] print 'BJD0 = %.8f' % bestFit[i] elif 'eccn' in paramNames[i].lower(): eccn = bestFit[i] print ' e = %.3f' % bestFit[i] elif 'omega' in paramNames[i].lower(): omega = bestFit[i] print ' w = %.3f deg' % bestFit[i] elif 'inclination' in paramNames[i].lower(): inclination = bestFit[i] print ' i = %.3f deg' % bestFit[i] flux = bestFit[-1] print '' tmodel = kepsim.transitModel(flux, m1, m2, r1, r2, period, inclination, bjd0, eccn, omega, depth, albedo, c1, c2, c3, c4, gamma, contamination, npt, time, exptime, dtype, eclipses, dopboost, tides) # subtract model from data if status == 0: deltaMod = indata - tmodel # standard deviation of model if status == 0: stdDev = math.sqrt( numpy.sum((indata - tmodel) * (indata - tmodel)) / npt) # clean up x-axis unit if status == 0: time0 = float(int(tstart / 100) * 100.0) ptime = time - time0 xlab = 'BJD $-$ %d' % time0 # clean up y-axis units if status == 0: nrm = len(str(int(indata.max()))) - 1 pout = indata / 10**nrm pmod = tmodel / 10**nrm pres = deltaMod / stdDev if job == 'fit' or job == 'overlay': try: ylab1 = 'Flux (10$^%d$ e$^-$ s$^{-1}$)' % nrm ylab2 = 'Residual ($\sigma$)' except: ylab1 = 'Flux (10**%d e-/s)' % nrm ylab2 = 'Residual (sigma)' else: ylab1 = 'Normalized Flux' # dynamic range of model plot if status == 0 and job == 'model': xmin = ptime.min() xmax = ptime.max() ymin = tmodel.min() ymax = tmodel.max() # dynamic range of model/data overlay or fit if status == 0 and (job == 'overlay' or job == 'fit'): xmin = ptime.min() xmax = ptime.max() ymin = pout.min() ymax = pout.max() tmin = pmod.min() tmax = pmod.max() ymin = numpy.array([ymin, tmin]).min() ymax = numpy.array([ymax, tmax]).max() rmin = pres.min() rmax = pres.max() # pad the dynamic range if status == 0: xr = (xmax - xmin) / 80 yr = (ymax - ymin) / 40 if job == 'overlay' or job == 'fit': rr = (rmax - rmin) / 40 # set up plot style if status == 0: labelsize = 24 ticksize = 16 xsize = 17 ysize = 7 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 params = { 'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': 24, 'axes.font': 'sans-serif', 'axes.fontweight': 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': 16, 'ytick.labelsize': 16 } pylab.rcParams.update(params) pylab.figure(figsize=[14, 10]) pylab.clf() # main plot window ax = pylab.axes([0.05, 0.3, 0.94, 0.68]) pylab.gca().xaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) labels = ax.get_yticklabels() setp(labels, 'rotation', 90, fontsize=12) # plot model time series if status == 0 and job == 'model': pylab.plot(ptime, tmodel, color='#0000ff', linestyle='-', linewidth=1.0) ptime = numpy.insert(ptime, [0.0], ptime[0]) ptime = numpy.append(ptime, ptime[-1]) tmodel = numpy.insert(tmodel, [0.0], 0.0) tmodel = numpy.append(tmodel, 0.0) pylab.fill(ptime, tmodel, fc='#ffff00', linewidth=0.0, alpha=0.2) # plot data time series and best fit if status == 0 and (job == 'overlay' or job == 'fit'): pylab.plot(ptime, pout, color='#0000ff', linestyle='-', linewidth=1.0) ptime = numpy.insert(ptime, [0.0], ptime[0]) ptime = numpy.append(ptime, ptime[-1]) pout = numpy.insert(pout, [0], 0.0) pout = numpy.append(pout, 0.0) pylab.fill(ptime, pout, fc='#ffff00', linewidth=0.0, alpha=0.2) pylab.plot(ptime[1:-1], pmod, color='r', linestyle='-', linewidth=2.0) # ranges and labels if status == 0: pylab.xlim(xmin - xr, xmax + xr) pylab.ylim(ymin - yr, ymax + yr) pylab.xlabel(xlab, {'color': 'k'}) pylab.ylabel(ylab1, {'color': 'k'}) # residual plot window if status == 0 and (job == 'overlay' or job == 'fit'): ax = pylab.axes([0.05, 0.07, 0.94, 0.23]) pylab.gca().xaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) labels = ax.get_yticklabels() setp(labels, 'rotation', 90, fontsize=12) # plot residual time series if status == 0 and (job == 'overlay' or job == 'fit'): pylab.plot([ptime[0], ptime[-1]], [0.0, 0.0], color='r', linestyle='--', linewidth=1.0) pylab.plot([ptime[0], ptime[-1]], [-1.0, -1.0], color='r', linestyle='--', linewidth=1.0) pylab.plot([ptime[0], ptime[-1]], [1.0, 1.0], color='r', linestyle='--', linewidth=1.0) pylab.plot(ptime[1:-1], pres, color='#0000ff', linestyle='-', linewidth=1.0) pres = numpy.insert(pres, [0], rmin) pres = numpy.append(pres, rmin) pylab.fill(ptime, pres, fc='#ffff00', linewidth=0.0, alpha=0.2) # ranges and labels of residual time series if status == 0 and (job == 'overlay' or job == 'fit'): pylab.xlim(xmin - xr, xmax + xr) pylab.ylim(rmin - rr, rmax + rr) pylab.xlabel(xlab, {'color': 'k'}) pylab.ylabel(ylab2, {'color': 'k'}) # display the plot if status == 0: pylab.draw()
def kepdynamic(infile, outfile, fcol, pmin, pmax, nfreq, deltat, nslice, plot, plotscale, cmap, clobber, verbose, logfile, status, cmdLine=False): # startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 12 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 numpy.seterr(all="ignore") # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPDYNAMIC -- ' call += 'infile=' + infile + ' ' call += 'outfile=' + outfile + ' ' call += 'fcol=' + fcol + ' ' call += 'pmin=' + str(pmin) + ' ' call += 'pmax=' + str(pmax) + ' ' call += 'nfreq=' + str(nfreq) + ' ' call += 'deltat=' + str(deltat) + ' ' call += 'nslice=' + str(nslice) + ' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot=' + plotit + ' ' call += 'plotscale=' + plotscale + ' ' call += 'cmap=' + str(cmap) + ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber=' + overwrite + ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose=' + chatter + ' ' call += 'logfile=' + logfile kepmsg.log(logfile, call + '\n', verbose) # start time kepmsg.clock('Start time is', logfile, verbose) # test log file logfile = kepmsg.test(logfile) # error checking if status == 0 and pmin >= pmax: message = 'ERROR -- KEPDYNAMIC: PMIN must be less than PMAX' status = kepmsg.err(logfile, message, verbose) # clobber output file if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPDYNAMIC: ' + outfile + ' exists. Use clobber' status = kepmsg.err(logfile, message, verbose) # plot color map if status == 0 and cmap == 'browse': status = keplab.cmap_plot() # open input file if status == 0: instr, status = kepio.openfits(infile, 'readonly', logfile, verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys( instr, infile, logfile, verbose, status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr, file, logfile, verbose) # read table columns if status == 0: barytime, status = kepio.readtimecol(infile, instr[1].data, logfile, verbose) if status == 0: signal, status = kepio.readfitscol(infile, instr[1].data, fcol, logfile, verbose) if status == 0: barytime = barytime + bjdref signal = signal / cadenom # remove infinite data from time series if status == 0: incols = [barytime, signal] outcols = kepstat.removeinfinlc(signal, incols) barytime = outcols[0] signal = outcols[1] # period to frequency conversion if status == 0: fmin = 1.0 / pmax fmax = 1.0 / pmin deltaf = (fmax - fmin) / nfreq # determine bounds of time slices if status == 0: t1 = [] t2 = [] dt = barytime[-1] - barytime[0] dt -= deltat if dt < 0: message = 'ERROR -- KEPDYNAMIC: time slices are larger than data range' status = kepmsg.err(logfile, message, verbose) ds = dt / (nslice - 1) for i in range(nslice): t1.append(barytime[0] + ds * float(i)) t2.append(barytime[0] + deltat + ds * float(i)) # loop through time slices if status == 0: dynam = [] for i in range(nslice): x = [] y = [] for j in range(len(barytime)): if (barytime[j] >= t1[i] and barytime[j] <= t2[i]): x.append(barytime[j]) y.append(signal[j]) x = array(x, dtype='float64') y = array(y, dtype='float32') y = y - median(y) # determine FT power fr, power = kepfourier.ft(x, y, fmin, fmax, deltaf, False) for j in range(len(power)): dynam.append(power[j]) print('Timeslice: %.4f Pmax: %.2E' % ((t2[i] + t1[i]) / 2, power.max())) # define shape of results array dynam = array(dynam, dtype='float64') dynam.shape = len(t1), len(power) # write output file if status == 0: instr.append(ImageHDU()) instr[-1].data = dynam.transpose() instr[-1].header.update('EXTNAME', 'DYNAMIC FT', 'extension name') instr[-1].header.update('WCSAXES', 2, 'number of WCS axes') instr[-1].header.update('CRPIX1', 0.5, 'reference pixel along axis 1') instr[-1].header.update('CRPIX2', 0.5, 'reference pixel along axis 2') instr[-1].header.update('CRVAL1', t1[0], 'time at reference pixel (BJD)') instr[-1].header.update('CRVAL2', fmin, 'frequency at reference pixel (1/day)') instr[-1].header.update('CDELT1', (barytime[-1] - barytime[0]) / nslice, 'pixel scale in dimension 1 (days)') instr[-1].header.update('CDELT2', deltaf, 'pixel scale in dimension 2 (1/day)') instr[-1].header.update('CTYPE1', 'BJD', 'data type of dimension 1') instr[-1].header.update('CTYPE2', 'FREQUENCY', 'data type of dimension 2') instr.writeto(outfile) # history keyword in output file if status == 0: status = kepkey.history(call, instr[0], outfile, logfile, verbose) # close input file if status == 0: status = kepio.closefits(instr, logfile, verbose) # clean up x-axis unit if status == 0: time0 = float(int(barytime[0] / 100) * 100.0) barytime = barytime - time0 xlab = 'BJD $-$ %d' % time0 # image intensity min and max if status == 0: if 'rithmic' in plotscale: dynam = numpy.log10(dynam) elif 'sq' in plotscale: dynam = numpy.sqrt(dynam) elif 'logoflog' in plotscale: dynam = numpy.log10(numpy.abs(numpy.log10(dynam))) # dynam = -dynam nstat = 2 pixels = [] for i in range(dynam.shape[0]): for j in range(dynam.shape[1]): pixels.append(dynam[i, j]) pixels = array(sort(pixels), dtype=float32) if int(float(len(pixels)) * 0.1 + 0.5) > nstat: nstat = int(float(len(pixels)) * 0.1 + 0.5) zmin = median(pixels[:nstat]) zmax = median(pixels[-1:]) if isnan(zmax): zmax = median(pixels[-nstat / 2:]) if isnan(zmax): zmax = numpy.nanmax(pixels) # plot power spectrum if status == 0 and plot: params = { 'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight': 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize } rcParams.update(params) pylab.figure(1, figsize=[xsize, ysize]) pylab.clf() pylab.axes([0.08, 0.113, 0.91, 0.86]) dynam = dynam.transpose() pylab.imshow(dynam, origin='lower', aspect='auto', cmap=cmap, vmin=zmin, vmax=zmax, extent=[barytime[0], barytime[-1], fmin, fmax], interpolation='bilinear') xlabel(xlab, {'color': 'k'}) ylabel(r'Frequency (d$^{-1}$)', {'color': 'k'}) grid() pylab.savefig(re.sub('\.\S+', '.png', outfile), dpi=100) # render plot if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() return status ## end time if (status == 0): message = 'KEPDYNAMIC completed at' else: message = '\nKEPDYNAMIC aborted at' kepmsg.clock(message, logfile, verbose)
def kepflatten(infile,outfile,datacol,errcol,nsig,stepsize,winsize,npoly,niter,ranges, plot,clobber,verbose,logfile,status,cmdLine=False): # startup parameters status = 0 labelsize = 32 ticksize = 18 xsize = 16 ysize = 10 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPFLATTEN -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+str(datacol)+' ' call += 'errcol='+str(errcol)+' ' call += 'nsig='+str(nsig)+' ' call += 'stepsize='+str(stepsize)+' ' call += 'winsize='+str(winsize)+' ' call += 'npoly='+str(npoly)+' ' call += 'niter='+str(niter)+' ' call += 'ranges='+str(ranges)+' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPFLATTEN started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # test winsize > stepsize if winsize < stepsize: message = 'ERROR -- KEPFLATTEN: winsize must be greater than stepsize' status = kepmsg.err(logfile,message,verbose) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPFLATTEN: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile,message,verbose) # open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # read table structure if status == 0: table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) # filter input data table if status == 0: try: datac = table.field(datacol) except: message = 'ERROR -- KEPFLATTEN: cannot find or read data column ' + datacol status = kepmsg.err(logfile,message,verbose) if status == 0: try: err = table.field(errcol) except: message = 'WARNING -- KEPFLATTEN: cannot find or read error column ' + errcol errcol = 'None' if status == 0: if errcol.lower() == 'none' or errcol == 'PSF_FLUX_ERR': err = datac * cadence err = numpy.sqrt(numpy.abs(err)) / cadence work1 = numpy.array([table.field('time'), datac, err]) else: work1 = numpy.array([table.field('time'), datac, err]) work1 = numpy.rot90(work1,3) work1 = work1[~numpy.isnan(work1).any(1)] # read table columns if status == 0: intime = work1[:,2] + bjdref indata = work1[:,1] inerr = work1[:,0] if len(intime) == 0: message = 'ERROR -- KEPFLATTEN: one of the input arrays is all NaN' status = kepmsg.err(logfile,message,verbose) # time ranges for region to be corrected if status == 0: t1, t2, status = kepio.timeranges(ranges,logfile,verbose) cadencelis, status = kepstat.filterOnRange(intime,t1,t2) # find limits of each time step if status == 0: tstep1 = []; tstep2 = [] work = intime[0] while work <= intime[-1]: tstep1.append(work) tstep2.append(array([work+winsize,intime[-1]],dtype='float64').min()) work += stepsize # find cadence limits of each time step if status == 0: cstep1 = []; cstep2 = [] for n in range(len(tstep1)): for i in range(len(intime)-1): if intime[i] <= tstep1[n] and intime[i+1] > tstep1[n]: for j in range(i,len(intime)-1): if intime[j] < tstep2[n] and intime[j+1] >= tstep2[n]: cstep1.append(i) cstep2.append(j+1) # comment keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) # clean up x-axis unit if status == 0: intime0 = float(int(tstart / 100) * 100.0) ptime = intime - intime0 xlab = 'BJD $-$ %d' % intime0 # clean up y-axis units if status == 0: pout = copy(indata) nrm = len(str(int(pout.max())))-1 pout = pout / 10**nrm ylab = '10$^%d$ e$^-$ s$^{-1}$' % nrm # data limits xmin = ptime.min() xmax = ptime.max() ymin = pout.min() ymax = pout.max() xr = xmax - xmin yr = ymax - ymin ptime = insert(ptime,[0],[ptime[0]]) ptime = append(ptime,[ptime[-1]]) pout = insert(pout,[0],[0.0]) pout = append(pout,0.0) # plot light curve if status == 0 and plot: plotLatex = True try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} rcParams.update(params) except: plotLatex = False if status == 0 and plot: pylab.figure(figsize=[xsize,ysize]) pylab.clf() # plot data ax = pylab.axes([0.06,0.54,0.93,0.43]) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) # rotate y labels by 90 deg labels = ax.get_yticklabels() pylab.setp(labels, 'rotation', 90) pylab.setp(pylab.gca(),xticklabels=[]) pylab.plot(ptime[1:-1],pout[1:-1],color=lcolor,linestyle='-',linewidth=lwidth) pylab.fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha) if not plotLatex: ylab = '10**%d electrons/sec' % nrm ylabel(ylab, {'color' : 'k'}) grid() # loop over each time step, fit data, determine rms if status == 0: fitarray = numpy.zeros((len(indata),len(cstep1)),dtype='float32') sigarray = numpy.zeros((len(indata),len(cstep1)),dtype='float32') fitarray[:,:] = numpy.nan sigarray[:,:] = numpy.nan masterfit = indata * 0.0 mastersigma = numpy.zeros(len(masterfit)) functype = 'poly' + str(npoly) for i in range(len(cstep1)): timeSeries = intime[cstep1[i]:cstep2[i]+1]-intime[cstep1[i]] dataSeries = indata[cstep1[i]:cstep2[i]+1] fitTimeSeries = numpy.array([],dtype='float32') fitDataSeries = numpy.array([],dtype='float32') pinit = [dataSeries.mean()] if npoly > 0: for j in range(npoly): pinit.append(0.0) pinit = array(pinit,dtype='float32') try: if len(fitarray[cstep1[i]:cstep2[i]+1,i]) > len(pinit): coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip(functype,pinit,timeSeries,dataSeries,None,nsig,nsig,niter, logfile,verbose) fitarray[cstep1[i]:cstep2[i]+1,i] = 0.0 sigarray[cstep1[i]:cstep2[i]+1,i] = sigma for j in range(len(coeffs)): fitarray[cstep1[i]:cstep2[i]+1,i] += coeffs[j] * timeSeries**j except: for j in range(cstep1[i],cstep2[i]+1): fitarray[cstep1[i]:cstep2[i]+1,i] = 0.0 sigarray[cstep1[i]:cstep2[i]+1,i] = 1.0e-10 message = 'WARNING -- KEPFLATTEN: could not fit range ' message += str(intime[cstep1[i]]) + '-' + str(intime[cstep2[i]]) kepmsg.warn(None,message) # find mean fit for each timestamp if status == 0: for i in range(len(indata)): masterfit[i] = scipy.stats.nanmean(fitarray[i,:]) mastersigma[i] = scipy.stats.nanmean(sigarray[i,:]) masterfit[-1] = masterfit[-4] #fudge masterfit[-2] = masterfit[-4] #fudge masterfit[-3] = masterfit[-4] #fudge pylab.plot(intime-intime0, masterfit / 10**nrm,'g',lw='3') # reject outliers if status == 0: rejtime = []; rejdata = []; naxis2 = 0 for i in range(len(masterfit)): if abs(indata[i] - masterfit[i]) > nsig * mastersigma[i] and i in cadencelis: rejtime.append(intime[i]) rejdata.append(indata[i]) rejtime = array(rejtime,dtype='float64') rejdata = array(rejdata,dtype='float32') if plot: pylab.plot(rejtime-intime0,rejdata / 10**nrm,'ro') # new data for output file if status == 0: outdata = indata / masterfit outerr = inerr / masterfit # plot ranges if status == 0 and plot: pylab.xlim(xmin-xr*0.01,xmax+xr*0.01) if ymin >= 0.0: pylab.ylim(ymin-yr*0.01,ymax+yr*0.01) else: pylab.ylim(1.0e-10,ymax+yr*0.01) # plot residual data if status == 0 and plot: ax = pylab.axes([0.06,0.09,0.93,0.43]) # force tick labels to be absolute rather than relative if status == 0 and plot: pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) # rotate y labels by 90 deg labels = ax.get_yticklabels() setp(labels, 'rotation', 90) # clean up y-axis units if status == 0: pout = copy(outdata) ylab = 'Normalized Flux' # data limits if status == 0 and plot: ymin = pout.min() ymax = pout.max() yr = ymax - ymin pout = insert(pout,[0],[0.0]) pout = append(pout,0.0) pylab.plot(ptime[1:-1],pout[1:-1],color=lcolor,linestyle='-',linewidth=lwidth) pylab.fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha) pylab.xlabel(xlab, {'color' : 'k'}) pylab.ylabel(ylab, {'color' : 'k'}) pylab.grid() # plot ranges if status == 0 and plot: pylab.xlim(xmin-xr*0.01,xmax+xr*0.01) if ymin >= 0.0: pylab.ylim(ymin-yr*0.01,ymax+yr*0.01) else: pylab.ylim(1.0e-10,ymax+yr*0.01) # render plot if status == 0 and plot: pylab.savefig(re.sub('.fits','.png',outfile)) if cmdLine: pylab.show(block=True) else: pylab.ion() pylab.plot([]) pylab.ioff() # add NaNs back into data if status == 0: n = 0 work1 = array([],dtype='float32') work2 = array([],dtype='float32') instr, status = kepio.openfits(infile,'readonly',logfile,verbose) table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) tn = table.field('time') dn = table.field(datacol) for i in range(len(table.field(0))): if numpy.isfinite(tn[i]) and numpy.isfinite(dn[i]) and numpy.isfinite(err[i]): try: work1 = numpy.append(work1,outdata[n]) work2 = numpy.append(work2,outerr[n]) n += 1 except: pass else: work1 = numpy.append(work1,numpy.nan) work2 = numpy.append(work2,numpy.nan) # history keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) # write output file try: col1 = pyfits.Column(name='DETSAP_FLUX',format='E13.7',array=work1) col2 = pyfits.Column(name='DETSAP_FLUX_ERR',format='E13.7',array=work2) cols = instr[1].data.columns + col1 + col2 instr[1] = pyfits.new_table(cols,header=instr[1].header) instr.writeto(outfile) except ValueError: try: instr[1].data.field('DETSAP_FLUX')[:] = work1 instr[1].data.field('DETSAP_FLUX_ERR')[:] = work2 instr.writeto(outfile) except: message = 'ERROR -- KEPFLATTEN: cannot add DETSAP_FLUX data to FITS file' status = kepmsg.err(logfile,message,verbose) # close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) ## end time if (status == 0): message = 'KEPFLATTEN completed at' else: message = '\nKEPFLATTEN aborted at' kepmsg.clock(message,logfile,verbose)
def kepsmooth( infile, outfile, datacol, function, fscale, plot, plotlab, clobber, verbose, logfile, status, cmdLine=False ): ## startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 18 ysize = 6 lcolor = "#0000ff" lwidth = 1.0 fcolor = "#ffff00" falpha = 0.2 ## log the call hashline = "----------------------------------------------------------------------------" kepmsg.log(logfile, hashline, verbose) call = "KEPSMOOTH -- " call += "infile=" + infile + " " call += "outfile=" + outfile + " " call += "datacol=" + str(datacol) + " " call += "function=" + str(function) + " " call += "fscale=" + str(fscale) + " " plotit = "n" if plot: plotit = "y" call += "plot=" + plotit + " " call += "plotlab=" + str(plotlab) + " " overwrite = "n" if clobber: overwrite = "y" call += "clobber=" + overwrite + " " chatter = "n" if verbose: chatter = "y" call += "verbose=" + chatter + " " call += "logfile=" + logfile kepmsg.log(logfile, call + "\n", verbose) ## start time kepmsg.clock("KEPSMOOTH started at", logfile, verbose) ## test log file logfile = kepmsg.test(logfile) ## clobber output file if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = "ERROR -- KEPSMOOTH: " + outfile + " exists. Use clobber=yes" status = kepmsg.err(logfile, message, verbose) ## open input file if status == 0: instr, status = kepio.openfits(infile, "readonly", logfile, verbose) tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr, infile, logfile, verbose, status) if cadence == 0.0: tstart, tstop, ncad, cadence, status = kepio.cadence(instr, infile, logfile, verbose, status) if status == 0: try: work = instr[0].header["FILEVER"] cadenom = 1.0 except: cadenom = cadence ## fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr, file, logfile, verbose) ## read table structure if status == 0: table, status = kepio.readfitstab(infile, instr[1], logfile, verbose) # read time and flux columns if status == 0: barytime, status = kepio.readtimecol(infile, table, logfile, verbose) if status == 0: flux, status = kepio.readfitscol(infile, instr[1].data, datacol, logfile, verbose) # filter input data table if status == 0: try: nanclean = instr[1].header["NANCLEAN"] except: naxis2 = 0 for i in range(len(table.field(0))): if numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i]) and flux[i] != 0.0: table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] comment = "NaN cadences removed from data" status = kepkey.new("NANCLEAN", True, comment, instr[1], outfile, logfile, verbose) ## read table columns if status == 0: try: intime = instr[1].data.field("barytime") except: intime, status = kepio.readfitscol(infile, instr[1].data, "time", logfile, verbose) indata, status = kepio.readfitscol(infile, instr[1].data, datacol, logfile, verbose) if status == 0: intime = intime + bjdref indata = indata / cadenom ## smooth data if status == 0: outdata = kepfunc.smooth(indata, fscale / (cadence / 86400), function) ## comment keyword in output file if status == 0: status = kepkey.history(call, instr[0], outfile, logfile, verbose) ## clean up x-axis unit if status == 0: intime0 = float(int(tstart / 100) * 100.0) if intime0 < 2.4e6: intime0 += 2.4e6 ptime = intime - intime0 xlab = "BJD $-$ %d" % intime0 ## clean up y-axis units if status == 0: pout = indata * 1.0 pout2 = outdata * 1.0 nrm = len(str(int(numpy.nanmax(pout)))) - 1 pout = pout / 10 ** nrm pout2 = pout2 / 10 ** nrm ylab = "10$^%d$ %s" % (nrm, re.sub("_", "-", plotlab)) ## data limits xmin = numpy.nanmin(ptime) xmax = numpy.nanmax(ptime) ymin = numpy.min(pout) ymax = numpy.nanmax(pout) xr = xmax - xmin yr = ymax - ymin ptime = insert(ptime, [0], [ptime[0]]) ptime = append(ptime, [ptime[-1]]) pout = insert(pout, [0], [0.0]) pout = append(pout, 0.0) pout2 = insert(pout2, [0], [0.0]) pout2 = append(pout2, 0.0) ## plot light curve if status == 0 and plot: try: params = { "backend": "png", "axes.linewidth": 2.5, "axes.labelsize": labelsize, "axes.font": "sans-serif", "axes.fontweight": "bold", "text.fontsize": 12, "legend.fontsize": 12, "xtick.labelsize": ticksize, "ytick.labelsize": ticksize, } rcParams.update(params) except: print "ERROR -- KEPSMOOTH: install latex for scientific plotting" status = 1 if status == 0 and plot: pylab.figure(1, figsize=[xsize, ysize]) # delete any fossil plots in the matplotlib window pylab.clf() # position axes inside the plotting window ax = pylab.subplot(111) pylab.subplots_adjust(0.06, 0.1, 0.93, 0.88) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) # rotate y labels by 90 deg labels = ax.get_yticklabels() setp(labels, "rotation", 90) pylab.plot(ptime[1:-1], pout[1:-1], color="#ff9900", linestyle="-", linewidth=lwidth) fill(ptime, pout, color=fcolor, linewidth=0.0, alpha=falpha) pylab.plot(ptime, pout2, color=lcolor, linestyle="-", linewidth=lwidth * 4.0) pylab.xlabel(xlab, {"color": "k"}) pylab.ylabel(ylab, {"color": "k"}) xlim(xmin - xr * 0.01, xmax + xr * 0.01) if ymin >= 0.0: ylim(ymin - yr * 0.01, ymax + yr * 0.01) else: ylim(1.0e-10, ymax + yr * 0.01) pylab.grid() # render plot if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() ## write output file if status == 0: for i in range(len(outdata)): instr[1].data.field(datacol)[i] = outdata[i] instr.writeto(outfile) ## close input file if status == 0: status = kepio.closefits(instr, logfile, verbose) ## end time if status == 0: message = "KEPSMOOTH completed at" else: message = "\nKEPSMOOTH aborted at" kepmsg.clock(message, logfile, verbose)
def keptrim(infile,outfile,kepid,column,row,imsize,clobber,verbose,logfile,status): # startup parameters status = 0 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPTRIM -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'kepid='+str(kepid)+' ' call += 'column='+str(column)+' ' call += 'row='+str(row)+' ' call += 'imsize='+str(imsize)+' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPTRIM started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPTRIM: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile,message,verbose) # open input file status = 0 instr = pyfits.open(infile,mode='readonly',memmap=True) cards0 = instr[0].header.cards cards1 = instr[1].header.cards cards2 = instr[2].header.cards # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # identify the season of observation if status == 0: try: season = cards0['SEASON'].value except: season = 0 # retrieve column and row from KIC try: kic = FOVKepID(str(kepid)) column = int(kic[98 + season * 5]) row = int(kic[97 + season * 5]) except: pass # convert CCD column and row to image column and row if status == 0: if imsize % 2 == 0: imsize += 1 crpix1p = cards2['CRPIX1P'].value crpix2p = cards2['CRPIX2P'].value crval1p = cards2['CRVAL1P'].value crval2p = cards2['CRVAL2P'].value cdelt1p = cards2['CDELT1P'].value cdelt2p = cards2['CDELT2P'].value imcol = (column - crval1p) * cdelt1p + crpix1p - 1 imrow = (row - crval2p) * cdelt2p + crpix2p - 1 crval1p = column - imsize / 2 + 0.5 crval2p = row - imsize / 2 + 0.5 # check subimage is contained inside the input image if status == 0: naxis1 = cards2['NAXIS1'].value naxis2 = cards2['NAXIS2'].value x1 = imcol - imsize / 2 + 0.5; x2 = x1 + imsize y1 = imrow - imsize / 2 + 0.5; y2 = y1 + imsize if x1 < 0 or y1 < 0 or x2 > naxis1 or y2 > naxis2: message = 'ERROR -- KEPTRIM: Requested pixel area falls outside of the pixel image in file ' + infile message += '. Make the pixel area smaller or relocate it''s center.' status = kepmsg.err(logfile,message,verbose) # time series data if status == 0: time = instr[1].data.field('TIME')[:] timecorr = instr[1].data.field('TIMECORR')[:] cadenceno = instr[1].data.field('CADENCENO')[:] raw_cnts = instr[1].data.field('RAW_CNTS')[:] flux = instr[1].data.field('FLUX')[:] flux_err = instr[1].data.field('FLUX_ERR')[:] flux_bkg = instr[1].data.field('FLUX_BKG')[:] flux_bkg_err = instr[1].data.field('FLUX_BKG_ERR')[:] cosmic_rays = instr[1].data.field('COSMIC_RAYS')[:] quality = instr[1].data.field('QUALITY')[:] pos_corr1 = instr[1].data.field('POS_CORR1')[:] pos_corr2 = instr[1].data.field('POS_CORR2')[:] # resize time series if status == 0: raw_cnts = raw_cnts[:,y1:y2,x1:x2] flux = flux[:,y1:y2,x1:x2] flux_err = flux_err[:,y1:y2,x1:x2] flux_bkg = flux_bkg[:,y1:y2,x1:x2] flux_bkg_err = flux_bkg_err[:,y1:y2,x1:x2] cosmic_rays = cosmic_rays[:,y1:y2,x1:x2] # reshape time series images if status == 0: isize = numpy.shape(flux)[0] jsize = numpy.shape(flux)[1] ksize = numpy.shape(flux)[2] raw_cnts = numpy.reshape(raw_cnts,(isize,jsize*ksize)) flux = numpy.reshape(flux,(isize,jsize*ksize)) flux_err = numpy.reshape(flux_err,(isize,jsize*ksize)) flux_bkg = numpy.reshape(flux_bkg,(isize,jsize*ksize)) flux_bkg_err = numpy.reshape(flux_bkg_err,(isize,jsize*ksize)) cosmic_rays = numpy.reshape(cosmic_rays,(isize,jsize*ksize)) # pixel map data if status == 0: maskmap = array(instr[2].data[y1:y2,x1:x2]) # construct output primary extension if status == 0: hdu0 = pyfits.PrimaryHDU() for i in range(len(cards0)): try: if cards0[i].key not in hdu0.header.keys(): hdu0.header.update(cards0[i].key, cards0[i].value, cards0[i].comment) else: hdu0.header.cards[cards0[i].key].comment = cards0[i].comment except: pass status = kepkey.history(call,hdu0,outfile,logfile,verbose) outstr = HDUList(hdu0) # construct output light curve extension if status == 0: coldim = '(' + str(imsize) + ',' + str(imsize) + ')' eformat = str(imsize*imsize) + 'E' jformat = str(imsize*imsize) + 'J' kformat = str(imsize*imsize) + 'K' col1 = Column(name='TIME',format='D',unit='BJD - 2454833',array=time) col2 = Column(name='TIMECORR',format='E',unit='d',array=timecorr) col3 = Column(name='CADENCENO',format='J',array=cadenceno) col4 = Column(name='RAW_CNTS',format=jformat,unit='count',dim=coldim,array=raw_cnts) col5 = Column(name='FLUX',format=eformat,unit='e-/s',dim=coldim,array=flux) col6 = Column(name='FLUX_ERR',format=eformat,unit='e-/s',dim=coldim,array=flux_err) col7 = Column(name='FLUX_BKG',format=eformat,unit='e-/s',dim=coldim,array=flux_bkg) col8 = Column(name='FLUX_BKG_ERR',format=eformat,unit='e-/s',dim=coldim,array=flux_bkg_err) col9 = Column(name='COSMIC_RAYS',format=eformat,unit='e-/s',dim=coldim,array=cosmic_rays) col10 = Column(name='QUALITY',format='J',array=quality) col11 = Column(name='POS_CORR1',format='E',unit='pixel',array=pos_corr1) col12 = Column(name='POS_CORR2',format='E',unit='pixel',array=pos_corr2) cols = ColDefs([col1,col2,col3,col4,col5,col6,col7,col8,col9,col10,col11,col12]) hdu1 = new_table(cols) for i in range(len(cards1)): try: if cards1[i].key not in hdu1.header.keys(): hdu1.header.update(cards1[i].key, cards1[i].value, cards1[i].comment) else: hdu1.header.cards[cards1[i].key].comment = cards1[i].comment except: pass hdu1.header.update('1CRV4P',crval1p,'[pixel] detector coordinate at reference pixel') hdu1.header.update('2CRV4P',crval2p,'[pixel] detector coordinate at reference pixel') hdu1.header.update('1CRPX4',(imsize + 1) / 2,'[pixel] reference pixel along image axis 1') hdu1.header.update('2CRPX4',(imsize + 1) / 2,'[pixel] reference pixel along image axis 2') hdu1.header.update('1CRV5P',crval1p,'[pixel] detector coordinate at reference pixel') hdu1.header.update('2CRV5P',crval2p,'[pixel] detector coordinate at reference pixel') hdu1.header.update('1CRPX5',(imsize + 1) / 2,'[pixel] reference pixel along image axis 1') hdu1.header.update('2CRPX5',(imsize + 1) / 2,'[pixel] reference pixel along image axis 2') hdu1.header.update('1CRV6P',crval1p,'[pixel] detector coordinate at reference pixel') hdu1.header.update('2CRV6P',crval2p,'[pixel] detector coordinate at reference pixel') hdu1.header.update('1CRPX6',(imsize + 1) / 2,'[pixel] reference pixel along image axis 1') hdu1.header.update('2CRPX6',(imsize + 1) / 2,'[pixel] reference pixel along image axis 2') hdu1.header.update('1CRV7P',crval1p,'[pixel] detector coordinate at reference pixel') hdu1.header.update('2CRV7P',crval2p,'[pixel] detector coordinate at reference pixel') hdu1.header.update('1CRPX7',(imsize + 1) / 2,'[pixel] reference pixel along image axis 1') hdu1.header.update('2CRPX7',(imsize + 1) / 2,'[pixel] reference pixel along image axis 2') hdu1.header.update('1CRV8P',crval1p,'[pixel] detector coordinate at reference pixel') hdu1.header.update('2CRV8P',crval2p,'[pixel] detector coordinate at reference pixel') hdu1.header.update('1CRPX8',(imsize + 1) / 2,'[pixel] reference pixel along image axis 1') hdu1.header.update('2CRPX8',(imsize + 1) / 2,'[pixel] reference pixel along image axis 2') hdu1.header.update('1CRV9P',crval1p,'[pixel] detector coordinate at reference pixel') hdu1.header.update('2CRV9P',crval2p,'[pixel] detector coordinate at reference pixel') hdu1.header.update('1CRPX9',(imsize + 1) / 2,'[pixel] reference pixel along image axis 1') hdu1.header.update('2CRPX9',(imsize + 1) / 2,'[pixel] reference pixel along image axis 2') outstr.append(hdu1) # construct output mask bitmap extension if status == 0: hdu2 = ImageHDU(maskmap) for i in range(len(cards2)): try: if cards2[i].key not in hdu2.header.keys(): hdu2.header.update(cards2[i].key, cards2[i].value, cards2[i].comment) else: hdu2.header.cards[cards2[i].key].comment = cards2[i].comment except: pass hdu2.header.update('NAXIS1',imsize,'') hdu2.header.update('NAXIS2',imsize,'') hdu2.header.update('CRVAL1P',crval1p,'[pixel] detector coordinate at reference pixel') hdu2.header.update('CRVAL2P',crval2p,'[pixel] detector coordinate at reference pixel') hdu2.header.update('CRPIX1',(imsize + 1) / 2,'[pixel] reference pixel along image axis 1') hdu2.header.update('CRPIX2',(imsize + 1) / 2,'[pixel] reference pixel along image axis 2') outstr.append(hdu2) # write output file if status == 0: outstr.writeto(outfile,checksum=True) # close input structure if status == 0: status = kepio.closefits(instr,logfile,verbose) # end time kepmsg.clock('KEPTRIM finished at',logfile,verbose)
def kepft(infile,outfile,fcol,pmin,pmax,nfreq,plot,clobber,verbose,logfile,status, cmdLine=False): ## startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 18 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 ## log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPFT -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'fcol='+fcol+' ' call += 'pmin='+str(pmin)+' ' call += 'pmax='+str(pmax)+' ' call += 'nfreq='+str(nfreq)+' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) ## start time kepmsg.clock('Start time is',logfile,verbose) ## test log file logfile = kepmsg.test(logfile) ## clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPFT: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile,message,verbose) ## open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) ## fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) ## read table columns if status == 0: try: barytime = instr[1].data.field('barytime') except: barytime, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose) signal, status = kepio.readfitscol(infile,instr[1].data,fcol,logfile,verbose) if status == 0: barytime = barytime + bjdref ## remove infinite data from time series if status == 0: incols = [barytime, signal] outcols = kepstat.removeinfinlc(signal, incols) barytime = outcols[0] signal = outcols[1] - median(outcols[1]) ## period to frequency conversion fmin = 1.0 / pmax fmax = 1.0 / pmin deltaf = (fmax - fmin) / nfreq ## loop through frequency steps; determine FT power if status == 0: fr, power = kepfourier.ft(barytime,signal,fmin,fmax,deltaf,True) ## write output file if status == 0: col1 = Column(name='FREQUENCY',format='E',unit='1/day',array=fr) col2 = Column(name='POWER',format='E',array=power) cols = ColDefs([col1,col2]) instr.append(new_table(cols)) instr[-1].header.update('EXTNAME','POWER SPECTRUM','extension name') instr.writeto(outfile) ## history keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) ## close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) ## data limits if status == 0: nrm = int(log10(power.max())) power = power / 10**nrm ylab = 'Power (x10$^{%d}$)' % nrm xmin = fr.min() xmax = fr.max() ymin = power.min() ymax = power.max() xr = xmax - xmin yr = ymax - ymin fr = insert(fr,[0],fr[0]) fr = append(fr,fr[-1]) power = insert(power,[0],0.0) power = append(power,0.0) ## plot power spectrum if status == 0 and plot: try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} rcParams.update(params) except: print 'ERROR -- KEPFT: install latex for scientific plotting' status = 1 if status == 0 and plot: pylab.figure(1,figsize=[xsize,ysize]) pylab.clf() pylab.axes([0.06,0.113,0.93,0.86]) pylab.plot(fr,power,color=lcolor,linestyle='-',linewidth=lwidth) fill(fr,power,color=fcolor,linewidth=0.0,alpha=falpha) xlim(xmin-xr*0.01,xmax+xr*0.01) if ymin-yr*0.01 <= 0.0: ylim(1.0e-10,ymax+yr*0.01) else: ylim(ymin-yr*0.01,ymax+yr*0.01) xlabel(r'Frequency (d$^{-1}$)', {'color' : 'k'}) ylabel(ylab, {'color' : 'k'}) grid() # render plot if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() ## end time if (status == 0): message = 'KEPFT completed at' else: message = '\nKEPFT aborted at' kepmsg.clock(message,logfile,verbose)
def kepsff(infile,outfile,datacol,cenmethod,stepsize,npoly_cxcy,sigma_cxcy,npoly_ardx, npoly_dsdt,sigma_dsdt,npoly_arfl,sigma_arfl,plotres,clobber,verbose,logfile, status,cmdLine=False): # startup parameters status = 0 labelsize = 16 ticksize = 14 xsize = 20 ysize = 8 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 seterr(all="ignore") # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPSFF -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+datacol+' ' call += 'cenmethod='+cenmethod+' ' call += 'stepsize='+str(stepsize)+' ' call += 'npoly_cxcy='+str(npoly_cxcy)+' ' call += 'sigma_cxcy='+str(sigma_cxcy)+' ' call += 'npoly_ardx='+str(npoly_ardx)+' ' call += 'npoly_dsdt='+str(npoly_dsdt)+' ' call += 'sigma_dsdt='+str(sigma_dsdt)+' ' call += 'npoly_arfl='+str(npoly_arfl)+' ' call += 'sigma_arfl='+str(sigma_arfl)+' ' savep = 'n' if (plotres): savep = 'y' call += 'plotres='+savep+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPSFF started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPSFF: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile,message,verbose) # open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # read table structure if status == 0: table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) # determine sequence of windows in time if status == 0: frametim = instr[1].header['FRAMETIM'] num_frm = instr[1].header['NUM_FRM'] exptime = frametim * num_frm / 86400 tstart = table.field('TIME')[0] tstop = table.field('TIME')[-1] winedge = arange(tstart,tstop,stepsize) if tstop > winedge[-1] + stepsize / 2: winedge = append(winedge,tstop) else: winedge[-1] = tstop winedge = (winedge - tstart) / exptime winedge = winedge.astype(int) if len(table.field('TIME')) > winedge[-1] + 1: winedge = append(winedge,len(table.field('TIME'))) elif len(table.field('TIME')) < winedge[-1]: winedge[-1] = len(table.field('TIME')) # step through the time windows if status == 0: for iw in range(1,len(winedge)): t1 = winedge[iw-1] t2 = winedge[iw] # filter input data table work1 = numpy.array([table.field('TIME')[t1:t2], table.field('CADENCENO')[t1:t2], table.field(datacol)[t1:t2], table.field('MOM_CENTR1')[t1:t2], table.field('MOM_CENTR2')[t1:t2], table.field('PSF_CENTR1')[t1:t2], table.field('PSF_CENTR2')[t1:t2], table.field('SAP_QUALITY')[t1:t2]],'float64') work1 = numpy.rot90(work1,3) work2 = work1[~numpy.isnan(work1).any(1)] work2 = work2[(work2[:,0] == 0.0) | (work2[:,0] > 1e5)] # assign table columns intime = work2[:,7] + bjdref cadenceno = work2[:,6].astype(int) indata = work2[:,5] mom_centr1 = work2[:,4] mom_centr2 = work2[:,3] psf_centr1 = work2[:,2] psf_centr2 = work2[:,1] sap_quality = work2[:,0] if cenmethod == 'moments': centr1 = copy(mom_centr1) centr2 = copy(mom_centr2) else: centr1 = copy(psf_centr1) centr2 = copy(psf_centr2) # fit centroid data with low-order polynomial cfit = zeros((len(centr2))) csig = zeros((len(centr2))) functype = 'poly' + str(npoly_cxcy) pinit = array([nanmean(centr2)]) if npoly_cxcy > 0: for j in range(npoly_cxcy): pinit = append(pinit,0.0) try: coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip(functype,pinit,centr1,centr2,None,sigma_cxcy,sigma_cxcy,10,logfile,verbose) for j in range(len(coeffs)): cfit += coeffs[j] * numpy.power(centr1,j) csig[:] = sigma except: message = 'ERROR -- KEPSFF: could not fit centroid data with polynomial. There are no data points within the range of input rows %d - %d. Either increase the stepsize (with an appreciation of the effects on light curve quality this will have!), or better yet - cut the timeseries up to remove large gaps in the input light curve using kepclip.' % (t1,t2) status = kepmsg.err(logfile,message,verbose) # sys.exit('') os._exit(1) # reject outliers time_good = array([],'float64') centr1_good = array([],'float32') centr2_good = array([],'float32') flux_good = array([],'float32') cad_good = array([],'int') for i in range(len(cfit)): if abs(centr2[i] - cfit[i]) < sigma_cxcy * csig[i]: time_good = append(time_good,intime[i]) centr1_good = append(centr1_good,centr1[i]) centr2_good = append(centr2_good,centr2[i]) flux_good = append(flux_good,indata[i]) cad_good = append(cad_good,cadenceno[i]) # covariance matrix for centroid time series centr = concatenate([[centr1_good] - mean(centr1_good), [centr2_good] - mean(centr2_good)]) covar = cov(centr) # eigenvector eigenvalues of covariance matrix [eval, evec] = numpy.linalg.eigh(covar) ex = arange(-10.0,10.0,0.1) epar = evec[1,1] / evec[0,1] * ex enor = evec[1,0] / evec[0,0] * ex ex = ex + mean(centr1) epar = epar + mean(centr2_good) enor = enor + mean(centr2_good) # rotate centroid data centr_rot = dot(evec.T,centr) # fit polynomial to rotated centroids rfit = zeros((len(centr2))) rsig = zeros((len(centr2))) functype = 'poly' + str(npoly_ardx) pinit = array([nanmean(centr_rot[0,:])]) pinit = array([1.0]) if npoly_ardx > 0: for j in range(npoly_ardx): pinit = append(pinit,0.0) try: coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip(functype,pinit,centr_rot[1,:],centr_rot[0,:],None,100.0,100.0,1, logfile,verbose) except: message = 'ERROR -- KEPSFF: could not fit rotated centroid data with polynomial' status = kepmsg.err(logfile,message,verbose) rx = linspace(nanmin(centr_rot[1,:]),nanmax(centr_rot[1,:]),100) ry = zeros((len(rx))) for i in range(len(coeffs)): ry = ry + coeffs[i] * numpy.power(rx,i) # calculate arclength of centroids s = zeros((len(rx))) for i in range(1,len(s)): work3 = ((ry[i] - ry[i-1]) / (rx[i] - rx[i-1]))**2 s[i] = s[i-1] + math.sqrt(1.0 + work3) * (rx[i] - rx[i-1]) # fit arclength as a function of strongest eigenvector sfit = zeros((len(centr2))) ssig = zeros((len(centr2))) functype = 'poly' + str(npoly_ardx) pinit = array([nanmean(s)]) if npoly_ardx > 0: for j in range(npoly_ardx): pinit = append(pinit,0.0) try: acoeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip(functype,pinit,rx,s,None,100.0,100.0,100,logfile,verbose) except: message = 'ERROR -- KEPSFF: could not fit rotated centroid data with polynomial' status = kepmsg.err(logfile,message,verbose) # correlate arclength with detrended flux t = copy(time_good) c = copy(cad_good) y = copy(flux_good) z = centr_rot[1,:] x = zeros((len(z))) for i in range(len(acoeffs)): x = x + acoeffs[i] * numpy.power(z,i) # calculate time derivative of arclength s dx = zeros((len(x))) for i in range(1,len(x)): dx[i] = (x[i] - x[i-1]) / (t[i] - t[i-1]) dx[0] = dx[1] # fit polynomial to derivative and flag outliers (thruster firings) dfit = zeros((len(dx))) dsig = zeros((len(dx))) functype = 'poly' + str(npoly_dsdt) pinit = array([nanmean(dx)]) if npoly_dsdt > 0: for j in range(npoly_dsdt): pinit = append(pinit,0.0) try: dcoeffs, errors, covar, iiter, dsigma, chi2, dof, fit, dumx, dumy, status = \ kepfit.lsqclip(functype,pinit,t,dx,None,3.0,3.0,10,logfile,verbose) except: message = 'ERROR -- KEPSFF: could not fit rotated centroid data with polynomial' status = kepmsg.err(logfile,message,verbose) for i in range(len(dcoeffs)): dfit = dfit + dcoeffs[i] * numpy.power(t,i) centr1_pnt = array([],'float32') centr2_pnt = array([],'float32') time_pnt = array([],'float64') flux_pnt = array([],'float32') dx_pnt = array([],'float32') s_pnt = array([],'float32') time_thr = array([],'float64') flux_thr = array([],'float32') dx_thr = array([],'float32') thr_cadence = [] for i in range(len(t)): if dx[i] < dfit[i] + sigma_dsdt * dsigma and dx[i] > dfit[i] - sigma_dsdt * dsigma: time_pnt = append(time_pnt,time_good[i]) flux_pnt = append(flux_pnt,flux_good[i]) dx_pnt = append(dx_pnt,dx[i]) s_pnt = append(s_pnt,x[i]) centr1_pnt = append(centr1_pnt,centr1_good[i]) centr2_pnt = append(centr2_pnt,centr2_good[i]) else: time_thr = append(time_thr,time_good[i]) flux_thr = append(flux_thr,flux_good[i]) dx_thr = append(dx_thr,dx[i]) thr_cadence.append(cad_good[i]) # fit arclength-flux correlation cfit = zeros((len(time_pnt))) csig = zeros((len(time_pnt))) functype = 'poly' + str(npoly_arfl) pinit = array([nanmean(flux_pnt)]) if npoly_arfl > 0: for j in range(npoly_arfl): pinit = append(pinit,0.0) try: ccoeffs, errors, covar, iiter, sigma, chi2, dof, fit, plx, ply, status = \ kepfit.lsqclip(functype,pinit,s_pnt,flux_pnt,None,sigma_arfl,sigma_arfl,100,logfile,verbose) except: message = 'ERROR -- KEPSFF: could not fit rotated centroid data with polynomial' status = kepmsg.err(logfile,message,verbose) # correction factors for unfiltered data centr = concatenate([[centr1] - mean(centr1_good), [centr2] - mean(centr2_good)]) centr_rot = dot(evec.T,centr) yy = copy(indata) zz = centr_rot[1,:] xx = zeros((len(zz))) cfac = zeros((len(zz))) for i in range(len(acoeffs)): xx = xx + acoeffs[i] * numpy.power(zz,i) for i in range(len(ccoeffs)): cfac = cfac + ccoeffs[i] * numpy.power(xx,i) # apply correction to flux time-series out_detsap = indata / cfac # split time-series data for plotting tim_gd = array([],'float32') flx_gd = array([],'float32') tim_bd = array([],'float32') flx_bd = array([],'float32') for i in range(len(indata)): if intime[i] in time_pnt: tim_gd = append(tim_gd,intime[i]) flx_gd = append(flx_gd,out_detsap[i]) else: tim_bd = append(tim_bd,intime[i]) flx_bd = append(flx_bd,out_detsap[i]) # plot style and size status = kepplot.define(labelsize,ticksize,logfile,verbose) pylab.figure(figsize=[xsize,ysize]) pylab.clf() # plot x-centroid vs y-centroid ax = kepplot.location([0.04,0.57,0.16,0.41]) # plot location px = copy(centr1) # clean-up x-axis units py = copy(centr2) # clean-up y-axis units pxmin = px.min() pxmax = px.max() pymin = py.min() pymax = py.max() pxr = pxmax - pxmin pyr = pymax - pymin pad = 0.05 if pxr > pyr: dely = (pxr - pyr) / 2 xlim(pxmin - pxr * pad, pxmax + pxr * pad) ylim(pymin - dely - pyr * pad, pymax + dely + pyr * pad) else: delx = (pyr - pxr) / 2 ylim(pymin - pyr * pad, pymax + pyr * pad) xlim(pxmin - delx - pxr * pad, pxmax + delx + pxr * pad) pylab.plot(px,py,color='#980000',markersize=5,marker='D',ls='') # plot data pylab.plot(centr1_good,centr2_good,color='#009900',markersize=5,marker='D',ls='') # plot data pylab.plot(ex,epar,color='k',ls='-') pylab.plot(ex,enor,color='k',ls='-') for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(14) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(14) kepplot.labels('CCD Column','CCD Row','k',16) # labels pylab.grid() # grid lines # plot arclength fits vs drift along strongest eigenvector ax = kepplot.location([0.24,0.57,0.16,0.41]) # plot location px = rx - rx[0] py = s - rx - (s[0] - rx[0]) # clean-up y-axis units py, ylab, status = kepplot.cleany(py,1.0,logfile,verbose) # clean-up x-axis units kepplot.RangeOfPlot(px,py,0.05,False) # data limits pylab.plot(px,py,color='#009900',markersize=5,marker='D',ls='') px = plotx - rx[0] # clean-up x-axis units py = ploty-plotx - (s[0] - rx[0]) # clean-up y-axis units py, ylab, status = kepplot.cleany(py,1.0,logfile,verbose) # clean-up x-axis units pylab.plot(px,py,color='r',ls='-',lw=3) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(14) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(14) ylab = re.sub(' e\S+',' pixels)',ylab) ylab = re.sub(' s\S+','',ylab) ylab = re.sub('Flux','s $-$ x\'',ylab) kepplot.labels('Linear Drift [x\'] (pixels)',ylab,'k',16) # labels pylab.grid() # grid lines # plot time derivative of arclength s ax = kepplot.location([0.04,0.08,0.16,0.41]) # plot location px = copy(time_pnt) py = copy(dx_pnt) px, xlab, status = kepplot.cleanx(px,logfile,verbose) # clean-up x-axis units kepplot.RangeOfPlot(px,dx,0.05,False) # data limits pylab.plot(px,py,color='#009900',markersize=5,marker='D',ls='') try: px = copy(time_thr) py = copy(dx_thr) px, xlab, status = kepplot.cleanx(px,logfile,verbose) # clean-up x-axis units pylab.plot(px,py,color='#980000',markersize=5,marker='D',ls='') except: pass px = copy(t) py = copy(dfit) px, xlab, status = kepplot.cleanx(px,logfile,verbose) # clean-up x-axis units pylab.plot(px,py,color='r',ls='-',lw=3) py = copy(dfit+sigma_dsdt*dsigma) pylab.plot(px,py,color='r',ls='--',lw=3) py = copy(dfit-sigma_dsdt*dsigma) pylab.plot(px,py,color='r',ls='--',lw=3) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(14) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(14) kepplot.labels(xlab,'ds/dt (pixels day$^{-1}$)','k',16) # labels pylab.grid() # grid lines # plot relation of arclength vs detrended flux ax = kepplot.location([0.24,0.08,0.16,0.41]) # plot location px = copy(s_pnt) py = copy(flux_pnt) py, ylab, status = kepplot.cleany(py,1.0,logfile,verbose) # clean-up x-axis units kepplot.RangeOfPlot(px,py,0.05,False) # data limits pylab.plot(px,py,color='#009900',markersize=5,marker='D',ls='') pylab.plot(plx,ply,color='r',ls='-',lw=3) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(14) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(14) kepplot.labels('Arclength [s] (pixels)',ylab,'k',16) # labels pylab.grid() # grid lines # plot aperture photometry kepplot.location([0.44,0.53,0.55,0.45]) # plot location px, xlab, status = kepplot.cleanx(intime,logfile,verbose) # clean-up x-axis units py, ylab, status = kepplot.cleany(indata,1.0,logfile,verbose) # clean-up x-axis units kepplot.RangeOfPlot(px,py,0.01,True) # data limits kepplot.plot1d(px,py,cadence,lcolor,lwidth,fcolor,falpha,True) # plot data kepplot.labels(' ',ylab,'k',16) # labels pylab.setp(pylab.gca(),xticklabels=[]) # remove x- or y-tick labels kepplot.labels(xlab,re.sub('Flux','Aperture Flux',ylab),'k',16) # labels pylab.grid() # grid lines # Plot corrected photometry kepplot.location([0.44,0.08,0.55,0.45]) # plot location kepplot.RangeOfPlot(px,py,0.01,True) # data limits px, xlab, status = kepplot.cleanx(tim_gd,logfile,verbose) # clean-up x-axis units py, ylab, status = kepplot.cleany(flx_gd,1.0,logfile,verbose) # clean-up x-axis units kepplot.plot1d(px,py,cadence,lcolor,lwidth,fcolor,falpha,True) # plot data try: px, xlab, status = kepplot.cleanx(tim_bd,logfile,verbose) # clean-up x-axis units py = copy(flx_bd) pylab.plot(px,py,color='#980000',markersize=5,marker='D',ls='') except: pass kepplot.labels(xlab,re.sub('Flux','Corrected Flux',ylab),'k',16) # labels pylab.grid() # grid lines # render plot if plotres: kepplot.render(cmdLine) # save plot to file if plotres: pylab.savefig(re.sub('.fits','_%d.png' % (iw + 1),outfile)) # correct fluxes within the output file intime = work1[:,7] + bjdref cadenceno = work1[:,6].astype(int) indata = work1[:,5] mom_centr1 = work1[:,4] mom_centr2 = work1[:,3] psf_centr1 = work1[:,2] psf_centr2 = work1[:,1] centr1 = copy(mom_centr1) centr2 = copy(mom_centr2) centr = concatenate([[centr1] - mean(centr1_good), [centr2] - mean(centr2_good)]) centr_rot = dot(evec.T,centr) yy = copy(indata) zz = centr_rot[1,:] xx = zeros((len(zz))) cfac = zeros((len(zz))) for i in range(len(acoeffs)): xx = xx + acoeffs[i] * numpy.power(zz,i) for i in range(len(ccoeffs)): cfac = cfac + ccoeffs[i] * numpy.power(xx,i) out_detsap = yy / cfac instr[1].data.field('SAP_FLUX')[t1:t2] /= cfac instr[1].data.field('PDCSAP_FLUX')[t1:t2] /= cfac try: instr[1].data.field('DETSAP_FLUX')[t1:t2] /= cfac except: pass # add quality flag to output file for thruster firings for i in range(len(intime)): if cadenceno[i] in thr_cadence: instr[1].data.field('SAP_QUALITY')[t1+i] += 131072 # write output file if status == 0: instr.writeto(outfile) # close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) # end time if (status == 0): message = 'KEPSFF completed at' else: message = '\nKEPSFF aborted at' kepmsg.clock(message,logfile,verbose)
def kepclip(infile,outfile,ranges,plot,plotcol,clobber,verbose,logfile,status,cmdLine=False): # startup parameters status = 0 labelsize = 32 ticksize = 24 xsize = 18 ysize = 10 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPCLIP -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'ranges='+ranges + ' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' call += 'plotcol='+plotcol+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPCLIP started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPCLIP: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile,message,verbose) # time ranges for region if status == 0: t1 = []; t2 = [] t1, t2, status = kepio.timeranges(ranges,logfile,verbose) # open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # input data if status == 0: table = instr[1].data # read time and flux columns if status == 0: barytime, status = kepio.readtimecol(infile,table,logfile,verbose) if status == 0: flux, status = kepio.readfitscol(infile,table,plotcol,logfile,verbose) if status == 0: barytime = barytime + bjdref if 'flux' in plotcol.lower(): flux = flux / cadenom # filter input data table if status == 0: naxis2 = 0 work1 = array([],'float64') work2 = array([],'float32') for i in range(len(barytime)): if (numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i]) and flux[i] != 0.0): reject = False for j in range(len(t1)): if (barytime[i] >= t1[j] and barytime[i] <= t2[j]): reject = True if not reject: table[naxis2] = table[i] work1 = append(work1,barytime[i]) work2 = append(work2,flux[i]) naxis2 += 1 # comment keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) # write output file if status == 0: instr[1].data = table[:naxis2] comment = 'NaN cadences removed from data' status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose) instr.writeto(outfile) # clean up x-axis unit if status == 0: barytime0 = float(int(tstart / 100) * 100.0) barytime = work1 - barytime0 xlab = 'BJD $-$ %d' % barytime0 # clean up y-axis units if status == 0: try: nrm = len(str(int(work2.max())))-1 except: nrm = 0 flux = work2 / 10**nrm ylab = '10$^%d$ e$^-$ s$^{-1}$' % nrm # data limits xmin = barytime.min() xmax = barytime.max() ymin = flux.min() ymax = flux.max() xr = xmax - xmin yr = ymax - ymin # plotting arguments if status == 0 and plot: try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} rcParams.update(params) except: print 'ERROR -- KEPCLIP: install latex for scientific plotting' status = 1 # clear window, plot box if status == 0 and plot: pylab.figure(figsize=[xsize,ysize]) pylab.clf() ax = pylab.axes([0.05,0.1,0.94,0.88]) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) # rotate y labels by 90 deg labels = ax.get_yticklabels() setp(labels, 'rotation', 90, fontsize=12) # plot line data ltime = [barytime[0]]; ldata = [flux[0]] for i in range(1,len(flux)): if (barytime[i-1] > barytime[i] - 0.025): ltime.append(barytime[i]) ldata.append(flux[i]) else: ltime = array(ltime, dtype=float64) ldata = array(ldata, dtype=float64) pylab.plot(ltime,ldata,color=lcolor,linestyle='-',linewidth=lwidth) ltime = []; ldata = [] ltime = array(ltime, dtype=float64) ldata = array(ldata, dtype=float64) pylab.plot(ltime,ldata,color=lcolor,linestyle='-',linewidth=lwidth) # plot fill data barytime = insert(barytime,[0],[barytime[0]]) barytime = append(barytime,[barytime[-1]]) flux = insert(flux,[0],[0.0]) flux = append(flux,[0.0]) fill(barytime,flux,fc=fcolor,linewidth=0.0,alpha=falpha) xlim(xmin-xr*0.01,xmax+xr*0.01) if ymin-yr*0.01 <= 0.0: ylim(1.0e-10,ymax+yr*0.01) else: ylim(ymin-yr*0.01,ymax+yr*0.01) xlabel(xlab, {'color' : 'k'}) ylabel(ylab, {'color' : 'k'}) grid() # render plot if status == 0 and plot: if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() # close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) # end time if (status == 0): message = 'KEPCLIP completed at' else: message = '\nKEPCLIP aborted at' kepmsg.clock(message,logfile,verbose)
def kepdetrend(infile, outfile, datacol, errcol, ranges1, npoly1, nsig1, niter1, ranges2, npoly2, nsig2, niter2, popnans, plot, clobber, verbose, logfile, status, cmdLine=False): # startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 16 ysize = 9 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPDETREND -- ' call += 'infile=' + infile + ' ' call += 'outfile=' + outfile + ' ' call += 'datacol=' + str(datacol) + ' ' call += 'errcol=' + str(errcol) + ' ' call += 'ranges1=' + str(ranges1) + ' ' call += 'npoly1=' + str(npoly1) + ' ' call += 'nsig1=' + str(nsig1) + ' ' call += 'niter1=' + str(niter1) + ' ' call += 'ranges2=' + str(ranges2) + ' ' call += 'npoly2=' + str(npoly2) + ' ' call += 'nsig2=' + str(nsig2) + ' ' call += 'niter2=' + str(niter2) + ' ' popn = 'n' if (popnans): popn = 'y' call += 'popnans=' + popn + ' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot=' + plotit + ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber=' + overwrite + ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose=' + chatter + ' ' call += 'logfile=' + logfile kepmsg.log(logfile, call + '\n', verbose) # start time kepmsg.clock('KEPDETREND started at', logfile, verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPDETREND: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile, message, verbose) # open input file if status == 0: instr, status = kepio.openfits(infile, 'readonly', logfile, verbose) tstart, tstop, bjdref, cadence, status = kepio.timekeys( instr, infile, logfile, verbose, status) # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr, file, logfile, verbose) # read table structure if status == 0: table, status = kepio.readfitstab(infile, instr[1], logfile, verbose) # filter input data table if status == 0: work1 = numpy.array( [table.field('time'), table.field(datacol), table.field(errcol)]) work1 = numpy.rot90(work1, 3) work1 = work1[~numpy.isnan(work1).any(1)] # read table columns if status == 0: intime = work1[:, 2] + bjdref indata = work1[:, 1] inerr = work1[:, 0] print intime # time ranges for region 1 (region to be corrected) if status == 0: time1 = [] data1 = [] err1 = [] t1start, t1stop, status = kepio.timeranges(ranges1, logfile, verbose) if status == 0: cadencelis1, status = kepstat.filterOnRange(intime, t1start, t1stop) if status == 0: for i in range(len(cadencelis1)): time1.append(intime[cadencelis1[i]]) data1.append(indata[cadencelis1[i]]) if errcol.lower() != 'none': err1.append(inerr[cadencelis1[i]]) t0 = time1[0] time1 = array(time1, dtype='float64') - t0 data1 = array(data1, dtype='float32') if errcol.lower() != 'none': err1 = array(err1, dtype='float32') else: err1 = None # fit function to range 1 if status == 0: functype = 'poly' + str(npoly1) pinit = [data1.mean()] if npoly1 > 0: for i in range(npoly1): pinit.append(0) pinit = array(pinit, dtype='float32') coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx1, ploty1, status = \ kepfit.lsqclip(functype,pinit,time1,data1,err1,nsig1,nsig1,niter1, logfile,verbose) fit1 = indata * 0.0 for i in range(len(coeffs)): fit1 += coeffs[i] * (intime - t0)**i for i in range(len(intime)): if i not in cadencelis1: fit1[i] = 0.0 plotx1 += t0 print coeffs # time ranges for region 2 (region that is correct) if status == 0: time2 = [] data2 = [] err2 = [] t2start, t2stop, status = kepio.timeranges(ranges2, logfile, verbose) cadencelis2, status = kepstat.filterOnRange(intime, t2start, t2stop) for i in range(len(cadencelis2)): time2.append(intime[cadencelis2[i]]) data2.append(indata[cadencelis2[i]]) if errcol.lower() != 'none': err2.append(inerr[cadencelis2[i]]) t0 = time2[0] time2 = array(time2, dtype='float64') - t0 data2 = array(data2, dtype='float32') if errcol.lower() != 'none': err2 = array(err2, dtype='float32') else: err2 = None # fit function to range 2 if status == 0: functype = 'poly' + str(npoly2) pinit = [data2.mean()] if npoly2 > 0: for i in range(npoly2): pinit.append(0) pinit = array(pinit, dtype='float32') coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx2, ploty2, status = \ kepfit.lsqclip(functype,pinit,time2,data2,err2,nsig2,nsig2,niter2, logfile,verbose) fit2 = indata * 0.0 for i in range(len(coeffs)): fit2 += coeffs[i] * (intime - t0)**i for i in range(len(intime)): if i not in cadencelis1: fit2[i] = 0.0 plotx2 += t0 # normalize data if status == 0: outdata = indata - fit1 + fit2 if errcol.lower() != 'none': outerr = inerr * 1.0 # comment keyword in output file if status == 0: status = kepkey.history(call, instr[0], outfile, logfile, verbose) # clean up x-axis unit if status == 0: intime0 = float(int(tstart / 100) * 100.0) if intime0 < 2.4e6: intime0 += 2.4e6 ptime = intime - intime0 plotx1 = plotx1 - intime0 plotx2 = plotx2 - intime0 xlab = 'BJD $-$ %d' % intime0 # clean up y-axis units if status == 0: pout = outdata ploty1 ploty2 nrm = len(str(int(numpy.nanmax(indata)))) - 1 indata = indata / 10**nrm pout = pout / 10**nrm ploty1 = ploty1 / 10**nrm ploty2 = ploty2 / 10**nrm ylab = '10$^%d$ e$^-$ s$^{-1}$' % nrm # data limits xmin = ptime.min() xmax = ptime.max() ymin = indata.min() ymax = indata.max() omin = pout.min() omax = pout.max() xr = xmax - xmin yr = ymax - ymin oo = omax - omin ptime = insert(ptime, [0], [ptime[0]]) ptime = append(ptime, [ptime[-1]]) indata = insert(indata, [0], [0.0]) indata = append(indata, [0.0]) pout = insert(pout, [0], [0.0]) pout = append(pout, 0.0) # plot light curve if status == 0 and plot: try: params = { 'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight': 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize } rcParams.update(params) except: pass pylab.figure(figsize=[xsize, ysize]) pylab.clf() # plot original data ax = pylab.axes([0.06, 0.523, 0.93, 0.45]) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) # rotate y labels by 90 deg labels = ax.get_yticklabels() pylab.setp(labels, 'rotation', 90, fontsize=12) pylab.plot(ptime, indata, color=lcolor, linestyle='-', linewidth=lwidth) pylab.fill(ptime, indata, color=fcolor, linewidth=0.0, alpha=falpha) pylab.plot(plotx1, ploty1, color='r', linestyle='-', linewidth=2.0) pylab.plot(plotx2, ploty2, color='g', linestyle='-', linewidth=2.0) pylab.xlim(xmin - xr * 0.01, xmax + xr * 0.01) if ymin > 0.0: pylab.ylim(ymin - yr * 0.01, ymax + yr * 0.01) else: pylab.ylim(1.0e-10, ymax + yr * 0.01) pylab.ylabel(ylab, {'color': 'k'}) pylab.grid() # plot detrended data ax = pylab.axes([0.06, 0.073, 0.93, 0.45]) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) # rotate y labels by 90 deg labels = ax.get_yticklabels() pylab.setp(labels, 'rotation', 90, fontsize=12) pylab.plot(ptime, pout, color=lcolor, linestyle='-', linewidth=lwidth) pylab.fill(ptime, pout, color=fcolor, linewidth=0.0, alpha=falpha) pylab.xlim(xmin - xr * 0.01, xmax + xr * 0.01) if ymin > 0.0: pylab.ylim(omin - oo * 0.01, omax + oo * 0.01) else: pylab.ylim(1.0e-10, omax + oo * 0.01) pylab.xlabel(xlab, {'color': 'k'}) try: pylab.ylabel(ylab, {'color': 'k'}) except: ylab = '10**%d e-/s' % nrm pylab.ylabel(ylab, {'color': 'k'}) # render plot if status == 0: if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() # write output file if status == 0 and popnans: instr[1].data.field(datacol)[good_data] = outdata instr[1].data.field(errcol)[good_data] = outerr instr[1].data.field(datacol)[bad_data] = None instr[1].data.field(errcol)[bad_data] = None instr.writeto(outfile) elif status == 0 and not popnans: for i in range(len(outdata)): instr[1].data.field(datacol)[i] = outdata[i] if errcol.lower() != 'none': instr[1].data.field(errcol)[i] = outerr[i] instr.writeto(outfile) # close input file if status == 0: status = kepio.closefits(instr, logfile, verbose) ## end time if (status == 0): message = 'KEPDETREND completed at' else: message = '\nKEPDETREND aborted at' kepmsg.clock(message, logfile, verbose)
def kepoutlier(infile,outfile,datacol,nsig,stepsize,npoly,niter, operation,ranges,plot,plotfit,clobber,verbose,logfile,status, cmdLine=False): # startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 16 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPOUTLIER -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+str(datacol)+' ' call += 'nsig='+str(nsig)+' ' call += 'stepsize='+str(stepsize)+' ' call += 'npoly='+str(npoly)+' ' call += 'niter='+str(niter)+' ' call += 'operation='+str(operation)+' ' call += 'ranges='+str(ranges)+' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' plotf = 'n' if (plotfit): plotf = 'y' call += 'plotfit='+plotf+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPOUTLIER started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPOUTLIER: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile,message,verbose) # open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # read table structure if status == 0: table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) # filter input data table if status == 0: try: nanclean = instr[1].header['NANCLEAN'] except: naxis2 = 0 try: for i in range(len(table.field(0))): if numpy.isfinite(table.field('barytime')[i]) and \ numpy.isfinite(table.field(datacol)[i]): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] except: for i in range(len(table.field(0))): if numpy.isfinite(table.field('time')[i]) and \ numpy.isfinite(table.field(datacol)[i]): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] comment = 'NaN cadences removed from data' status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose) # read table columns if status == 0: try: intime = instr[1].data.field('barytime') + 2.4e6 except: intime, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose) indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose) if status == 0: intime = intime + bjdref indata = indata / cadenom # time ranges for region to be corrected if status == 0: t1, t2, status = kepio.timeranges(ranges,logfile,verbose) cadencelis, status = kepstat.filterOnRange(intime,t1,t2) # find limits of each time step if status == 0: tstep1 = []; tstep2 = [] work = intime[0] while work < intime[-1]: tstep1.append(work) tstep2.append(array([work+stepsize,intime[-1]],dtype='float64').min()) work += stepsize # find cadence limits of each time step if status == 0: cstep1 = []; cstep2 = [] work1 = 0; work2 = 0 for i in range(len(intime)): if intime[i] >= intime[work1] and intime[i] < intime[work1] + stepsize: work2 = i else: cstep1.append(work1) cstep2.append(work2) work1 = i; work2 = i cstep1.append(work1) cstep2.append(work2) outdata = indata * 1.0 # comment keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) # clean up x-axis unit if status == 0: intime0 = float(int(tstart / 100) * 100.0) ptime = intime - intime0 xlab = 'BJD $-$ %d' % intime0 # clean up y-axis units if status == 0: pout = indata * 1.0 nrm = len(str(int(pout.max())))-1 pout = pout / 10**nrm ylab = '10$^%d$ e$^-$ s$^{-1}$' % nrm # data limits xmin = ptime.min() xmax = ptime.max() ymin = pout.min() ymax = pout.max() xr = xmax - xmin yr = ymax - ymin ptime = insert(ptime,[0],[ptime[0]]) ptime = append(ptime,[ptime[-1]]) pout = insert(pout,[0],[0.0]) pout = append(pout,0.0) # plot light curve if status == 0 and plot: plotLatex = True try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} rcParams.update(params) except: plotLatex = False if status == 0 and plot: pylab.figure(figsize=[xsize,ysize]) pylab.clf() # plot data ax = pylab.axes([0.06,0.1,0.93,0.87]) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) # rotate y labels by 90 deg labels = ax.get_yticklabels() setp(labels, 'rotation', 90, fontsize=12) pylab.plot(ptime,pout,color=lcolor,linestyle='-',linewidth=lwidth) fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha) xlabel(xlab, {'color' : 'k'}) if not plotLatex: ylab = '10**%d electrons/sec' % nrm ylabel(ylab, {'color' : 'k'}) grid() # loop over each time step, fit data, determine rms if status == 0: masterfit = indata * 0.0 mastersigma = zeros(len(masterfit)) functype = 'poly' + str(npoly) for i in range(len(cstep1)): pinit = [indata[cstep1[i]:cstep2[i]+1].mean()] if npoly > 0: for j in range(npoly): pinit.append(0.0) pinit = array(pinit,dtype='float32') try: coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip(functype,pinit,intime[cstep1[i]:cstep2[i]+1]-intime[cstep1[i]], indata[cstep1[i]:cstep2[i]+1],None,nsig,nsig,niter,logfile, verbose) for j in range(len(coeffs)): masterfit[cstep1[i]:cstep2[i]+1] += coeffs[j] * \ (intime[cstep1[i]:cstep2[i]+1] - intime[cstep1[i]])**j for j in range(cstep1[i],cstep2[i]+1): mastersigma[j] = sigma if plotfit: pylab.plot(plotx+intime[cstep1[i]]-intime0,ploty / 10**nrm, 'g',lw='3') except: for j in range(cstep1[i],cstep2[i]+1): masterfit[j] = indata[j] mastersigma[j] = 1.0e10 message = 'WARNING -- KEPOUTLIER: could not fit range ' message += str(intime[cstep1[i]]) + '-' + str(intime[cstep2[i]]) kepmsg.warn(None,message) # reject outliers if status == 0: rejtime = []; rejdata = []; naxis2 = 0 for i in range(len(masterfit)): if abs(indata[i] - masterfit[i]) > nsig * mastersigma[i] and i in cadencelis: rejtime.append(intime[i]) rejdata.append(indata[i]) if operation == 'replace': [rnd] = kepstat.randarray([masterfit[i]],[mastersigma[i]]) table[naxis2] = table[i] table.field(datacol)[naxis2] = rnd naxis2 += 1 else: table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] rejtime = array(rejtime,dtype='float64') rejdata = array(rejdata,dtype='float32') pylab.plot(rejtime-intime0,rejdata / 10**nrm,'ro') # plot ranges xlim(xmin-xr*0.01,xmax+xr*0.01) if ymin >= 0.0: ylim(ymin-yr*0.01,ymax+yr*0.01) else: ylim(1.0e-10,ymax+yr*0.01) # render plot if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() # write output file if status == 0: instr.writeto(outfile) # close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) # end time if (status == 0): message = 'KEPOUTLIER completed at' else: message = '\nKEPOUTLIER aborted at' kepmsg.clock(message,logfile,verbose)
def kepbls(infile,outfile,datacol,errcol,minper,maxper,mindur,maxdur,nsearch, nbins,plot,clobber,verbose,logfile,status,cmdLine=False): # startup parameters numpy.seterr(all="ignore") status = 0 labelsize = 32 ticksize = 18 xsize = 16 ysize = 8 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPBLS -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+str(datacol)+' ' call += 'errcol='+str(errcol)+' ' call += 'minper='+str(minper)+' ' call += 'maxper='+str(maxper)+' ' call += 'mindur='+str(mindur)+' ' call += 'maxdur='+str(maxdur)+' ' call += 'nsearch='+str(nsearch)+' ' call += 'nbins='+str(nbins)+' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPBLS started at',logfile,verbose) # is duration greater than one bin in the phased light curve? if float(nbins) * maxdur / 24.0 / maxper <= 1.0: message = 'WARNING -- KEPBLS: ' + str(maxdur) + ' hours transit duration < 1 phase bin when P = ' message += str(maxper) + ' days' kepmsg.warn(logfile,message) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPBLS: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile,message,verbose) # open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # read table structure if status == 0: table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) # filter input data table if status == 0: work1 = numpy.array([table.field('time'), table.field(datacol), table.field(errcol)]) work1 = numpy.rot90(work1,3) work1 = work1[~numpy.isnan(work1).any(1)] # read table columns if status == 0: intime = work1[:,2] + bjdref indata = work1[:,1] inerr = work1[:,0] # test whether the period range is sensible if status == 0: tr = intime[-1] - intime[0] if maxper > tr: message = 'ERROR -- KEPBLS: maxper is larger than the time range of the input data' status = kepmsg.err(logfile,message,verbose) # prepare time series if status == 0: work1 = intime - intime[0] work2 = indata - numpy.mean(indata) # start period search if status == 0: srMax = numpy.array([],dtype='float32') transitDuration = numpy.array([],dtype='float32') transitPhase = numpy.array([],dtype='float32') dPeriod = (maxper - minper) / nsearch trialPeriods = numpy.arange(minper,maxper+dPeriod,dPeriod,dtype='float32') complete = 0 print ' ' for trialPeriod in trialPeriods: fracComplete = float(complete) / float(len(trialPeriods) - 1) * 100.0 txt = '\r' txt += 'Trial period = ' txt += str(int(trialPeriod)) txt += ' days [' txt += str(int(fracComplete)) txt += '% complete]' txt += ' ' * 20 sys.stdout.write(txt) sys.stdout.flush() complete += 1 srMax = numpy.append(srMax,0.0) transitDuration = numpy.append(transitDuration,numpy.nan) transitPhase = numpy.append(transitPhase,numpy.nan) trialFrequency = 1.0 / trialPeriod # minimum and maximum transit durations in quantized phase units duration1 = max(int(float(nbins) * mindur / 24.0 / trialPeriod),2) duration2 = max(int(float(nbins) * maxdur / 24.0 / trialPeriod) + 1,duration1 + 1) # 30 minutes in quantized phase units halfHour = int(0.02083333 / trialPeriod * nbins + 1) # compute folded time series with trial period work4 = numpy.zeros((nbins),dtype='float32') work5 = numpy.zeros((nbins),dtype='float32') phase = numpy.array(((work1 * trialFrequency) - numpy.floor(work1 * trialFrequency)) * float(nbins),dtype='int') ptuple = numpy.array([phase, work2, inerr]) ptuple = numpy.rot90(ptuple,3) phsort = numpy.array(sorted(ptuple,key=lambda ph: ph[2])) for i in range(nbins): elements = numpy.nonzero(phsort[:,2] == float(i))[0] work4[i] = numpy.mean(phsort[elements,1]) work5[i] = math.sqrt(numpy.sum(numpy.power(phsort[elements,0], 2)) / len(elements)) # extend the work arrays beyond nbins by wrapping work4 = numpy.append(work4,work4[:duration2]) work5 = numpy.append(work5,work5[:duration2]) # calculate weights of folded light curve points sigmaSum = numpy.nansum(numpy.power(work5,-2)) omega = numpy.power(work5,-2) / sigmaSum # calculate weighted phased light curve s = omega * work4 # iterate through trial period phase for i1 in range(nbins): # iterate through transit durations for duration in range(duration1,duration2+1,int(halfHour)): # calculate maximum signal residue i2 = i1 + duration sr1 = numpy.sum(numpy.power(s[i1:i2],2)) sr2 = numpy.sum(omega[i1:i2]) sr = math.sqrt(sr1 / (sr2 * (1.0 - sr2))) if sr > srMax[-1]: srMax[-1] = sr transitDuration[-1] = float(duration) transitPhase[-1] = float((i1 + i2) / 2) # normalize maximum signal residue curve bestSr = numpy.max(srMax) bestTrial = numpy.nonzero(srMax == bestSr)[0][0] srMax /= bestSr transitDuration *= trialPeriods / 24.0 BJD0 = numpy.array(transitPhase * trialPeriods / nbins,dtype='float64') + intime[0] - 2454833.0 print '\n' # clean up x-axis unit if status == 0: ptime = copy(trialPeriods) xlab = 'Trial Period (days)' # clean up y-axis units if status == 0: pout = copy(srMax) ylab = 'Normalized Signal Residue' # data limits xmin = ptime.min() xmax = ptime.max() ymin = pout.min() ymax = pout.max() xr = xmax - xmin yr = ymax - ymin ptime = insert(ptime,[0],[ptime[0]]) ptime = append(ptime,[ptime[-1]]) pout = insert(pout,[0],[0.0]) pout = append(pout,0.0) # plot light curve if status == 0 and plot: plotLatex = True try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} rcParams.update(params) except: plotLatex = False if status == 0 and plot: pylab.figure(figsize=[xsize,ysize]) pylab.clf() # plot data ax = pylab.axes([0.06,0.10,0.93,0.87]) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) # rotate y labels by 90 deg labels = ax.get_yticklabels() pylab.setp(labels, 'rotation', 90) # plot curve if status == 0 and plot: pylab.plot(ptime[1:-1],pout[1:-1],color=lcolor,linestyle='-',linewidth=lwidth) pylab.fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha) pylab.xlabel(xlab, {'color' : 'k'}) pylab.ylabel(ylab, {'color' : 'k'}) pylab.grid() # plot ranges if status == 0 and plot: pylab.xlim(xmin-xr*0.01,xmax+xr*0.01) if ymin >= 0.0: pylab.ylim(ymin-yr*0.01,ymax+yr*0.01) else: pylab.ylim(1.0e-10,ymax+yr*0.01) # render plot if status == 0 and plot: if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() # append new BLS data extension to the output file if status == 0: col1 = Column(name='PERIOD',format='E',unit='days',array=trialPeriods) col2 = Column(name='BJD0',format='D',unit='BJD - 2454833',array=BJD0) col3 = Column(name='DURATION',format='E',unit='hours',array=transitDuration) col4 = Column(name='SIG_RES',format='E',array=srMax) cols = ColDefs([col1,col2,col3,col4]) instr.append(new_table(cols)) instr[-1].header.cards['TTYPE1'].comment = 'column title: trial period' instr[-1].header.cards['TTYPE2'].comment = 'column title: trial mid-transit zero-point' instr[-1].header.cards['TTYPE3'].comment = 'column title: trial transit duration' instr[-1].header.cards['TTYPE4'].comment = 'column title: normalized signal residue' instr[-1].header.cards['TFORM1'].comment = 'column type: float32' instr[-1].header.cards['TFORM2'].comment = 'column type: float64' instr[-1].header.cards['TFORM3'].comment = 'column type: float32' instr[-1].header.cards['TFORM4'].comment = 'column type: float32' instr[-1].header.cards['TUNIT1'].comment = 'column units: days' instr[-1].header.cards['TUNIT2'].comment = 'column units: BJD - 2454833' instr[-1].header.cards['TUNIT3'].comment = 'column units: hours' instr[-1].header.update('EXTNAME','BLS','extension name') instr[-1].header.update('PERIOD',trialPeriods[bestTrial],'most significant trial period [d]') instr[-1].header.update('BJD0',BJD0[bestTrial] + 2454833.0,'time of mid-transit [BJD]') instr[-1].header.update('TRANSDUR',transitDuration[bestTrial],'transit duration [hours]') instr[-1].header.update('SIGNRES',srMax[bestTrial] * bestSr,'maximum signal residue') # history keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) instr.writeto(outfile) # close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) # print best trial period results if status == 0: print ' Best trial period = %.5f days' % trialPeriods[bestTrial] print ' Time of mid-transit = BJD %.5f' % (BJD0[bestTrial] + 2454833.0) print ' Transit duration = %.5f hours' % transitDuration[bestTrial] print ' Maximum signal residue = %.4g \n' % (srMax[bestTrial] * bestSr) # end time if (status == 0): message = 'KEPBLS completed at' else: message = '\nKEPBLS aborted at' kepmsg.clock(message,logfile,verbose)
def kepsmooth(infile,outfile,datacol,function,fscale,plot,plotlab, clobber,verbose,logfile,status, cmdLine=False): ## startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 18 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 ## log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPSMOOTH -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+str(datacol)+' ' call += 'function='+str(function)+' ' call += 'fscale='+str(fscale)+' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' call += 'plotlab='+str(plotlab)+' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) ## start time kepmsg.clock('KEPSMOOTH started at',logfile,verbose) ## test log file logfile = kepmsg.test(logfile) ## clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPSMOOTH: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile,message,verbose) ## open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if cadence == 0.0: tstart, tstop, ncad, cadence, status = kepio.cadence(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence ## fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) ## read table structure if status == 0: table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) # read time and flux columns if status == 0: barytime, status = kepio.readtimecol(infile,table,logfile,verbose) if status == 0: flux, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose) # filter input data table if status == 0: try: nanclean = instr[1].header['NANCLEAN'] except: naxis2 = 0 for i in range(len(table.field(0))): if (numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i]) and flux[i] != 0.0): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] comment = 'NaN cadences removed from data' status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose) ## read table columns if status == 0: try: intime = instr[1].data.field('barytime') except: intime, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose) indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose) if status == 0: intime = intime + bjdref indata = indata / cadenom ## smooth data if status == 0: outdata = kepfunc.smooth(indata,fscale/(cadence/86400),function) ## comment keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) ## clean up x-axis unit if status == 0: intime0 = float(int(tstart / 100) * 100.0) if intime0 < 2.4e6: intime0 += 2.4e6 ptime = intime - intime0 xlab = 'BJD $-$ %d' % intime0 ## clean up y-axis units if status == 0: pout = indata * 1.0 pout2 = outdata * 1.0 nrm = len(str(int(numpy.nanmax(pout))))-1 pout = pout / 10**nrm pout2 = pout2 / 10**nrm ylab = '10$^%d$ %s' % (nrm, re.sub('_','-',plotlab)) ## data limits xmin = numpy.nanmin(ptime) xmax = numpy.nanmax(ptime) ymin = numpy.min(pout) ymax = numpy.nanmax(pout) xr = xmax - xmin yr = ymax - ymin ptime = insert(ptime,[0],[ptime[0]]) ptime = append(ptime,[ptime[-1]]) pout = insert(pout,[0],[0.0]) pout = append(pout,0.0) pout2 = insert(pout2,[0],[0.0]) pout2 = append(pout2,0.0) ## plot light curve if status == 0 and plot: try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} rcParams.update(params) except: print('ERROR -- KEPSMOOTH: install latex for scientific plotting') status = 1 if status == 0 and plot: pylab.figure(1,figsize=[xsize,ysize]) # delete any fossil plots in the matplotlib window pylab.clf() # position axes inside the plotting window ax = pylab.subplot(111) pylab.subplots_adjust(0.06,0.1,0.93,0.88) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) # rotate y labels by 90 deg labels = ax.get_yticklabels() setp(labels, 'rotation', 90) pylab.plot(ptime[1:-1],pout[1:-1],color='#ff9900',linestyle='-',linewidth=lwidth) fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha) pylab.plot(ptime,pout2,color=lcolor,linestyle='-',linewidth=lwidth*4.0) pylab.xlabel(xlab, {'color' : 'k'}) pylab.ylabel(ylab, {'color' : 'k'}) xlim(xmin-xr*0.01,xmax+xr*0.01) if ymin >= 0.0: ylim(ymin-yr*0.01,ymax+yr*0.01) else: ylim(1.0e-10,ymax+yr*0.01) pylab.grid() # render plot if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() ## write output file if status == 0: for i in range(len(outdata)): instr[1].data.field(datacol)[i] = outdata[i] instr.writeto(outfile) ## close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) ## end time if (status == 0): message = 'KEPSMOOTH completed at' else: message = '\nKEPSMOOTH aborted at' kepmsg.clock(message,logfile,verbose)
def kepfold(infile,outfile,period,phasezero,bindata,binmethod,threshold,niter,nbins, rejqual,plottype,plotlab,clobber,verbose,logfile,status,cmdLine=False): # startup parameters status = 0 labelsize = 32; ticksize = 18; xsize = 18; ysize = 10 lcolor = '#0000ff'; lwidth = 2.0; fcolor = '#ffff00'; falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPFOLD -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'period='+str(period)+' ' call += 'phasezero='+str(phasezero)+' ' binit = 'n' if (bindata): binit = 'y' call += 'bindata='+binit+' ' call += 'binmethod='+binmethod+' ' call += 'threshold='+str(threshold)+' ' call += 'niter='+str(niter)+' ' call += 'nbins='+str(nbins)+' ' qflag = 'n' if (rejqual): qflag = 'y' call += 'rejqual='+qflag+ ' ' call += 'plottype='+plottype+ ' ' call += 'plotlab='+plotlab+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPFOLD started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPFOLD: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile,message,verbose) # open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # input data if status == 0: table = instr[1].data incards = instr[1].header.cards try: sap = instr[1].data.field('SAP_FLUX') except: try: sap = instr[1].data.field('ap_raw_flux') except: sap = zeros(len(table.field(0))) try: saperr = instr[1].data.field('SAP_FLUX_ERR') except: try: saperr = instr[1].data.field('ap_raw_err') except: saperr = zeros(len(table.field(0))) try: pdc = instr[1].data.field('PDCSAP_FLUX') except: try: pdc = instr[1].data.field('ap_corr_flux') except: pdc = zeros(len(table.field(0))) try: pdcerr = instr[1].data.field('PDCSAP_FLUX_ERR') except: try: pdcerr = instr[1].data.field('ap_corr_err') except: pdcerr = zeros(len(table.field(0))) try: cbv = instr[1].data.field('CBVSAP_FLUX') except: cbv = zeros(len(table.field(0))) if 'cbv' in plottype: txt = 'ERROR -- KEPFOLD: CBVSAP_FLUX column is not populated. Use kepcotrend' status = kepmsg.err(logfile,txt,verbose) try: det = instr[1].data.field('DETSAP_FLUX') except: det = zeros(len(table.field(0))) if 'det' in plottype: txt = 'ERROR -- KEPFOLD: DETSAP_FLUX column is not populated. Use kepflatten' status = kepmsg.err(logfile,txt,verbose) try: deterr = instr[1].data.field('DETSAP_FLUX_ERR') except: deterr = zeros(len(table.field(0))) if 'det' in plottype: txt = 'ERROR -- KEPFOLD: DETSAP_FLUX_ERR column is not populated. Use kepflatten' status = kepmsg.err(logfile,txt,verbose) try: quality = instr[1].data.field('SAP_QUALITY') except: quality = zeros(len(table.field(0))) if qualflag: txt = 'WARNING -- KEPFOLD: Cannot find a QUALITY data column' kepmsg.warn(logfile,txt) if status == 0: barytime, status = kepio.readtimecol(infile,table,logfile,verbose) barytime1 = copy(barytime) # filter out NaNs and quality > 0 work1 = []; work2 = []; work3 = []; work4 = []; work5 = []; work6 = []; work8 = []; work9 = [] if status == 0: if 'sap' in plottype: datacol = copy(sap) errcol = copy(saperr) if 'pdc' in plottype: datacol = copy(pdc) errcol = copy(pdcerr) if 'cbv' in plottype: datacol = copy(cbv) errcol = copy(saperr) if 'det' in plottype: datacol = copy(det) errcol = copy(deterr) for i in range(len(barytime)): if (numpy.isfinite(barytime[i]) and numpy.isfinite(datacol[i]) and datacol[i] != 0.0 and numpy.isfinite(errcol[i]) and errcol[i] > 0.0): if rejqual and quality[i] == 0: work1.append(barytime[i]) work2.append(sap[i]) work3.append(saperr[i]) work4.append(pdc[i]) work5.append(pdcerr[i]) work6.append(cbv[i]) work8.append(det[i]) work9.append(deterr[i]) elif not rejqual: work1.append(barytime[i]) work2.append(sap[i]) work3.append(saperr[i]) work4.append(pdc[i]) work5.append(pdcerr[i]) work6.append(cbv[i]) work8.append(det[i]) work9.append(deterr[i]) barytime = array(work1,dtype='float64') sap = array(work2,dtype='float32') / cadenom saperr = array(work3,dtype='float32') / cadenom pdc = array(work4,dtype='float32') / cadenom pdcerr = array(work5,dtype='float32') / cadenom cbv = array(work6,dtype='float32') / cadenom det = array(work8,dtype='float32') / cadenom deterr = array(work9,dtype='float32') / cadenom # calculate phase if status == 0: if phasezero < bjdref: phasezero += bjdref date1 = (barytime1 + bjdref - phasezero) phase1 = (date1 / period) - floor(date1/period) date2 = (barytime + bjdref - phasezero) phase2 = (date2 / period) - floor(date2/period) phase2 = array(phase2,'float32') # sort phases if status == 0: ptuple = [] phase3 = []; sap3 = []; saperr3 = [] pdc3 = []; pdcerr3 = [] cbv3 = []; cbverr3 = [] det3 = []; deterr3 = [] for i in range(len(phase2)): ptuple.append([phase2[i], sap[i], saperr[i], pdc[i], pdcerr[i], cbv[i], saperr[i], det[i], deterr[i]]) phsort = sorted(ptuple,key=lambda ph: ph[0]) for i in range(len(phsort)): phase3.append(phsort[i][0]) sap3.append(phsort[i][1]) saperr3.append(phsort[i][2]) pdc3.append(phsort[i][3]) pdcerr3.append(phsort[i][4]) cbv3.append(phsort[i][5]) cbverr3.append(phsort[i][6]) det3.append(phsort[i][7]) deterr3.append(phsort[i][8]) phase3 = array(phase3,'float32') sap3 = array(sap3,'float32') saperr3 = array(saperr3,'float32') pdc3 = array(pdc3,'float32') pdcerr3 = array(pdcerr3,'float32') cbv3 = array(cbv3,'float32') cbverr3 = array(cbverr3,'float32') det3 = array(det3,'float32') deterr3 = array(deterr3,'float32') # bin phases if status == 0 and bindata: work1 = array([sap3[0]],'float32') work2 = array([saperr3[0]],'float32') work3 = array([pdc3[0]],'float32') work4 = array([pdcerr3[0]],'float32') work5 = array([cbv3[0]],'float32') work6 = array([cbverr3[0]],'float32') work7 = array([det3[0]],'float32') work8 = array([deterr3[0]],'float32') phase4 = array([],'float32') sap4 = array([],'float32') saperr4 = array([],'float32') pdc4 = array([],'float32') pdcerr4 = array([],'float32') cbv4 = array([],'float32') cbverr4 = array([],'float32') det4 = array([],'float32') deterr4 = array([],'float32') dt = 1.0 / nbins nb = 0.0 rng = numpy.append(phase3,phase3[0]+1.0) for i in range(len(rng)): if rng[i] < nb * dt or rng[i] >= (nb + 1.0) * dt: if len(work1) > 0: phase4 = append(phase4,(nb + 0.5) * dt) if (binmethod == 'mean'): sap4 = append(sap4,kepstat.mean(work1)) saperr4 = append(saperr4,kepstat.mean_err(work2)) pdc4 = append(pdc4,kepstat.mean(work3)) pdcerr4 = append(pdcerr4,kepstat.mean_err(work4)) cbv4 = append(cbv4,kepstat.mean(work5)) cbverr4 = append(cbverr4,kepstat.mean_err(work6)) det4 = append(det4,kepstat.mean(work7)) deterr4 = append(deterr4,kepstat.mean_err(work8)) elif (binmethod == 'median'): sap4 = append(sap4,kepstat.median(work1,logfile)) saperr4 = append(saperr4,kepstat.mean_err(work2)) pdc4 = append(pdc4,kepstat.median(work3,logfile)) pdcerr4 = append(pdcerr4,kepstat.mean_err(work4)) cbv4 = append(cbv4,kepstat.median(work5,logfile)) cbverr4 = append(cbverr4,kepstat.mean_err(work6)) det4 = append(det4,kepstat.median(work7,logfile)) deterr4 = append(deterr4,kepstat.mean_err(work8)) else: coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip('poly0',[scipy.stats.nanmean(work1)],arange(0.0,float(len(work1)),1.0),work1,work2, threshold,threshold,niter,logfile,False) sap4 = append(sap4,coeffs[0]) saperr4 = append(saperr4,kepstat.mean_err(work2)) coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip('poly0',[scipy.stats.nanmean(work3)],arange(0.0,float(len(work3)),1.0),work3,work4, threshold,threshold,niter,logfile,False) pdc4 = append(pdc4,coeffs[0]) pdcerr4 = append(pdcerr4,kepstat.mean_err(work4)) coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip('poly0',[scipy.stats.nanmean(work5)],arange(0.0,float(len(work5)),1.0),work5,work6, threshold,threshold,niter,logfile,False) cbv4 = append(cbv4,coeffs[0]) cbverr4 = append(cbverr4,kepstat.mean_err(work6)) coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip('poly0',[scipy.stats.nanmean(work7)],arange(0.0,float(len(work7)),1.0),work7,work8, threshold,threshold,niter,logfile,False) det4 = append(det4,coeffs[0]) deterr4 = append(deterr4,kepstat.mean_err(work8)) work1 = array([],'float32') work2 = array([],'float32') work3 = array([],'float32') work4 = array([],'float32') work5 = array([],'float32') work6 = array([],'float32') work7 = array([],'float32') work8 = array([],'float32') nb += 1.0 else: work1 = append(work1,sap3[i]) work2 = append(work2,saperr3[i]) work3 = append(work3,pdc3[i]) work4 = append(work4,pdcerr3[i]) work5 = append(work5,cbv3[i]) work6 = append(work6,cbverr3[i]) work7 = append(work7,det3[i]) work8 = append(work8,deterr3[i]) # update HDU1 for output file if status == 0: cols = (instr[1].columns + ColDefs([Column(name='PHASE',format='E',array=phase1)])) instr[1] = pyfits.new_table(cols) instr[1].header.cards['TTYPE'+str(len(instr[1].columns))].comment = 'column title: phase' instr[1].header.cards['TFORM'+str(len(instr[1].columns))].comment = 'data type: float32' for i in range(len(incards)): if incards[i].key not in instr[1].header.keys(): instr[1].header.update(incards[i].key, incards[i].value, incards[i].comment) else: instr[1].header.cards[incards[i].key].comment = incards[i].comment instr[1].header.update('PERIOD',period,'period defining the phase [d]') instr[1].header.update('BJD0',phasezero,'time of phase zero [BJD]') # write new phased data extension for output file if status == 0 and bindata: col1 = Column(name='PHASE',format='E',array=phase4) col2 = Column(name='SAP_FLUX',format='E',unit='e/s',array=sap4/cadenom) col3 = Column(name='SAP_FLUX_ERR',format='E',unit='e/s',array=saperr4/cadenom) col4 = Column(name='PDC_FLUX',format='E',unit='e/s',array=pdc4/cadenom) col5 = Column(name='PDC_FLUX_ERR',format='E',unit='e/s',array=pdcerr4/cadenom) col6 = Column(name='CBV_FLUX',format='E',unit='e/s',array=cbv4/cadenom) col7 = Column(name='DET_FLUX',format='E',array=det4/cadenom) col8 = Column(name='DET_FLUX_ERR',format='E',array=deterr4/cadenom) cols = ColDefs([col1,col2,col3,col4,col5,col6,col7,col8]) instr.append(new_table(cols)) instr[-1].header.cards['TTYPE1'].comment = 'column title: phase' instr[-1].header.cards['TTYPE2'].comment = 'column title: simple aperture photometry' instr[-1].header.cards['TTYPE3'].comment = 'column title: SAP 1-sigma error' instr[-1].header.cards['TTYPE4'].comment = 'column title: pipeline conditioned photometry' instr[-1].header.cards['TTYPE5'].comment = 'column title: PDC 1-sigma error' instr[-1].header.cards['TTYPE6'].comment = 'column title: cotrended basis vector photometry' instr[-1].header.cards['TTYPE7'].comment = 'column title: Detrended aperture photometry' instr[-1].header.cards['TTYPE8'].comment = 'column title: DET 1-sigma error' instr[-1].header.cards['TFORM1'].comment = 'column type: float32' instr[-1].header.cards['TFORM2'].comment = 'column type: float32' instr[-1].header.cards['TFORM3'].comment = 'column type: float32' instr[-1].header.cards['TFORM4'].comment = 'column type: float32' instr[-1].header.cards['TFORM5'].comment = 'column type: float32' instr[-1].header.cards['TFORM6'].comment = 'column type: float32' instr[-1].header.cards['TFORM7'].comment = 'column type: float32' instr[-1].header.cards['TFORM8'].comment = 'column type: float32' instr[-1].header.cards['TUNIT2'].comment = 'column units: electrons per second' instr[-1].header.cards['TUNIT3'].comment = 'column units: electrons per second' instr[-1].header.cards['TUNIT4'].comment = 'column units: electrons per second' instr[-1].header.cards['TUNIT5'].comment = 'column units: electrons per second' instr[-1].header.cards['TUNIT6'].comment = 'column units: electrons per second' instr[-1].header.update('EXTNAME','FOLDED','extension name') instr[-1].header.update('PERIOD',period,'period defining the phase [d]') instr[-1].header.update('BJD0',phasezero,'time of phase zero [BJD]') instr[-1].header.update('BINMETHD',binmethod,'phase binning method') if binmethod =='sigclip': instr[-1].header.update('THRSHOLD',threshold,'sigma-clipping threshold [sigma]') instr[-1].header.update('NITER',niter,'max number of sigma-clipping iterations') # history keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) instr.writeto(outfile) # clean up x-axis unit if status == 0: ptime1 = array([],'float32') ptime2 = array([],'float32') pout1 = array([],'float32') pout2 = array([],'float32') if bindata: work = sap4 if plottype == 'pdc': work = pdc4 if plottype == 'cbv': work = cbv4 if plottype == 'det': work = det4 for i in range(len(phase4)): if (phase4[i] > 0.5): ptime2 = append(ptime2,phase4[i] - 1.0) pout2 = append(pout2,work[i]) ptime2 = append(ptime2,phase4) pout2 = append(pout2,work) for i in range(len(phase4)): if (phase4[i] <= 0.5): ptime2 = append(ptime2,phase4[i] + 1.0) pout2 = append(pout2,work[i]) work = sap3 if plottype == 'pdc': work = pdc3 if plottype == 'cbv': work = cbv3 if plottype == 'det': work = det3 for i in range(len(phase3)): if (phase3[i] > 0.5): ptime1 = append(ptime1,phase3[i] - 1.0) pout1 = append(pout1,work[i]) ptime1 = append(ptime1,phase3) pout1 = append(pout1,work) for i in range(len(phase3)): if (phase3[i] <= 0.5): ptime1 = append(ptime1,phase3[i] + 1.0) pout1 = append(pout1,work[i]) xlab = 'Orbital Phase ($\phi$)' # clean up y-axis units if status == 0: nrm = len(str(int(pout1[isfinite(pout1)].max())))-1 pout1 = pout1 / 10**nrm pout2 = pout2 / 10**nrm if nrm == 0: ylab = plotlab else: ylab = '10$^%d$ %s' % (nrm, plotlab) # data limits xmin = ptime1.min() xmax = ptime1.max() ymin = pout1[isfinite(pout1)].min() ymax = pout1[isfinite(pout1)].max() xr = xmax - xmin yr = ymax - ymin ptime1 = insert(ptime1,[0],[ptime1[0]]) ptime1 = append(ptime1,[ptime1[-1]]) pout1 = insert(pout1,[0],[0.0]) pout1 = append(pout1,0.0) if bindata: ptime2 = insert(ptime2,[0],ptime2[0] - 1.0 / nbins) ptime2 = insert(ptime2,[0],ptime2[0]) ptime2 = append(ptime2,[ptime2[-1] + 1.0 / nbins, ptime2[-1] + 1.0 / nbins]) pout2 = insert(pout2,[0],[pout2[-1]]) pout2 = insert(pout2,[0],[0.0]) pout2 = append(pout2,[pout2[2],0.0]) # plot new light curve if status == 0 and plottype != 'none': try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 18, 'legend.fontsize': 18, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} pylab.rcParams.update(params) except: print 'ERROR -- KEPFOLD: install latex for scientific plotting' status = 1 if status == 0 and plottype != 'none': pylab.figure(figsize=[17,7]) pylab.clf() ax = pylab.axes([0.06,0.11,0.93,0.86]) pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) labels = ax.get_yticklabels() setp(labels, 'rotation', 90) if bindata: pylab.fill(ptime2,pout2,color=fcolor,linewidth=0.0,alpha=falpha) else: if 'det' in plottype: pylab.fill(ptime1,pout1,color=fcolor,linewidth=0.0,alpha=falpha) pylab.plot(ptime1,pout1,color=lcolor,linestyle='',linewidth=lwidth,marker='.') if bindata: pylab.plot(ptime2[1:-1],pout2[1:-1],color='r',linestyle='-',linewidth=lwidth,marker='') xlabel(xlab, {'color' : 'k'}) ylabel(ylab, {'color' : 'k'}) xlim(-0.49999,1.49999) if ymin >= 0.0: ylim(ymin-yr*0.01,ymax+yr*0.01) # ylim(0.96001,1.03999) else: ylim(1.0e-10,ymax+yr*0.01) grid() if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() # close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) # stop time kepmsg.clock('KEPFOLD ended at: ',logfile,verbose)
def keptransitmodel(inputfile, datacol, errorcol, period_d, rprs, T0, Ecc, ars, inc, omega, LDparams, sec, norm=False, verbose=0, logfile='logfile.dat', status=0, cmdLine=False): #write to a logfile hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPTRANSIT -- ' call += 'inputfile=' + inputfile + ' ' call += 'datacol=' + str(datacol) + ' ' call += 'errorcol=' + str(errorcol) + ' ' call += 'period_d=' + str(period_d) + ' ' call += 'rprs=' + str(rprs) + ' ' call += 'T0=' + str(T0) + ' ' call += 'Ecc=' + str(Ecc) + ' ' call += 'ars=' + str(ars) + ' ' call += 'inc=' + str(inc) + ' ' call += 'omega=' + str(omega) + ' ' call += 'LDparams=' + str(LDparams) + ' ' call += 'sec=' + str(sec) + ' ' #to finish # open input file if status == 0: instr, status = kepio.openfits(inputfile, 'readonly', logfile, verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys( instr, inputfile, logfile, verbose, status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr, file, logfile, verbose) # read table structure if status == 0: table, status = kepio.readfitstab(inputfile, instr[1], logfile, verbose) # filter input data table if status == 0: try: nanclean = instr[1].header['NANCLEAN'] except: naxis2 = 0 try: for i in range(len(table.field(0))): if np.isfinite(table.field('barytime')[i]) and \ np.isfinite(table.field(datacol)[i]): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] except: for i in range(len(table.field(0))): if np.isfinite(table.field('time')[i]) and \ np.isfinite(table.field(datacol)[i]): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] # comment = 'NaN cadences removed from data' # status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose) # read table columns if status == 0: try: intime = instr[1].data.field('barytime') + 2.4e6 except: intime, status = kepio.readfitscol(inputfile, instr[1].data, 'time', logfile, verbose) indata, status = kepio.readfitscol(inputfile, instr[1].data, datacol, logfile, verbose) inerr, status = kepio.readfitscol(inputfile, instr[1].data, errorcol, logfile, verbose) if status == 0: intime = intime + bjdref indata = indata / cadenom inerr = inerr / cadenom if status == 0 and norm: #first remove outliers before normalizing threesig = 3. * np.std(indata) mask = np.logical_and(indata < indata + threesig, indata > indata - threesig) #now normalize indata = indata / np.median(indata[mask]) if status == 0: #need to check if LD params are sensible and in right format LDparams = [float(i) for i in LDparams.split()] inc = inc * np.pi / 180. if status == 0: modelfit = tmod.lightcurve(intime, period_d, rprs, T0, Ecc, ars, inc, omega, LDparams, sec) if status == 0: phi, fluxfold, modelfold, errorfold, phiNotFold = fold_data( intime, modelfit, indata, inerr, period_d, T0) if status == 0: do_plot(intime, modelfit, indata, inerr, period_d, T0, cmdLine)
def kepfilter(infile,outfile,datacol,function,cutoff,passband,plot,plotlab, clobber,verbose,logfile,status,cmdLine=False): ## startup parameters status = 0 numpy.seterr(all="ignore") labelsize = 24 ticksize = 16 xsize = 16 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 ## log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPFILTER -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+str(datacol)+' ' call += 'function='+str(function)+' ' call += 'cutoff='+str(cutoff)+' ' call += 'passband='+str(passband)+' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' call += 'plotlab='+str(plotlab)+' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) ## start time kepmsg.clock('KEPFILTER started at',logfile,verbose) ## test log file logfile = kepmsg.test(logfile) ## clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPFILTER: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile,message,verbose) ## open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence ## fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) ## read table structure if status == 0: table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) # read time and flux columns if status == 0: barytime, status = kepio.readtimecol(infile,table,logfile,verbose) flux, status = kepio.readsapcol(infile,table,logfile,verbose) # filter input data table if status == 0: try: nanclean = instr[1].header['NANCLEAN'] except: naxis2 = 0 for i in range(len(table.field(0))): if (numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i]) and flux[i] != 0.0): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] comment = 'NaN cadences removed from data' status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose) ## read table columns if status == 0: intime, status = kepio.readtimecol(infile,instr[1].data,logfile,verbose) if status == 0: indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose) if status == 0: intime = intime + bjdref indata = indata / cadenom ## define data sampling if status == 0: tr = 1.0 / (cadence / 86400) timescale = 1.0 / (cutoff / tr) ## define convolution function if status == 0: if function == 'boxcar': filtfunc = numpy.ones(numpy.ceil(timescale)) elif function == 'gauss': timescale /= 2 dx = numpy.ceil(timescale * 10 + 1) filtfunc = kepfunc.gauss() filtfunc = filtfunc([1.0,dx/2-1.0,timescale],linspace(0,dx-1,dx)) elif function == 'sinc': dx = numpy.ceil(timescale * 12 + 1) fx = linspace(0,dx-1,dx) fx = fx - dx / 2 + 0.5 fx /= timescale filtfunc = numpy.sinc(fx) filtfunc /= numpy.sum(filtfunc) ## pad time series at both ends with noise model if status == 0: ave, sigma = kepstat.stdev(indata[:len(filtfunc)]) padded = append(kepstat.randarray(np.ones(len(filtfunc)) * ave, np.ones(len(filtfunc)) * sigma), indata) ave, sigma = kepstat.stdev(indata[-len(filtfunc):]) padded = append(padded, kepstat.randarray(np.ones(len(filtfunc)) * ave, np.ones(len(filtfunc)) * sigma)) ## convolve data if status == 0: convolved = convolve(padded,filtfunc,'same') ## remove padding from the output array if status == 0: if function == 'boxcar': outdata = convolved[len(filtfunc):-len(filtfunc)] else: outdata = convolved[len(filtfunc):-len(filtfunc)] ## subtract low frequencies if status == 0 and passband == 'high': outmedian = median(outdata) outdata = indata - outdata + outmedian ## comment keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) ## clean up x-axis unit if status == 0: intime0 = float(int(tstart / 100) * 100.0) if intime0 < 2.4e6: intime0 += 2.4e6 ptime = intime - intime0 xlab = 'BJD $-$ %d' % intime0 ## clean up y-axis units if status == 0: pout = indata * 1.0 pout2 = outdata * 1.0 nrm = len(str(int(numpy.nanmax(pout))))-1 pout = pout / 10**nrm pout2 = pout2 / 10**nrm ylab = '10$^%d$ %s' % (nrm, plotlab) ## data limits xmin = ptime.min() xmax = ptime.max() ymin = numpy.nanmin(pout) ymax = numpy.nanmax(pout) xr = xmax - xmin yr = ymax - ymin ptime = insert(ptime,[0],[ptime[0]]) ptime = append(ptime,[ptime[-1]]) pout = insert(pout,[0],[0.0]) pout = append(pout,0.0) pout2 = insert(pout2,[0],[0.0]) pout2 = append(pout2,0.0) ## plot light curve if status == 0 and plot: try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} rcParams.update(params) except: print 'ERROR -- KEPFILTER: install latex for scientific plotting' status = 1 if status == 0 and plot: pylab.figure(figsize=[xsize,ysize]) pylab.clf() ## plot filtered data ax = pylab.axes([0.06,0.1,0.93,0.87]) pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) labels = ax.get_yticklabels() setp(labels, 'rotation', 90, fontsize=12) pylab.plot(ptime,pout,color='#ff9900',linestyle='-',linewidth=lwidth) fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha) if passband == 'low': pylab.plot(ptime[1:-1],pout2[1:-1],color=lcolor,linestyle='-',linewidth=lwidth) else: pylab.plot(ptime,pout2,color=lcolor,linestyle='-',linewidth=lwidth) fill(ptime,pout2,color=lcolor,linewidth=0.0,alpha=falpha) xlabel(xlab, {'color' : 'k'}) ylabel(ylab, {'color' : 'k'}) xlim(xmin-xr*0.01,xmax+xr*0.01) if ymin >= 0.0: ylim(ymin-yr*0.01,ymax+yr*0.01) else: ylim(1.0e-10,ymax+yr*0.01) pylab.grid() # render plot if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() ## write output file if status == 0: for i in range(len(outdata)): instr[1].data.field(datacol)[i] = outdata[i] instr.writeto(outfile) ## close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) ## end time if (status == 0): message = 'KEPFILTER completed at' else: message = '\nKEPFILTER aborted at' kepmsg.clock(message,logfile,verbose)
def kepbin(infile,outfile,fluxcol,do_nbin,nbins,do_binwidth,binwidth, do_ownbins,binfile,method,interpm,plot,clobber,verbose,logfile,status): """ Setup the kepbin environment """ # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPBIN -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'fluxcol='+fluxcol+ ' ' donbin = 'n' if (do_nbin): donbin = 'y' call += 'donbin='+donbin+ ' ' dobinwidth = 'n' if (do_binwidth): dobinwidth = 'y' call += 'dbinwidth='+dobinwidth+ ' ' doownbin = 'n' if (do_ownbins): doownbin = 'y' call += 'doownbin='+doownbin+ ' ' call += 'method='+method+' ' call += 'interpm='+interpm+' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPCLIP started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPCLIP: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile,message,verbose) # open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr, infile,logfile,verbose,status) # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # input data if status == 0: table = instr[1].data # read time and flux columns date = table.field('barytime') flux = table.field(fluxcol) #cut out infinites and zero flux columns date,flux = cutBadData(date,flux) if do_nbin: bdate,bflux = bin_funct(date,flux,nbins=nbins ,method=method,interpm=interpm) elif do_binwidth: bdate,bflux = bin_funct(date,flux,binwidth=binwidth ,method=method,interpm=interpm) elif do_ownbins: filepointer = open(binfile,'r') ownbins = [] for line in filepointer: splitted = line.split() ownbins.append(float(splitted[0])) ownbins = n.array(ownbins) bdate,bflux = bin_funct(date,flux,ownbins=ownbins ,method=method,interpm=interpm) if plot: do_plot(bdate,bflux) if status == 0: col1 = pyfits.Column(name='bdate',format='E',unit='day',array=bdate) col2 = pyfits.Column(name='bflux',format='E',unit='e-/cadence',array=bflux) cols = pyfits.ColDefs([col1,col2]) instr.append(pyfits.new_table(cols)) instr[-1].header.update('EXTNAME','BINNED DATA','extension name') instr.writeto(outfile) # close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) # end time if (status == 0): message = 'KEPBIN completed at' else: message = '\nKEPBIN aborted at' kepmsg.clock(message,logfile,verbose)
def kepdip(infile,outfile,datacol,dmethod,kneighb,hstd,plot,plotlab, clobber,verbose,logfile,status): """ Perform a k-nearest neighbor regression analysis. """ ## startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 16 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#9AFF9A' falpha = 0.3 ## log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPDIP -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+str(datacol)+' ' call += 'dmethod='+dmethod+' ' call += 'hstd='+str(hstd)+' ' call += 'kneighb='+str(kneighb)+' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' call += 'plotlab='+str(plotlab)+' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) ## start time kepmsg.clock('KEPDIP started at',logfile,verbose) ## test log file logfile = kepmsg.test(logfile) ## clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPDIP: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile,message,verbose) ## open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if cadence == 0.0: tstart, tstop, ncad, cadence, status = kepio.cadence(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence ## fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) ## read table structure if status == 0: table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) # read time and flux columns if status == 0: barytime, status = kepio.readtimecol(infile,table,logfile,verbose) if status == 0: flux, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose) # filter input data table if status == 0: try: nanclean = instr[1].header['NANCLEAN'] except: naxis2 = 0 for i in range(len(table.field(0))): if (numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i]) and flux[i] != 0.0): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] comment = 'NaN cadences removed from data' status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose) ## read table columns if status == 0: try: intime = instr[1].data.field('barytime') except: intime, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose) indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose) if status == 0: intime = intime + bjdref indata = indata / cadenom ## smooth data if status == 0: # outdata = knn_predict(intime, indata, kmethod, kneighb) outdata_t, outdata_l, outdata_fmt = _find_dips(intime, indata, dmethod, kneighb, hstd) ## comment keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) ## clean up x-axis unit if status == 0: intime0 = float(int(tstart / 100) * 100.0) if intime0 < 2.4e6: intime0 += 2.4e6 ptime = intime - intime0 ptime2 = outdata_t - intime0 # print ptime,intime,intime0 xlab = 'BJD $-$ %d' % intime0 ## clean up y-axis units if status == 0: pout = indata * 1.0 pout2 = outdata_l * 1.0 nrm = len(str(int(numpy.nanmax(pout))))-1 pout = pout / 10**nrm pout2 = pout2 / 10**nrm ylab = '10$^%d$ %s' % (nrm, plotlab) ## data limits xmin = numpy.nanmin(ptime) xmax = numpy.nanmax(ptime) ymin = numpy.min(pout) ymax = numpy.nanmax(pout) xr = xmax - xmin yr = ymax - ymin ptime = insert(ptime,[0],[ptime[0]]) ptime = append(ptime,[ptime[-1]]) pout = insert(pout,[0],[0.0]) pout = append(pout,0.0) if (len(ptime2) > 0): ptime2 = insert(ptime2,[0],[ptime2[0]]) ptime2 = append(ptime2,[ptime2[-1]]) pout2 = insert(pout2,[0],[0.0]) pout2 = append(pout2,0.0) ## plot light curve if status == 0 and plot: try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} rcParams.update(params) except: print('ERROR -- KEPDIP: install latex for scientific plotting') status = 1 if status == 0 and plot: pylab.figure(1,figsize=[xsize,ysize]) ## plot regression data ax = pylab.axes([0.06,0.1,0.93,0.87]) pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.scatter(ptime, pout, color='#214CAE', s=2) if (len(ptime2) > 0): pylab.scatter(ptime2, pout2, color='#47AE10', s=35, marker='o', linewidths=2, alpha=0.4) xlabel(xlab, {'color' : 'k'}) ylabel(ylab, {'color' : 'k'}) xlim(xmin-xr*0.01,xmax+xr*0.01) if ymin >= 0.0: ylim(ymin-yr*0.01,ymax+yr*0.01) else: ylim(1.0e-10,ymax+yr*0.01) pylab.grid() pylab.draw() pylab.savefig(re.sub('\.\S+','.png',outfile),dpi=100) ## write output file if status == 0: for i in range(len(outdata_fmt)): instr[1].data.field(datacol)[i] = outdata_fmt[i] instr.writeto(outfile) ## close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) ## end time if (status == 0): message = 'KEPDIP completed at' else: message = '\nKEPDIP aborted at' kepmsg.clock(message,logfile,verbose)
def kepsff(infile, outfile, datacol, cenmethod, stepsize, npoly_cxcy, sigma_cxcy, npoly_ardx, npoly_dsdt, sigma_dsdt, npoly_arfl, sigma_arfl, plotres, clobber, verbose, logfile, status, cmdLine=False): # startup parameters status = 0 labelsize = 16 ticksize = 14 xsize = 20 ysize = 8 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 seterr(all="ignore") # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPSFF -- ' call += 'infile=' + infile + ' ' call += 'outfile=' + outfile + ' ' call += 'datacol=' + datacol + ' ' call += 'cenmethod=' + cenmethod + ' ' call += 'stepsize=' + str(stepsize) + ' ' call += 'npoly_cxcy=' + str(npoly_cxcy) + ' ' call += 'sigma_cxcy=' + str(sigma_cxcy) + ' ' call += 'npoly_ardx=' + str(npoly_ardx) + ' ' call += 'npoly_dsdt=' + str(npoly_dsdt) + ' ' call += 'sigma_dsdt=' + str(sigma_dsdt) + ' ' call += 'npoly_arfl=' + str(npoly_arfl) + ' ' call += 'sigma_arfl=' + str(sigma_arfl) + ' ' savep = 'n' if (plotres): savep = 'y' call += 'plotres=' + savep + ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber=' + overwrite + ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose=' + chatter + ' ' call += 'logfile=' + logfile kepmsg.log(logfile, call + '\n', verbose) # start time kepmsg.clock('KEPSFF started at', logfile, verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPSFF: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile, message, verbose) # open input file if status == 0: instr, status = kepio.openfits(infile, 'readonly', logfile, verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys( instr, infile, logfile, verbose, status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr, file, logfile, verbose) # read table structure if status == 0: table, status = kepio.readfitstab(infile, instr[1], logfile, verbose) # determine sequence of windows in time if status == 0: frametim = instr[1].header['FRAMETIM'] num_frm = instr[1].header['NUM_FRM'] exptime = frametim * num_frm / 86400 tstart = table.field('TIME')[0] tstop = table.field('TIME')[-1] winedge = arange(tstart, tstop, stepsize) if tstop > winedge[-1] + stepsize / 2: winedge = append(winedge, tstop) else: winedge[-1] = tstop winedge = (winedge - tstart) / exptime winedge = winedge.astype(int) if len(table.field('TIME')) > winedge[-1] + 1: winedge = append(winedge, len(table.field('TIME'))) elif len(table.field('TIME')) < winedge[-1]: winedge[-1] = len(table.field('TIME')) # step through the time windows if status == 0: for iw in range(1, len(winedge)): t1 = winedge[iw - 1] t2 = winedge[iw] # filter input data table work1 = numpy.array([ table.field('TIME')[t1:t2], table.field('CADENCENO')[t1:t2], table.field(datacol)[t1:t2], table.field('MOM_CENTR1')[t1:t2], table.field('MOM_CENTR2')[t1:t2], table.field('PSF_CENTR1')[t1:t2], table.field('PSF_CENTR2')[t1:t2], table.field('SAP_QUALITY')[t1:t2] ], 'float64') work1 = numpy.rot90(work1, 3) work2 = work1[~numpy.isnan(work1).any(1)] work2 = work2[(work2[:, 0] == 0.0) | (work2[:, 0] > 1e5)] # assign table columns intime = work2[:, 7] + bjdref cadenceno = work2[:, 6].astype(int) indata = work2[:, 5] mom_centr1 = work2[:, 4] mom_centr2 = work2[:, 3] psf_centr1 = work2[:, 2] psf_centr2 = work2[:, 1] sap_quality = work2[:, 0] if cenmethod == 'moments': centr1 = copy(mom_centr1) centr2 = copy(mom_centr2) else: centr1 = copy(psf_centr1) centr2 = copy(psf_centr2) # fit centroid data with low-order polynomial cfit = zeros((len(centr2))) csig = zeros((len(centr2))) functype = 'poly' + str(npoly_cxcy) pinit = array([nanmean(centr2)]) if npoly_cxcy > 0: for j in range(npoly_cxcy): pinit = append(pinit, 0.0) try: coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip(functype,pinit,centr1,centr2,None,sigma_cxcy,sigma_cxcy,10,logfile,verbose) for j in range(len(coeffs)): cfit += coeffs[j] * numpy.power(centr1, j) csig[:] = sigma except: message = 'ERROR -- KEPSFF: could not fit centroid data with polynomial. There are no data points within the range of input rows %d - %d. Either increase the stepsize (with an appreciation of the effects on light curve quality this will have!), or better yet - cut the timeseries up to remove large gaps in the input light curve using kepclip.' % ( t1, t2) status = kepmsg.err(logfile, message, verbose) # sys.exit('') os._exit(1) # reject outliers time_good = array([], 'float64') centr1_good = array([], 'float32') centr2_good = array([], 'float32') flux_good = array([], 'float32') cad_good = array([], 'int') for i in range(len(cfit)): if abs(centr2[i] - cfit[i]) < sigma_cxcy * csig[i]: time_good = append(time_good, intime[i]) centr1_good = append(centr1_good, centr1[i]) centr2_good = append(centr2_good, centr2[i]) flux_good = append(flux_good, indata[i]) cad_good = append(cad_good, cadenceno[i]) # covariance matrix for centroid time series centr = concatenate([[centr1_good] - mean(centr1_good), [centr2_good] - mean(centr2_good)]) covar = cov(centr) # eigenvector eigenvalues of covariance matrix [eval, evec] = numpy.linalg.eigh(covar) ex = arange(-10.0, 10.0, 0.1) epar = evec[1, 1] / evec[0, 1] * ex enor = evec[1, 0] / evec[0, 0] * ex ex = ex + mean(centr1) epar = epar + mean(centr2_good) enor = enor + mean(centr2_good) # rotate centroid data centr_rot = dot(evec.T, centr) # fit polynomial to rotated centroids rfit = zeros((len(centr2))) rsig = zeros((len(centr2))) functype = 'poly' + str(npoly_ardx) pinit = array([nanmean(centr_rot[0, :])]) pinit = array([1.0]) if npoly_ardx > 0: for j in range(npoly_ardx): pinit = append(pinit, 0.0) try: coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip(functype,pinit,centr_rot[1,:],centr_rot[0,:],None,100.0,100.0,1, logfile,verbose) except: message = 'ERROR -- KEPSFF: could not fit rotated centroid data with polynomial' status = kepmsg.err(logfile, message, verbose) rx = linspace(nanmin(centr_rot[1, :]), nanmax(centr_rot[1, :]), 100) ry = zeros((len(rx))) for i in range(len(coeffs)): ry = ry + coeffs[i] * numpy.power(rx, i) # calculate arclength of centroids s = zeros((len(rx))) for i in range(1, len(s)): work3 = ((ry[i] - ry[i - 1]) / (rx[i] - rx[i - 1]))**2 s[i] = s[i - 1] + math.sqrt(1.0 + work3) * (rx[i] - rx[i - 1]) # fit arclength as a function of strongest eigenvector sfit = zeros((len(centr2))) ssig = zeros((len(centr2))) functype = 'poly' + str(npoly_ardx) pinit = array([nanmean(s)]) if npoly_ardx > 0: for j in range(npoly_ardx): pinit = append(pinit, 0.0) try: acoeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip(functype,pinit,rx,s,None,100.0,100.0,100,logfile,verbose) except: message = 'ERROR -- KEPSFF: could not fit rotated centroid data with polynomial' status = kepmsg.err(logfile, message, verbose) # correlate arclength with detrended flux t = copy(time_good) c = copy(cad_good) y = copy(flux_good) z = centr_rot[1, :] x = zeros((len(z))) for i in range(len(acoeffs)): x = x + acoeffs[i] * numpy.power(z, i) # calculate time derivative of arclength s dx = zeros((len(x))) for i in range(1, len(x)): dx[i] = (x[i] - x[i - 1]) / (t[i] - t[i - 1]) dx[0] = dx[1] # fit polynomial to derivative and flag outliers (thruster firings) dfit = zeros((len(dx))) dsig = zeros((len(dx))) functype = 'poly' + str(npoly_dsdt) pinit = array([nanmean(dx)]) if npoly_dsdt > 0: for j in range(npoly_dsdt): pinit = append(pinit, 0.0) try: dcoeffs, errors, covar, iiter, dsigma, chi2, dof, fit, dumx, dumy, status = \ kepfit.lsqclip(functype,pinit,t,dx,None,3.0,3.0,10,logfile,verbose) except: message = 'ERROR -- KEPSFF: could not fit rotated centroid data with polynomial' status = kepmsg.err(logfile, message, verbose) for i in range(len(dcoeffs)): dfit = dfit + dcoeffs[i] * numpy.power(t, i) centr1_pnt = array([], 'float32') centr2_pnt = array([], 'float32') time_pnt = array([], 'float64') flux_pnt = array([], 'float32') dx_pnt = array([], 'float32') s_pnt = array([], 'float32') time_thr = array([], 'float64') flux_thr = array([], 'float32') dx_thr = array([], 'float32') thr_cadence = [] for i in range(len(t)): if dx[i] < dfit[i] + sigma_dsdt * dsigma and dx[ i] > dfit[i] - sigma_dsdt * dsigma: time_pnt = append(time_pnt, time_good[i]) flux_pnt = append(flux_pnt, flux_good[i]) dx_pnt = append(dx_pnt, dx[i]) s_pnt = append(s_pnt, x[i]) centr1_pnt = append(centr1_pnt, centr1_good[i]) centr2_pnt = append(centr2_pnt, centr2_good[i]) else: time_thr = append(time_thr, time_good[i]) flux_thr = append(flux_thr, flux_good[i]) dx_thr = append(dx_thr, dx[i]) thr_cadence.append(cad_good[i]) # fit arclength-flux correlation cfit = zeros((len(time_pnt))) csig = zeros((len(time_pnt))) functype = 'poly' + str(npoly_arfl) pinit = array([nanmean(flux_pnt)]) if npoly_arfl > 0: for j in range(npoly_arfl): pinit = append(pinit, 0.0) try: ccoeffs, errors, covar, iiter, sigma, chi2, dof, fit, plx, ply, status = \ kepfit.lsqclip(functype,pinit,s_pnt,flux_pnt,None,sigma_arfl,sigma_arfl,100,logfile,verbose) except: message = 'ERROR -- KEPSFF: could not fit rotated centroid data with polynomial' status = kepmsg.err(logfile, message, verbose) # correction factors for unfiltered data centr = concatenate([[centr1] - mean(centr1_good), [centr2] - mean(centr2_good)]) centr_rot = dot(evec.T, centr) yy = copy(indata) zz = centr_rot[1, :] xx = zeros((len(zz))) cfac = zeros((len(zz))) for i in range(len(acoeffs)): xx = xx + acoeffs[i] * numpy.power(zz, i) for i in range(len(ccoeffs)): cfac = cfac + ccoeffs[i] * numpy.power(xx, i) # apply correction to flux time-series out_detsap = indata / cfac # split time-series data for plotting tim_gd = array([], 'float32') flx_gd = array([], 'float32') tim_bd = array([], 'float32') flx_bd = array([], 'float32') for i in range(len(indata)): if intime[i] in time_pnt: tim_gd = append(tim_gd, intime[i]) flx_gd = append(flx_gd, out_detsap[i]) else: tim_bd = append(tim_bd, intime[i]) flx_bd = append(flx_bd, out_detsap[i]) # plot style and size status = kepplot.define(labelsize, ticksize, logfile, verbose) pylab.figure(figsize=[xsize, ysize]) pylab.clf() # plot x-centroid vs y-centroid ax = kepplot.location([0.04, 0.57, 0.16, 0.41]) # plot location px = copy(centr1) # clean-up x-axis units py = copy(centr2) # clean-up y-axis units pxmin = px.min() pxmax = px.max() pymin = py.min() pymax = py.max() pxr = pxmax - pxmin pyr = pymax - pymin pad = 0.05 if pxr > pyr: dely = (pxr - pyr) / 2 xlim(pxmin - pxr * pad, pxmax + pxr * pad) ylim(pymin - dely - pyr * pad, pymax + dely + pyr * pad) else: delx = (pyr - pxr) / 2 ylim(pymin - pyr * pad, pymax + pyr * pad) xlim(pxmin - delx - pxr * pad, pxmax + delx + pxr * pad) pylab.plot(px, py, color='#980000', markersize=5, marker='D', ls='') # plot data pylab.plot(centr1_good, centr2_good, color='#009900', markersize=5, marker='D', ls='') # plot data pylab.plot(ex, epar, color='k', ls='-') pylab.plot(ex, enor, color='k', ls='-') for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(14) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(14) kepplot.labels('CCD Column', 'CCD Row', 'k', 16) # labels pylab.grid() # grid lines # plot arclength fits vs drift along strongest eigenvector ax = kepplot.location([0.24, 0.57, 0.16, 0.41]) # plot location px = rx - rx[0] py = s - rx - (s[0] - rx[0]) # clean-up y-axis units py, ylab, status = kepplot.cleany(py, 1.0, logfile, verbose) # clean-up x-axis units kepplot.RangeOfPlot(px, py, 0.05, False) # data limits pylab.plot(px, py, color='#009900', markersize=5, marker='D', ls='') px = plotx - rx[0] # clean-up x-axis units py = ploty - plotx - (s[0] - rx[0]) # clean-up y-axis units py, ylab, status = kepplot.cleany(py, 1.0, logfile, verbose) # clean-up x-axis units pylab.plot(px, py, color='r', ls='-', lw=3) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(14) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(14) ylab = re.sub(' e\S+', ' pixels)', ylab) ylab = re.sub(' s\S+', '', ylab) ylab = re.sub('Flux', 's $-$ x\'', ylab) kepplot.labels('Linear Drift [x\'] (pixels)', ylab, 'k', 16) # labels pylab.grid() # grid lines # plot time derivative of arclength s ax = kepplot.location([0.04, 0.08, 0.16, 0.41]) # plot location px = copy(time_pnt) py = copy(dx_pnt) px, xlab, status = kepplot.cleanx(px, logfile, verbose) # clean-up x-axis units kepplot.RangeOfPlot(px, dx, 0.05, False) # data limits pylab.plot(px, py, color='#009900', markersize=5, marker='D', ls='') try: px = copy(time_thr) py = copy(dx_thr) px, xlab, status = kepplot.cleanx( px, logfile, verbose) # clean-up x-axis units pylab.plot(px, py, color='#980000', markersize=5, marker='D', ls='') except: pass px = copy(t) py = copy(dfit) px, xlab, status = kepplot.cleanx(px, logfile, verbose) # clean-up x-axis units pylab.plot(px, py, color='r', ls='-', lw=3) py = copy(dfit + sigma_dsdt * dsigma) pylab.plot(px, py, color='r', ls='--', lw=3) py = copy(dfit - sigma_dsdt * dsigma) pylab.plot(px, py, color='r', ls='--', lw=3) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(14) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(14) kepplot.labels(xlab, 'ds/dt (pixels day$^{-1}$)', 'k', 16) # labels pylab.grid() # grid lines # plot relation of arclength vs detrended flux ax = kepplot.location([0.24, 0.08, 0.16, 0.41]) # plot location px = copy(s_pnt) py = copy(flux_pnt) py, ylab, status = kepplot.cleany(py, 1.0, logfile, verbose) # clean-up x-axis units kepplot.RangeOfPlot(px, py, 0.05, False) # data limits pylab.plot(px, py, color='#009900', markersize=5, marker='D', ls='') pylab.plot(plx, ply, color='r', ls='-', lw=3) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(14) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(14) kepplot.labels('Arclength [s] (pixels)', ylab, 'k', 16) # labels pylab.grid() # grid lines # plot aperture photometry kepplot.location([0.44, 0.53, 0.55, 0.45]) # plot location px, xlab, status = kepplot.cleanx(intime, logfile, verbose) # clean-up x-axis units py, ylab, status = kepplot.cleany(indata, 1.0, logfile, verbose) # clean-up x-axis units kepplot.RangeOfPlot(px, py, 0.01, True) # data limits kepplot.plot1d(px, py, cadence, lcolor, lwidth, fcolor, falpha, True) # plot data kepplot.labels(' ', ylab, 'k', 16) # labels pylab.setp(pylab.gca(), xticklabels=[]) # remove x- or y-tick labels kepplot.labels(xlab, re.sub('Flux', 'Aperture Flux', ylab), 'k', 16) # labels pylab.grid() # grid lines # Plot corrected photometry kepplot.location([0.44, 0.08, 0.55, 0.45]) # plot location kepplot.RangeOfPlot(px, py, 0.01, True) # data limits px, xlab, status = kepplot.cleanx(tim_gd, logfile, verbose) # clean-up x-axis units py, ylab, status = kepplot.cleany(flx_gd, 1.0, logfile, verbose) # clean-up x-axis units kepplot.plot1d(px, py, cadence, lcolor, lwidth, fcolor, falpha, True) # plot data try: px, xlab, status = kepplot.cleanx( tim_bd, logfile, verbose) # clean-up x-axis units py = copy(flx_bd) pylab.plot(px, py, color='#980000', markersize=5, marker='D', ls='') except: pass kepplot.labels(xlab, re.sub('Flux', 'Corrected Flux', ylab), 'k', 16) # labels pylab.grid() # grid lines # render plot if plotres: kepplot.render(cmdLine) # save plot to file if plotres: pylab.savefig(re.sub('.fits', '_%d.png' % (iw + 1), outfile)) # correct fluxes within the output file intime = work1[:, 7] + bjdref cadenceno = work1[:, 6].astype(int) indata = work1[:, 5] mom_centr1 = work1[:, 4] mom_centr2 = work1[:, 3] psf_centr1 = work1[:, 2] psf_centr2 = work1[:, 1] centr1 = copy(mom_centr1) centr2 = copy(mom_centr2) centr = concatenate([[centr1] - mean(centr1_good), [centr2] - mean(centr2_good)]) centr_rot = dot(evec.T, centr) yy = copy(indata) zz = centr_rot[1, :] xx = zeros((len(zz))) cfac = zeros((len(zz))) for i in range(len(acoeffs)): xx = xx + acoeffs[i] * numpy.power(zz, i) for i in range(len(ccoeffs)): cfac = cfac + ccoeffs[i] * numpy.power(xx, i) out_detsap = yy / cfac instr[1].data.field('SAP_FLUX')[t1:t2] /= cfac instr[1].data.field('PDCSAP_FLUX')[t1:t2] /= cfac try: instr[1].data.field('DETSAP_FLUX')[t1:t2] /= cfac except: pass # add quality flag to output file for thruster firings for i in range(len(intime)): if cadenceno[i] in thr_cadence: instr[1].data.field('SAP_QUALITY')[t1 + i] += 131072 # write output file if status == 0: instr.writeto(outfile) # close input file if status == 0: status = kepio.closefits(instr, logfile, verbose) # end time if (status == 0): message = 'KEPSFF completed at' else: message = '\nKEPSFF aborted at' kepmsg.clock(message, logfile, verbose)
def kepdynamic(infile,outfile,fcol,pmin,pmax,nfreq,deltat,nslice, plot,plotscale,cmap,clobber,verbose,logfile,status,cmdLine=False): # startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 12 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 numpy.seterr(all="ignore") # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPDYNAMIC -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'fcol='+fcol+' ' call += 'pmin='+str(pmin)+' ' call += 'pmax='+str(pmax)+' ' call += 'nfreq='+str(nfreq)+' ' call += 'deltat='+str(deltat)+' ' call += 'nslice='+str(nslice)+' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' call += 'plotscale='+plotscale+ ' ' call += 'cmap='+str(cmap)+' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('Start time is',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # error checking if status == 0 and pmin >= pmax: message = 'ERROR -- KEPDYNAMIC: PMIN must be less than PMAX' status = kepmsg.err(logfile,message,verbose) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPDYNAMIC: ' + outfile + ' exists. Use clobber' status = kepmsg.err(logfile,message,verbose) # plot color map if status == 0 and cmap == 'browse': status = keplab.cmap_plot() # open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # read table columns if status == 0: barytime, status = kepio.readtimecol(infile,instr[1].data,logfile,verbose) if status == 0: signal, status = kepio.readfitscol(infile,instr[1].data,fcol,logfile,verbose) if status == 0: barytime = barytime + bjdref signal = signal / cadenom # remove infinite data from time series if status == 0: incols = [barytime, signal] outcols = kepstat.removeinfinlc(signal, incols) barytime = outcols[0] signal = outcols[1] # period to frequency conversion if status == 0: fmin = 1.0 / pmax fmax = 1.0 / pmin deltaf = (fmax - fmin) / nfreq # determine bounds of time slices if status == 0: t1 = []; t2 = [] dt = barytime[-1] - barytime[0] dt -= deltat if dt < 0: message = 'ERROR -- KEPDYNAMIC: time slices are larger than data range' status = kepmsg.err(logfile,message,verbose) ds = dt / (nslice - 1) for i in range(nslice): t1.append(barytime[0] + ds * float(i)) t2.append(barytime[0] + deltat + ds * float(i)) # loop through time slices if status == 0: dynam = [] for i in range(nslice): x = []; y = [] for j in range(len(barytime)): if (barytime[j] >= t1[i] and barytime[j] <= t2[i]): x.append(barytime[j]) y.append(signal[j]) x = array(x,dtype='float64') y = array(y,dtype='float32') y = y - median(y) # determine FT power fr, power = kepfourier.ft(x,y,fmin,fmax,deltaf,False) for j in range(len(power)): dynam.append(power[j]) print('Timeslice: %.4f Pmax: %.2E' % ((t2[i] + t1[i]) / 2, power.max())) # define shape of results array dynam = array(dynam,dtype='float64') dynam.shape = len(t1),len(power) # write output file if status == 0: instr.append(ImageHDU()) instr[-1].data = dynam.transpose() instr[-1].header.update('EXTNAME','DYNAMIC FT','extension name') instr[-1].header.update('WCSAXES',2,'number of WCS axes') instr[-1].header.update('CRPIX1',0.5,'reference pixel along axis 1') instr[-1].header.update('CRPIX2',0.5,'reference pixel along axis 2') instr[-1].header.update('CRVAL1',t1[0],'time at reference pixel (BJD)') instr[-1].header.update('CRVAL2',fmin,'frequency at reference pixel (1/day)') instr[-1].header.update('CDELT1',(barytime[-1] - barytime[0]) / nslice, 'pixel scale in dimension 1 (days)') instr[-1].header.update('CDELT2',deltaf,'pixel scale in dimension 2 (1/day)') instr[-1].header.update('CTYPE1','BJD','data type of dimension 1') instr[-1].header.update('CTYPE2','FREQUENCY','data type of dimension 2') instr.writeto(outfile) # history keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) # close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) # clean up x-axis unit if status == 0: time0 = float(int(barytime[0] / 100) * 100.0) barytime = barytime - time0 xlab = 'BJD $-$ %d' % time0 # image intensity min and max if status == 0: if 'rithmic' in plotscale: dynam = numpy.log10(dynam) elif 'sq' in plotscale: dynam = numpy.sqrt(dynam) elif 'logoflog' in plotscale: dynam = numpy.log10(numpy.abs(numpy.log10(dynam))) # dynam = -dynam nstat = 2; pixels = [] for i in range(dynam.shape[0]): for j in range(dynam.shape[1]): pixels.append(dynam[i,j]) pixels = array(sort(pixels),dtype=float32) if int(float(len(pixels)) * 0.1 + 0.5) > nstat: nstat = int(float(len(pixels)) * 0.1 + 0.5) zmin = median(pixels[:nstat]) zmax = median(pixels[-1:]) if isnan(zmax): zmax = median(pixels[-nstat/2:]) if isnan(zmax): zmax = numpy.nanmax(pixels) # plot power spectrum if status == 0 and plot: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} rcParams.update(params) pylab.figure(1,figsize=[xsize,ysize]) pylab.clf() pylab.axes([0.08,0.113,0.91,0.86]) dynam = dynam.transpose() pylab.imshow(dynam,origin='lower',aspect='auto',cmap=cmap,vmin=zmin,vmax=zmax, extent=[barytime[0],barytime[-1],fmin,fmax],interpolation='bilinear') xlabel(xlab, {'color' : 'k'}) ylabel(r'Frequency (d$^{-1}$)', {'color' : 'k'}) grid() pylab.savefig(re.sub('\.\S+','.png',outfile),dpi=100) # render plot if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() return status ## end time if (status == 0): message = 'KEPDYNAMIC completed at' else: message = '\nKEPDYNAMIC aborted at' kepmsg.clock(message,logfile,verbose)
def kepstddev(infile,outfile,datacol,timescale,clobber,verbose,logfile,status,cmdLine=False): # startup parameters status = 0 labelsize = 44 ticksize = 36 xsize = 16 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPSTDDEV -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+str(datacol)+' ' call += 'timescale='+str(timescale)+' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPSTDDEV started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPSTDDEV: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile,message,verbose) # open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # read table structure if status == 0: table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) # filter input data table if status == 0: work1 = numpy.array([table.field('time'), table.field(datacol)]) work1 = numpy.rot90(work1,3) work1 = work1[~numpy.isnan(work1).any(1)] # read table columns if status == 0: intime = work1[:,1] + bjdref indata = work1[:,0] # calculate STDDEV in units of ppm if status == 0: stddev = running_frac_std(intime,indata,timescale/24) * 1.0e6 astddev = numpy.std(indata) * 1.0e6 cdpp = stddev / sqrt(timescale * 3600.0 / cadence) # filter cdpp if status == 0: for i in range(len(cdpp)): if cdpp[i] > median(cdpp) * 10.0: cdpp[i] = cdpp[i-1] # calculate median STDDEV if status == 0: medcdpp = ones((len(cdpp)),dtype='float32') * median(cdpp[:]) # print '\nMedian %.1fhr standard deviation = %d ppm' % (timescale, median(stddev[:])) print '\nStandard deviation = %d ppm' % astddev # calculate median STDDEV if status == 0: medcdpp = ones((len(cdpp)),dtype='float32') * median(cdpp[:]) print 'Median %.1fhr CDPP = %d ppm' % (timescale, median(cdpp[:])) # calculate RMS STDDEV if status == 0: rms, status = kepstat.rms(cdpp,zeros(len(stddev)),logfile,verbose) rmscdpp = ones((len(cdpp)),dtype='float32') * rms print ' RMS %.1fhr CDPP = %d ppm\n' % (timescale, rms) # clean up x-axis unit if status == 0: intime0 = float(int(tstart / 100) * 100.0) ptime = intime - intime0 xlab = 'BJD $-$ %d' % intime0 # clean up y-axis units if status == 0: pout = copy(cdpp) nrm = math.ceil(math.log10(median(cdpp))) - 1.0 # pout = pout / 10**nrm # ylab = '%.1fhr $\sigma$ (10$^%d$ ppm)' % (timescale,nrm) ylab = '%.1fhr $\sigma$ (ppm)' % timescale # data limits xmin = ptime.min() xmax = ptime.max() ymin = pout.min() ymax = pout.max() xr = xmax - xmin yr = ymax - ymin ptime = insert(ptime,[0],[ptime[0]]) ptime = append(ptime,[ptime[-1]]) pout = insert(pout,[0],[0.0]) pout = append(pout,0.0) # plot style if status == 0: try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': 36, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': 32, 'ytick.labelsize': 36} pylab.rcParams.update(params) except: pass # define size of plot on monitor screen pylab.figure(figsize=[xsize,ysize]) # delete any fossil plots in the matplotlib window pylab.clf() # position first axes inside the plotting window ax = pylab.axes([0.07,0.15,0.92,0.83]) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) ax.yaxis.set_major_locator(MaxNLocator(5)) # rotate y labels by 90 deg labels = ax.get_yticklabels() pylab.setp(labels, 'rotation', 90,fontsize=36) # plot flux vs time ltime = array([],dtype='float64') ldata = array([],dtype='float32') dt = 0 work1 = 2.0 * cadence / 86400 for i in range(1,len(ptime)-1): dt = ptime[i] - ptime[i-1] if dt < work1: ltime = append(ltime,ptime[i]) ldata = append(ldata,pout[i]) else: pylab.plot(ltime,ldata,color='#0000ff',linestyle='-',linewidth=1.0) ltime = array([],dtype='float64') ldata = array([],dtype='float32') pylab.plot(ltime,ldata,color='#0000ff',linestyle='-',linewidth=1.0) # plot the fill color below data time series, with no data gaps pylab.fill(ptime,pout,fc='#ffff00',linewidth=0.0,alpha=0.2) # plot median CDPP # pylab.plot(intime - intime0,medcdpp / 10**nrm,color='r',linestyle='-',linewidth=2.0) # pylab.plot(intime - intime0,medcdpp,color='r',linestyle='-',linewidth=2.0) # plot RMS CDPP # pylab.plot(intime - intime0,rmscdpp / 10**nrm,color='r',linestyle='--',linewidth=2.0) # define plot x and y limits pylab.xlim(xmin - xr * 0.01, xmax + xr * 0.01) if ymin - yr * 0.01 <= 0.0: pylab.ylim(1.0e-10, ymax + yr * 0.01) else: pylab.ylim(ymin - yr * 0.01, ymax + yr * 0.01) # plot labels pylab.xlabel(xlab, {'color' : 'k'}) pylab.ylabel(ylab, {'color' : 'k'}) # make grid on plot pylab.grid() # render plot if status == 0: if cmdLine: pylab.show(block=True) else: pylab.ion() pylab.plot([]) pylab.ioff() # add NaNs back into data if status == 0: n = 0 work1 = array([],dtype='float32') instr, status = kepio.openfits(infile,'readonly',logfile,verbose) table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) for i in range(len(table.field(0))): if isfinite(table.field('time')[i]) and isfinite(table.field(datacol)[i]): work1 = append(work1,cdpp[n]) n += 1 else: work1 = append(work1,nan) # write output file if status == 0: status = kepkey.new('MCDPP%d' % (timescale * 10.0),medcdpp[0], 'Median %.1fhr CDPP (ppm)' % timescale, instr[1],outfile,logfile,verbose) status = kepkey.new('RCDPP%d' % (timescale * 10.0),rmscdpp[0], 'RMS %.1fhr CDPP (ppm)' % timescale, instr[1],outfile,logfile,verbose) colname = 'CDPP_%d' % (timescale * 10) col1 = pyfits.Column(name=colname,format='E13.7',array=work1) cols = instr[1].data.columns + col1 instr[1] = pyfits.new_table(cols,header=instr[1].header) instr.writeto(outfile) # comment keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) # close FITS if status == 0: status = kepio.closefits(instr,logfile,verbose) # end time if (status == 0): message = 'KEPSTDDEV completed at' else: message = '\nKEPSTDDEV aborted at' kepmsg.clock(message,logfile,verbose)
def kepbls(infile, outfile, datacol, errcol, minper, maxper, mindur, maxdur, nsearch, nbins, plot, clobber, verbose, logfile, status, cmdLine=False): # startup parameters numpy.seterr(all="ignore") status = 0 labelsize = 32 ticksize = 18 xsize = 16 ysize = 8 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPBLS -- ' call += 'infile=' + infile + ' ' call += 'outfile=' + outfile + ' ' call += 'datacol=' + str(datacol) + ' ' call += 'errcol=' + str(errcol) + ' ' call += 'minper=' + str(minper) + ' ' call += 'maxper=' + str(maxper) + ' ' call += 'mindur=' + str(mindur) + ' ' call += 'maxdur=' + str(maxdur) + ' ' call += 'nsearch=' + str(nsearch) + ' ' call += 'nbins=' + str(nbins) + ' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot=' + plotit + ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber=' + overwrite + ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose=' + chatter + ' ' call += 'logfile=' + logfile kepmsg.log(logfile, call + '\n', verbose) # start time kepmsg.clock('KEPBLS started at', logfile, verbose) # is duration greater than one bin in the phased light curve? if float(nbins) * maxdur / 24.0 / maxper <= 1.0: message = 'WARNING -- KEPBLS: ' + str( maxdur) + ' hours transit duration < 1 phase bin when P = ' message += str(maxper) + ' days' kepmsg.warn(logfile, message) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPBLS: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile, message, verbose) # open input file if status == 0: instr, status = kepio.openfits(infile, 'readonly', logfile, verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys( instr, infile, logfile, verbose, status) # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr, file, logfile, verbose) # read table structure if status == 0: table, status = kepio.readfitstab(infile, instr[1], logfile, verbose) # filter input data table if status == 0: work1 = numpy.array( [table.field('time'), table.field(datacol), table.field(errcol)]) work1 = numpy.rot90(work1, 3) work1 = work1[~numpy.isnan(work1).any(1)] # read table columns if status == 0: intime = work1[:, 2] + bjdref indata = work1[:, 1] inerr = work1[:, 0] # test whether the period range is sensible if status == 0: tr = intime[-1] - intime[0] if maxper > tr: message = 'ERROR -- KEPBLS: maxper is larger than the time range of the input data' status = kepmsg.err(logfile, message, verbose) # prepare time series if status == 0: work1 = intime - intime[0] work2 = indata - numpy.mean(indata) # start period search if status == 0: srMax = numpy.array([], dtype='float32') transitDuration = numpy.array([], dtype='float32') transitPhase = numpy.array([], dtype='float32') dPeriod = (maxper - minper) / nsearch trialPeriods = numpy.arange(minper, maxper + dPeriod, dPeriod, dtype='float32') complete = 0 print ' ' for trialPeriod in trialPeriods: fracComplete = float(complete) / float(len(trialPeriods) - 1) * 100.0 txt = '\r' txt += 'Trial period = ' txt += str(int(trialPeriod)) txt += ' days [' txt += str(int(fracComplete)) txt += '% complete]' txt += ' ' * 20 sys.stdout.write(txt) sys.stdout.flush() complete += 1 srMax = numpy.append(srMax, 0.0) transitDuration = numpy.append(transitDuration, numpy.nan) transitPhase = numpy.append(transitPhase, numpy.nan) trialFrequency = 1.0 / trialPeriod # minimum and maximum transit durations in quantized phase units duration1 = max(int(float(nbins) * mindur / 24.0 / trialPeriod), 2) duration2 = max( int(float(nbins) * maxdur / 24.0 / trialPeriod) + 1, duration1 + 1) # 30 minutes in quantized phase units halfHour = int(0.02083333 / trialPeriod * nbins + 1) # compute folded time series with trial period work4 = numpy.zeros((nbins), dtype='float32') work5 = numpy.zeros((nbins), dtype='float32') phase = numpy.array( ((work1 * trialFrequency) - numpy.floor(work1 * trialFrequency)) * float(nbins), dtype='int') ptuple = numpy.array([phase, work2, inerr]) ptuple = numpy.rot90(ptuple, 3) phsort = numpy.array(sorted(ptuple, key=lambda ph: ph[2])) for i in range(nbins): elements = numpy.nonzero(phsort[:, 2] == float(i))[0] work4[i] = numpy.mean(phsort[elements, 1]) work5[i] = math.sqrt( numpy.sum(numpy.power(phsort[elements, 0], 2)) / len(elements)) # extend the work arrays beyond nbins by wrapping work4 = numpy.append(work4, work4[:duration2]) work5 = numpy.append(work5, work5[:duration2]) # calculate weights of folded light curve points sigmaSum = numpy.nansum(numpy.power(work5, -2)) omega = numpy.power(work5, -2) / sigmaSum # calculate weighted phased light curve s = omega * work4 # iterate through trial period phase for i1 in range(nbins): # iterate through transit durations for duration in range(duration1, duration2 + 1, int(halfHour)): # calculate maximum signal residue i2 = i1 + duration sr1 = numpy.sum(numpy.power(s[i1:i2], 2)) sr2 = numpy.sum(omega[i1:i2]) sr = math.sqrt(sr1 / (sr2 * (1.0 - sr2))) if sr > srMax[-1]: srMax[-1] = sr transitDuration[-1] = float(duration) transitPhase[-1] = float((i1 + i2) / 2) # normalize maximum signal residue curve bestSr = numpy.max(srMax) bestTrial = numpy.nonzero(srMax == bestSr)[0][0] srMax /= bestSr transitDuration *= trialPeriods / 24.0 BJD0 = numpy.array(transitPhase * trialPeriods / nbins, dtype='float64') + intime[0] - 2454833.0 print '\n' # clean up x-axis unit if status == 0: ptime = copy(trialPeriods) xlab = 'Trial Period (days)' # clean up y-axis units if status == 0: pout = copy(srMax) ylab = 'Normalized Signal Residue' # data limits xmin = ptime.min() xmax = ptime.max() ymin = pout.min() ymax = pout.max() xr = xmax - xmin yr = ymax - ymin ptime = insert(ptime, [0], [ptime[0]]) ptime = append(ptime, [ptime[-1]]) pout = insert(pout, [0], [0.0]) pout = append(pout, 0.0) # plot light curve if status == 0 and plot: plotLatex = True try: params = { 'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight': 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize } rcParams.update(params) except: plotLatex = False if status == 0 and plot: pylab.figure(figsize=[xsize, ysize]) pylab.clf() # plot data ax = pylab.axes([0.06, 0.10, 0.93, 0.87]) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) # rotate y labels by 90 deg labels = ax.get_yticklabels() pylab.setp(labels, 'rotation', 90) # plot curve if status == 0 and plot: pylab.plot(ptime[1:-1], pout[1:-1], color=lcolor, linestyle='-', linewidth=lwidth) pylab.fill(ptime, pout, color=fcolor, linewidth=0.0, alpha=falpha) pylab.xlabel(xlab, {'color': 'k'}) pylab.ylabel(ylab, {'color': 'k'}) pylab.grid() # plot ranges if status == 0 and plot: pylab.xlim(xmin - xr * 0.01, xmax + xr * 0.01) if ymin >= 0.0: pylab.ylim(ymin - yr * 0.01, ymax + yr * 0.01) else: pylab.ylim(1.0e-10, ymax + yr * 0.01) # render plot if status == 0 and plot: if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() # append new BLS data extension to the output file if status == 0: col1 = Column(name='PERIOD', format='E', unit='days', array=trialPeriods) col2 = Column(name='BJD0', format='D', unit='BJD - 2454833', array=BJD0) col3 = Column(name='DURATION', format='E', unit='hours', array=transitDuration) col4 = Column(name='SIG_RES', format='E', array=srMax) cols = ColDefs([col1, col2, col3, col4]) instr.append(new_table(cols)) instr[-1].header.cards['TTYPE1'].comment = 'column title: trial period' instr[-1].header.cards[ 'TTYPE2'].comment = 'column title: trial mid-transit zero-point' instr[-1].header.cards[ 'TTYPE3'].comment = 'column title: trial transit duration' instr[-1].header.cards[ 'TTYPE4'].comment = 'column title: normalized signal residue' instr[-1].header.cards['TFORM1'].comment = 'column type: float32' instr[-1].header.cards['TFORM2'].comment = 'column type: float64' instr[-1].header.cards['TFORM3'].comment = 'column type: float32' instr[-1].header.cards['TFORM4'].comment = 'column type: float32' instr[-1].header.cards['TUNIT1'].comment = 'column units: days' instr[-1].header.cards[ 'TUNIT2'].comment = 'column units: BJD - 2454833' instr[-1].header.cards['TUNIT3'].comment = 'column units: hours' instr[-1].header.update('EXTNAME', 'BLS', 'extension name') instr[-1].header.update('PERIOD', trialPeriods[bestTrial], 'most significant trial period [d]') instr[-1].header.update('BJD0', BJD0[bestTrial] + 2454833.0, 'time of mid-transit [BJD]') instr[-1].header.update('TRANSDUR', transitDuration[bestTrial], 'transit duration [hours]') instr[-1].header.update('SIGNRES', srMax[bestTrial] * bestSr, 'maximum signal residue') # history keyword in output file if status == 0: status = kepkey.history(call, instr[0], outfile, logfile, verbose) instr.writeto(outfile) # close input file if status == 0: status = kepio.closefits(instr, logfile, verbose) # print best trial period results if status == 0: print ' Best trial period = %.5f days' % trialPeriods[bestTrial] print ' Time of mid-transit = BJD %.5f' % (BJD0[bestTrial] + 2454833.0) print ' Transit duration = %.5f hours' % transitDuration[ bestTrial] print ' Maximum signal residue = %.4g \n' % (srMax[bestTrial] * bestSr) # end time if (status == 0): message = 'KEPBLS completed at' else: message = '\nKEPBLS aborted at' kepmsg.clock(message, logfile, verbose)
def kepwindow(infile,outfile,fcol,fmax,nfreq,plot,clobber,verbose,logfile,status, cmdLine=False): ## startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 18 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 ## log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPWINDOW -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'fcol='+fcol+' ' call += 'fmax='+str(fmax)+' ' call += 'nfreq='+str(nfreq)+' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) ## start time kepmsg.clock('KEPWINDOW started at',logfile,verbose) ## test log file logfile = kepmsg.test(logfile) ## clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPWINDOW: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile,message,verbose) ## open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence ## fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) ## read table columns if status == 0: try: barytime = instr[1].data.field('barytime') except: barytime, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose) signal, status = kepio.readfitscol(infile,instr[1].data,fcol,logfile,verbose) ## remove infinite data from time series if status == 0: incols = [barytime, signal] outcols = kepstat.removeinfinlc(signal, incols) barytime = outcols[0] signal = outcols[1] ## reset signal data to zero if status == 0: signal = ones(len(outcols[1])) ## frequency steps if status == 0: deltaf = fmax / nfreq ## loop through frequency steps; determine FT power if status == 0: fr, power = kepfourier.ft(barytime,signal,0.0,fmax,deltaf,True) power[0] = 1.0 ## mirror window function around ordinate if status == 0: work1 = []; work2 = [] for i in range(len(fr)-1, 0, -1): work1.append(-fr[i]) work2.append(power[i]) for i in range(len(fr)): work1.append(fr[i]) work2.append(power[i]) fr = array(work1,dtype='float32') power = array(work2,dtype='float32') ## write output file if status == 0: col1 = Column(name='FREQUENCY',format='E',unit='days',array=fr) col2 = Column(name='POWER',format='E',array=power) cols = ColDefs([col1,col2]) instr.append(new_table(cols)) instr[-1].header.update('EXTNAME','WINDOW FUNCTION','extension name') ## comment keyword in output file if status == 0: status = kepkey.comment(call,instr[0],outfile,logfile,verbose) instr.writeto(outfile) ## close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) ## data limits if status == 0: nrm = len(str(int(power.max())))-1 power = power / 10**nrm ylab = 'Power (x10$^%d$)' % nrm xmin = fr.min() xmax = fr.max() ymin = power.min() ymax = power.max() xr = xmax - xmin yr = ymax - ymin fr = insert(fr,[0],fr[0]) fr = append(fr,fr[-1]) power = insert(power,[0],0.0) power = append(power,0.0) ## plot power spectrum if status == 0 and plot: try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} rcParams.update(params) except: print('ERROR -- KEPWINDOW: install latex for scientific plotting') status = 1 if status == 0 and plot: pylab.figure(1,figsize=[xsize,ysize]) pylab.axes([0.06,0.113,0.93,0.86]) pylab.plot(fr,power,color=lcolor,linestyle='-',linewidth=lwidth) fill(fr,power,color=fcolor,linewidth=0.0,alpha=falpha) xlim(xmin-xr*0.01,xmax+xr*0.01) if ymin-yr*0.01 <= 0.0: ylim(1.0e-10,ymax+yr*0.01) else: ylim(ymin-yr*0.01,ymax+yr*0.01) xlabel(r'Frequency (d$^{-1}$)', {'color' : 'k'}) ylabel('Power', {'color' : 'k'}) # render plot if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() ## end time if (status == 0): message = 'KEPWINDOW completed at' else: message = '\nKEPWINDOW aborted at' kepmsg.clock(message,logfile,verbose)
def kepimages(infile,outfix,imtype,ranges,clobber,verbose,logfile,status): # startup parameters status = 0 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPIMAGES -- ' call += 'infile='+infile+' ' call += 'outfix='+outfix+' ' call += 'imtype='+imtype+' ' call += 'ranges='+str(ranges)+' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPIMAGES started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # open input file status = 0 print(' ') instr = pyfits.open(infile,mode='readonly',memmap=True) cards0 = instr[0].header.cards cards1 = instr[1].header.cards cards2 = instr[2].header.cards # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # ingest time series data if status == 0: time = instr[1].data.field('TIME')[:] + 2454833.0 timecorr = instr[1].data.field('TIMECORR')[:] cadenceno = instr[1].data.field('CADENCENO')[:] raw_cnts = instr[1].data.field('RAW_CNTS')[:] flux = instr[1].data.field('FLUX')[:] flux_err = instr[1].data.field('FLUX_ERR')[:] flux_bkg = instr[1].data.field('FLUX_BKG')[:] flux_bkg_err = instr[1].data.field('FLUX_BKG_ERR')[:] cosmic_rays = instr[1].data.field('COSMIC_RAYS')[:] quality = instr[1].data.field('QUALITY')[:] pos_corr1 = instr[1].data.field('POS_CORR1')[:] pos_corr2 = instr[1].data.field('POS_CORR2')[:] # choose output image if status == 0: if imtype.lower() == 'raw_cnts': outim = raw_cnts elif imtype.lower() == 'flux_err': outim = flux_err elif imtype.lower() == 'flux_bkg': outim = flux_bkg elif imtype.lower() == 'flux_bkg_err': outim = flux_bkg_err elif imtype.lower() == 'cosmic_rays': outim = cosmic_rays else: outim = flux # identify images to be exported if status == 0: tim = array([]); dat = array([]); err = array([]) tstart, tstop, status = kepio.timeranges(ranges,logfile,verbose) if status == 0: cadencelis, status = kepstat.filterOnRange(time,tstart,tstop) # provide name for each output file and clobber if file exists if status == 0: for cadence in cadencelis: outfile = outfix + '_BJD%.4f' % time[cadence] + '.fits' if clobber and status == 0: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile) and status == 0: message = 'ERROR -- KEPIMAGES: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile,message,True) # construct output primary extension if status == 0: ncad = 0 for cadence in cadencelis: outfile = outfix + '_BJD%.4f' % time[cadence] + '.fits' hdu0 = pyfits.PrimaryHDU() for i in range(len(cards0)): try: if cards0[i].key not in list(hdu0.header.keys()): hdu0.header.update(cards0[i].key, cards0[i].value, cards0[i].comment) else: hdu0.header.cards[cards0[i].key].comment = cards0[i].comment except: pass status = kepkey.history(call,hdu0,outfile,logfile,verbose) outstr = HDUList(hdu0) # construct output image extension hdu1 = ImageHDU(flux[cadence]) for i in range(len(cards2)): try: if cards2[i].key not in list(hdu1.header.keys()): hdu1.header.update(cards2[i].key, cards2[i].value, cards2[i].comment) except: pass for i in range(len(cards1)): if (cards1[i].key not in list(hdu1.header.keys()) and cards1[i].key[:4] not in ['TTYP','TFOR','TUNI','TDIS','TDIM','WCAX','1CTY', '2CTY','1CRP','2CRP','1CRV','2CRV','1CUN','2CUN', '1CDE','2CDE','1CTY','2CTY','1CDL','2CDL','11PC', '12PC','21PC','22PC','WCSN','TFIE']): hdu1.header.update(cards1[i].key, cards1[i].value, cards1[i].comment) try: int_time = cards1['INT_TIME'].value except: kepmsg.warn(logfile,'WARNING -- KEPIMAGES: cannot find INT_TIME keyword') try: frametim = cards1['FRAMETIM'].value except: kepmsg.warn(logfile,'WARNING -- KEPIMAGES: cannot find FRAMETIM keyword') try: num_frm = cards1['NUM_FRM'].value except: kepmsg.warn(logfile,'WARNING -- KEPIMAGES: cannot find NUM_FRM keyword') hdu1.header.update('EXTNAME','IMAGE','name of extension') try: hdu1.header.update('TELAPSE',frametim * num_frm,'[s] elapsed time for exposure') except: hdu1.header.update('TELAPSE',-999,'[s] elapsed time for exposure') try: hdu1.header.update('LIVETIME',int_time * num_frm,'[s] TELASPE multiplied by DEADC') except: hdu1.header.update('LIVETIME',-999,'[s] TELASPE multiplied by DEADC') try: hdu1.header.update('EXPOSURE',int_time * num_frm,'[s] time on source') except: hdu1.header.update('EXPOSURE',-999,'[s] time on source') try: hdu1.header.update('MIDTIME',time[cadence],'[BJD] mid-time of exposure') except: hdu1.header.update('MIDTIME',-999,'[BJD] mid-time of exposure') try: hdu1.header.update('TIMECORR',timecorr[cadence],'[d] barycenter - timeslice correction') except: hdu1.header.update('TIMECORR',-999,'[d] barycenter - timeslice correction') try: hdu1.header.update('CADENCEN',cadenceno[cadence],'unique cadence number') except: hdu1.header.update('CADENCEN',-999,'unique cadence number') try: hdu1.header.update('QUALITY',quality[cadence],'pixel quality flag') except: hdu1.header.update('QUALITY',-999,'pixel quality flag') try: if True in numpy.isfinite(cosmic_rays[cadence]): hdu1.header.update('COSM_RAY',True,'cosmic ray detected?') else: hdu1.header.update('COSM_RAY',False,'cosmic ray detected?') except: hdu1.header.update('COSM_RAY',-999,'cosmic ray detected?') try: pc1 = str(pos_corr1[cadence]) pc2 = str(pos_corr2[cadence]) hdu1.header.update('POSCORR1',pc1,'[pix] column position correction') hdu1.header.update('POSCORR2',pc2,'[pix] row position correction') except: hdu1.header.update('POSCORR1',-999,'[pix] column position correction') hdu1.header.update('POSCORR2',-999,'[pix] row position correction') outstr.append(hdu1) # write output file if status == 0: outstr.writeto(outfile,checksum=True) ncad += 1 txt = '\r%3d%% ' % (float(ncad) / float(len(cadencelis)) * 100.0) txt += '%s ' % outfile sys.stdout.write(txt) sys.stdout.flush() # close input structure if status == 0: status = kepio.closefits(instr,logfile,verbose) print('\n') # end time kepmsg.clock('KEPIMAGES finished at',logfile,verbose)
def kepbin( infile, outfile, fluxcol, do_nbin, nbins, do_binwidth, binwidth, do_ownbins, binfile, method, interpm, plot, clobber, verbose, logfile, status, ): """ Setup the kepbin environment """ # log the call hashline = "----------------------------------------------------------------------------" kepmsg.log(logfile, hashline, verbose) call = "KEPBIN -- " call += "infile=" + infile + " " call += "outfile=" + outfile + " " call += "fluxcol=" + fluxcol + " " donbin = "n" if do_nbin: donbin = "y" call += "donbin=" + donbin + " " dobinwidth = "n" if do_binwidth: dobinwidth = "y" call += "dbinwidth=" + dobinwidth + " " doownbin = "n" if do_ownbins: doownbin = "y" call += "doownbin=" + doownbin + " " call += "method=" + method + " " call += "interpm=" + interpm + " " plotit = "n" if plot: plotit = "y" call += "plot=" + plotit + " " overwrite = "n" if clobber: overwrite = "y" call += "clobber=" + overwrite + " " chatter = "n" if verbose: chatter = "y" call += "verbose=" + chatter + " " call += "logfile=" + logfile kepmsg.log(logfile, call + "\n", verbose) # start time kepmsg.clock("KEPCLIP started at", logfile, verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = "ERROR -- KEPCLIP: " + outfile + " exists. Use --clobber" status = kepmsg.err(logfile, message, verbose) # open input file if status == 0: instr, status = kepio.openfits(infile, "readonly", logfile, verbose) tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr, infile, logfile, verbose, status) # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr, file, logfile, verbose) # input data if status == 0: table = instr[1].data # read time and flux columns date = table.field("barytime") flux = table.field(fluxcol) # cut out infinites and zero flux columns date, flux = cutBadData(date, flux) if do_nbin: bdate, bflux = bin_funct(date, flux, nbins=nbins, method=method, interpm=interpm) elif do_binwidth: bdate, bflux = bin_funct(date, flux, binwidth=binwidth, method=method, interpm=interpm) elif do_ownbins: filepointer = open(binfile, "r") ownbins = [] for line in filepointer: splitted = line.split() ownbins.append(float(splitted[0])) ownbins = n.array(ownbins) bdate, bflux = bin_funct(date, flux, ownbins=ownbins, method=method, interpm=interpm) if plot: do_plot(bdate, bflux) if status == 0: col1 = pyfits.Column(name="bdate", format="E", unit="day", array=bdate) col2 = pyfits.Column(name="bflux", format="E", unit="e-/cadence", array=bflux) cols = pyfits.ColDefs([col1, col2]) instr.append(pyfits.new_table(cols)) instr[-1].header.update("EXTNAME", "BINNED DATA", "extension name") instr.writeto(outfile) # close input file if status == 0: status = kepio.closefits(instr, logfile, verbose) # end time if status == 0: message = "KEPBIN completed at" else: message = "\nKEPBIN aborted at" kepmsg.clock(message, logfile, verbose)
def kepft(infile, outfile, fcol, pmin, pmax, nfreq, plot, clobber, verbose, logfile, status, cmdLine=False): ## startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 18 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 ## log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPFT -- ' call += 'infile=' + infile + ' ' call += 'outfile=' + outfile + ' ' call += 'fcol=' + fcol + ' ' call += 'pmin=' + str(pmin) + ' ' call += 'pmax=' + str(pmax) + ' ' call += 'nfreq=' + str(nfreq) + ' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot=' + plotit + ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber=' + overwrite + ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose=' + chatter + ' ' call += 'logfile=' + logfile kepmsg.log(logfile, call + '\n', verbose) ## start time kepmsg.clock('Start time is', logfile, verbose) ## test log file logfile = kepmsg.test(logfile) ## clobber output file if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPFT: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile, message, verbose) ## open input file if status == 0: instr, status = kepio.openfits(infile, 'readonly', logfile, verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys( instr, infile, logfile, verbose, status) ## fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr, file, logfile, verbose) ## read table columns if status == 0: try: barytime = instr[1].data.field('barytime') except: barytime, status = kepio.readfitscol(infile, instr[1].data, 'time', logfile, verbose) signal, status = kepio.readfitscol(infile, instr[1].data, fcol, logfile, verbose) if status == 0: barytime = barytime + bjdref ## remove infinite data from time series if status == 0: incols = [barytime, signal] outcols = kepstat.removeinfinlc(signal, incols) barytime = outcols[0] signal = outcols[1] - median(outcols[1]) ## period to frequency conversion fmin = 1.0 / pmax fmax = 1.0 / pmin deltaf = (fmax - fmin) / nfreq ## loop through frequency steps; determine FT power if status == 0: fr, power = kepfourier.ft(barytime, signal, fmin, fmax, deltaf, True) ## write output file if status == 0: col1 = Column(name='FREQUENCY', format='E', unit='1/day', array=fr) col2 = Column(name='POWER', format='E', array=power) cols = ColDefs([col1, col2]) instr.append(new_table(cols)) instr[-1].header.update('EXTNAME', 'POWER SPECTRUM', 'extension name') instr.writeto(outfile) ## history keyword in output file if status == 0: status = kepkey.history(call, instr[0], outfile, logfile, verbose) ## close input file if status == 0: status = kepio.closefits(instr, logfile, verbose) ## data limits if status == 0: nrm = int(log10(power.max())) power = power / 10**nrm ylab = 'Power (x10$^{%d}$)' % nrm xmin = fr.min() xmax = fr.max() ymin = power.min() ymax = power.max() xr = xmax - xmin yr = ymax - ymin fr = insert(fr, [0], fr[0]) fr = append(fr, fr[-1]) power = insert(power, [0], 0.0) power = append(power, 0.0) ## plot power spectrum if status == 0 and plot: try: params = { 'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight': 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize } rcParams.update(params) except: print 'ERROR -- KEPFT: install latex for scientific plotting' status = 1 if status == 0 and plot: pylab.figure(1, figsize=[xsize, ysize]) pylab.clf() pylab.axes([0.06, 0.113, 0.93, 0.86]) pylab.plot(fr, power, color=lcolor, linestyle='-', linewidth=lwidth) fill(fr, power, color=fcolor, linewidth=0.0, alpha=falpha) xlim(xmin - xr * 0.01, xmax + xr * 0.01) if ymin - yr * 0.01 <= 0.0: ylim(1.0e-10, ymax + yr * 0.01) else: ylim(ymin - yr * 0.01, ymax + yr * 0.01) xlabel(r'Frequency (d$^{-1}$)', {'color': 'k'}) ylabel(ylab, {'color': 'k'}) grid() # render plot if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() ## end time if (status == 0): message = 'KEPFT completed at' else: message = '\nKEPFT aborted at' kepmsg.clock(message, logfile, verbose)
def kepfold(infile, outfile, period, phasezero, bindata, binmethod, threshold, niter, nbins, rejqual, plottype, plotlab, clobber, verbose, logfile, status, cmdLine=False): # startup parameters status = 0 labelsize = 32 ticksize = 18 xsize = 18 ysize = 10 lcolor = '#0000ff' lwidth = 2.0 fcolor = '#ffff00' falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPFOLD -- ' call += 'infile=' + infile + ' ' call += 'outfile=' + outfile + ' ' call += 'period=' + str(period) + ' ' call += 'phasezero=' + str(phasezero) + ' ' binit = 'n' if (bindata): binit = 'y' call += 'bindata=' + binit + ' ' call += 'binmethod=' + binmethod + ' ' call += 'threshold=' + str(threshold) + ' ' call += 'niter=' + str(niter) + ' ' call += 'nbins=' + str(nbins) + ' ' qflag = 'n' if (rejqual): qflag = 'y' call += 'rejqual=' + qflag + ' ' call += 'plottype=' + plottype + ' ' call += 'plotlab=' + plotlab + ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber=' + overwrite + ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose=' + chatter + ' ' call += 'logfile=' + logfile kepmsg.log(logfile, call + '\n', verbose) # start time kepmsg.clock('KEPFOLD started at', logfile, verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPFOLD: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile, message, verbose) # open input file if status == 0: instr, status = kepio.openfits(infile, 'readonly', logfile, verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys( instr, infile, logfile, verbose, status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr, file, logfile, verbose) # input data if status == 0: table = instr[1].data incards = instr[1].header.cards try: sap = instr[1].data.field('SAP_FLUX') except: try: sap = instr[1].data.field('ap_raw_flux') except: sap = zeros(len(table.field(0))) try: saperr = instr[1].data.field('SAP_FLUX_ERR') except: try: saperr = instr[1].data.field('ap_raw_err') except: saperr = zeros(len(table.field(0))) try: pdc = instr[1].data.field('PDCSAP_FLUX') except: try: pdc = instr[1].data.field('ap_corr_flux') except: pdc = zeros(len(table.field(0))) try: pdcerr = instr[1].data.field('PDCSAP_FLUX_ERR') except: try: pdcerr = instr[1].data.field('ap_corr_err') except: pdcerr = zeros(len(table.field(0))) try: cbv = instr[1].data.field('CBVSAP_FLUX') except: cbv = zeros(len(table.field(0))) if 'cbv' in plottype: txt = 'ERROR -- KEPFOLD: CBVSAP_FLUX column is not populated. Use kepcotrend' status = kepmsg.err(logfile, txt, verbose) try: det = instr[1].data.field('DETSAP_FLUX') except: det = zeros(len(table.field(0))) if 'det' in plottype: txt = 'ERROR -- KEPFOLD: DETSAP_FLUX column is not populated. Use kepflatten' status = kepmsg.err(logfile, txt, verbose) try: deterr = instr[1].data.field('DETSAP_FLUX_ERR') except: deterr = zeros(len(table.field(0))) if 'det' in plottype: txt = 'ERROR -- KEPFOLD: DETSAP_FLUX_ERR column is not populated. Use kepflatten' status = kepmsg.err(logfile, txt, verbose) try: quality = instr[1].data.field('SAP_QUALITY') except: quality = zeros(len(table.field(0))) if qualflag: txt = 'WARNING -- KEPFOLD: Cannot find a QUALITY data column' kepmsg.warn(logfile, txt) if status == 0: barytime, status = kepio.readtimecol(infile, table, logfile, verbose) barytime1 = copy(barytime) # filter out NaNs and quality > 0 work1 = [] work2 = [] work3 = [] work4 = [] work5 = [] work6 = [] work8 = [] work9 = [] if status == 0: if 'sap' in plottype: datacol = copy(sap) errcol = copy(saperr) if 'pdc' in plottype: datacol = copy(pdc) errcol = copy(pdcerr) if 'cbv' in plottype: datacol = copy(cbv) errcol = copy(saperr) if 'det' in plottype: datacol = copy(det) errcol = copy(deterr) for i in range(len(barytime)): if (numpy.isfinite(barytime[i]) and numpy.isfinite(datacol[i]) and datacol[i] != 0.0 and numpy.isfinite(errcol[i]) and errcol[i] > 0.0): if rejqual and quality[i] == 0: work1.append(barytime[i]) work2.append(sap[i]) work3.append(saperr[i]) work4.append(pdc[i]) work5.append(pdcerr[i]) work6.append(cbv[i]) work8.append(det[i]) work9.append(deterr[i]) elif not rejqual: work1.append(barytime[i]) work2.append(sap[i]) work3.append(saperr[i]) work4.append(pdc[i]) work5.append(pdcerr[i]) work6.append(cbv[i]) work8.append(det[i]) work9.append(deterr[i]) barytime = array(work1, dtype='float64') sap = array(work2, dtype='float32') / cadenom saperr = array(work3, dtype='float32') / cadenom pdc = array(work4, dtype='float32') / cadenom pdcerr = array(work5, dtype='float32') / cadenom cbv = array(work6, dtype='float32') / cadenom det = array(work8, dtype='float32') / cadenom deterr = array(work9, dtype='float32') / cadenom # calculate phase if status == 0: if phasezero < bjdref: phasezero += bjdref date1 = (barytime1 + bjdref - phasezero) phase1 = (date1 / period) - floor(date1 / period) date2 = (barytime + bjdref - phasezero) phase2 = (date2 / period) - floor(date2 / period) phase2 = array(phase2, 'float32') # sort phases if status == 0: ptuple = [] phase3 = [] sap3 = [] saperr3 = [] pdc3 = [] pdcerr3 = [] cbv3 = [] cbverr3 = [] det3 = [] deterr3 = [] for i in range(len(phase2)): ptuple.append([ phase2[i], sap[i], saperr[i], pdc[i], pdcerr[i], cbv[i], saperr[i], det[i], deterr[i] ]) phsort = sorted(ptuple, key=lambda ph: ph[0]) for i in range(len(phsort)): phase3.append(phsort[i][0]) sap3.append(phsort[i][1]) saperr3.append(phsort[i][2]) pdc3.append(phsort[i][3]) pdcerr3.append(phsort[i][4]) cbv3.append(phsort[i][5]) cbverr3.append(phsort[i][6]) det3.append(phsort[i][7]) deterr3.append(phsort[i][8]) phase3 = array(phase3, 'float32') sap3 = array(sap3, 'float32') saperr3 = array(saperr3, 'float32') pdc3 = array(pdc3, 'float32') pdcerr3 = array(pdcerr3, 'float32') cbv3 = array(cbv3, 'float32') cbverr3 = array(cbverr3, 'float32') det3 = array(det3, 'float32') deterr3 = array(deterr3, 'float32') # bin phases if status == 0 and bindata: work1 = array([sap3[0]], 'float32') work2 = array([saperr3[0]], 'float32') work3 = array([pdc3[0]], 'float32') work4 = array([pdcerr3[0]], 'float32') work5 = array([cbv3[0]], 'float32') work6 = array([cbverr3[0]], 'float32') work7 = array([det3[0]], 'float32') work8 = array([deterr3[0]], 'float32') phase4 = array([], 'float32') sap4 = array([], 'float32') saperr4 = array([], 'float32') pdc4 = array([], 'float32') pdcerr4 = array([], 'float32') cbv4 = array([], 'float32') cbverr4 = array([], 'float32') det4 = array([], 'float32') deterr4 = array([], 'float32') dt = 1.0 / nbins nb = 0.0 rng = numpy.append(phase3, phase3[0] + 1.0) for i in range(len(rng)): if rng[i] < nb * dt or rng[i] >= (nb + 1.0) * dt: if len(work1) > 0: phase4 = append(phase4, (nb + 0.5) * dt) if (binmethod == 'mean'): sap4 = append(sap4, kepstat.mean(work1)) saperr4 = append(saperr4, kepstat.mean_err(work2)) pdc4 = append(pdc4, kepstat.mean(work3)) pdcerr4 = append(pdcerr4, kepstat.mean_err(work4)) cbv4 = append(cbv4, kepstat.mean(work5)) cbverr4 = append(cbverr4, kepstat.mean_err(work6)) det4 = append(det4, kepstat.mean(work7)) deterr4 = append(deterr4, kepstat.mean_err(work8)) elif (binmethod == 'median'): sap4 = append(sap4, kepstat.median(work1, logfile)) saperr4 = append(saperr4, kepstat.mean_err(work2)) pdc4 = append(pdc4, kepstat.median(work3, logfile)) pdcerr4 = append(pdcerr4, kepstat.mean_err(work4)) cbv4 = append(cbv4, kepstat.median(work5, logfile)) cbverr4 = append(cbverr4, kepstat.mean_err(work6)) det4 = append(det4, kepstat.median(work7, logfile)) deterr4 = append(deterr4, kepstat.mean_err(work8)) else: coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip('poly0',[scipy.stats.nanmean(work1)],arange(0.0,float(len(work1)),1.0),work1,work2, threshold,threshold,niter,logfile,False) sap4 = append(sap4, coeffs[0]) saperr4 = append(saperr4, kepstat.mean_err(work2)) coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip('poly0',[scipy.stats.nanmean(work3)],arange(0.0,float(len(work3)),1.0),work3,work4, threshold,threshold,niter,logfile,False) pdc4 = append(pdc4, coeffs[0]) pdcerr4 = append(pdcerr4, kepstat.mean_err(work4)) coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip('poly0',[scipy.stats.nanmean(work5)],arange(0.0,float(len(work5)),1.0),work5,work6, threshold,threshold,niter,logfile,False) cbv4 = append(cbv4, coeffs[0]) cbverr4 = append(cbverr4, kepstat.mean_err(work6)) coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip('poly0',[scipy.stats.nanmean(work7)],arange(0.0,float(len(work7)),1.0),work7,work8, threshold,threshold,niter,logfile,False) det4 = append(det4, coeffs[0]) deterr4 = append(deterr4, kepstat.mean_err(work8)) work1 = array([], 'float32') work2 = array([], 'float32') work3 = array([], 'float32') work4 = array([], 'float32') work5 = array([], 'float32') work6 = array([], 'float32') work7 = array([], 'float32') work8 = array([], 'float32') nb += 1.0 else: work1 = append(work1, sap3[i]) work2 = append(work2, saperr3[i]) work3 = append(work3, pdc3[i]) work4 = append(work4, pdcerr3[i]) work5 = append(work5, cbv3[i]) work6 = append(work6, cbverr3[i]) work7 = append(work7, det3[i]) work8 = append(work8, deterr3[i]) # update HDU1 for output file if status == 0: cols = (instr[1].columns + ColDefs([Column(name='PHASE', format='E', array=phase1)])) instr[1] = pyfits.new_table(cols) instr[1].header.cards[ 'TTYPE' + str(len(instr[1].columns))].comment = 'column title: phase' instr[1].header.cards[ 'TFORM' + str(len(instr[1].columns))].comment = 'data type: float32' for i in range(len(incards)): if incards[i].key not in list(instr[1].header.keys()): instr[1].header.update(incards[i].key, incards[i].value, incards[i].comment) else: instr[1].header.cards[ incards[i].key].comment = incards[i].comment instr[1].header.update('PERIOD', period, 'period defining the phase [d]') instr[1].header.update('BJD0', phasezero, 'time of phase zero [BJD]') # write new phased data extension for output file if status == 0 and bindata: col1 = Column(name='PHASE', format='E', array=phase4) col2 = Column(name='SAP_FLUX', format='E', unit='e/s', array=sap4 / cadenom) col3 = Column(name='SAP_FLUX_ERR', format='E', unit='e/s', array=saperr4 / cadenom) col4 = Column(name='PDC_FLUX', format='E', unit='e/s', array=pdc4 / cadenom) col5 = Column(name='PDC_FLUX_ERR', format='E', unit='e/s', array=pdcerr4 / cadenom) col6 = Column(name='CBV_FLUX', format='E', unit='e/s', array=cbv4 / cadenom) col7 = Column(name='DET_FLUX', format='E', array=det4 / cadenom) col8 = Column(name='DET_FLUX_ERR', format='E', array=deterr4 / cadenom) cols = ColDefs([col1, col2, col3, col4, col5, col6, col7, col8]) instr.append(new_table(cols)) instr[-1].header.cards['TTYPE1'].comment = 'column title: phase' instr[-1].header.cards[ 'TTYPE2'].comment = 'column title: simple aperture photometry' instr[-1].header.cards[ 'TTYPE3'].comment = 'column title: SAP 1-sigma error' instr[-1].header.cards[ 'TTYPE4'].comment = 'column title: pipeline conditioned photometry' instr[-1].header.cards[ 'TTYPE5'].comment = 'column title: PDC 1-sigma error' instr[-1].header.cards[ 'TTYPE6'].comment = 'column title: cotrended basis vector photometry' instr[-1].header.cards[ 'TTYPE7'].comment = 'column title: Detrended aperture photometry' instr[-1].header.cards[ 'TTYPE8'].comment = 'column title: DET 1-sigma error' instr[-1].header.cards['TFORM1'].comment = 'column type: float32' instr[-1].header.cards['TFORM2'].comment = 'column type: float32' instr[-1].header.cards['TFORM3'].comment = 'column type: float32' instr[-1].header.cards['TFORM4'].comment = 'column type: float32' instr[-1].header.cards['TFORM5'].comment = 'column type: float32' instr[-1].header.cards['TFORM6'].comment = 'column type: float32' instr[-1].header.cards['TFORM7'].comment = 'column type: float32' instr[-1].header.cards['TFORM8'].comment = 'column type: float32' instr[-1].header.cards[ 'TUNIT2'].comment = 'column units: electrons per second' instr[-1].header.cards[ 'TUNIT3'].comment = 'column units: electrons per second' instr[-1].header.cards[ 'TUNIT4'].comment = 'column units: electrons per second' instr[-1].header.cards[ 'TUNIT5'].comment = 'column units: electrons per second' instr[-1].header.cards[ 'TUNIT6'].comment = 'column units: electrons per second' instr[-1].header.update('EXTNAME', 'FOLDED', 'extension name') instr[-1].header.update('PERIOD', period, 'period defining the phase [d]') instr[-1].header.update('BJD0', phasezero, 'time of phase zero [BJD]') instr[-1].header.update('BINMETHD', binmethod, 'phase binning method') if binmethod == 'sigclip': instr[-1].header.update('THRSHOLD', threshold, 'sigma-clipping threshold [sigma]') instr[-1].header.update('NITER', niter, 'max number of sigma-clipping iterations') # history keyword in output file if status == 0: status = kepkey.history(call, instr[0], outfile, logfile, verbose) instr.writeto(outfile) # clean up x-axis unit if status == 0: ptime1 = array([], 'float32') ptime2 = array([], 'float32') pout1 = array([], 'float32') pout2 = array([], 'float32') if bindata: work = sap4 if plottype == 'pdc': work = pdc4 if plottype == 'cbv': work = cbv4 if plottype == 'det': work = det4 for i in range(len(phase4)): if (phase4[i] > 0.5): ptime2 = append(ptime2, phase4[i] - 1.0) pout2 = append(pout2, work[i]) ptime2 = append(ptime2, phase4) pout2 = append(pout2, work) for i in range(len(phase4)): if (phase4[i] <= 0.5): ptime2 = append(ptime2, phase4[i] + 1.0) pout2 = append(pout2, work[i]) work = sap3 if plottype == 'pdc': work = pdc3 if plottype == 'cbv': work = cbv3 if plottype == 'det': work = det3 for i in range(len(phase3)): if (phase3[i] > 0.5): ptime1 = append(ptime1, phase3[i] - 1.0) pout1 = append(pout1, work[i]) ptime1 = append(ptime1, phase3) pout1 = append(pout1, work) for i in range(len(phase3)): if (phase3[i] <= 0.5): ptime1 = append(ptime1, phase3[i] + 1.0) pout1 = append(pout1, work[i]) xlab = 'Orbital Phase ($\phi$)' # clean up y-axis units if status == 0: nrm = len(str(int(pout1[isfinite(pout1)].max()))) - 1 pout1 = pout1 / 10**nrm pout2 = pout2 / 10**nrm if nrm == 0: ylab = plotlab else: ylab = '10$^%d$ %s' % (nrm, plotlab) # data limits xmin = ptime1.min() xmax = ptime1.max() ymin = pout1[isfinite(pout1)].min() ymax = pout1[isfinite(pout1)].max() xr = xmax - xmin yr = ymax - ymin ptime1 = insert(ptime1, [0], [ptime1[0]]) ptime1 = append(ptime1, [ptime1[-1]]) pout1 = insert(pout1, [0], [0.0]) pout1 = append(pout1, 0.0) if bindata: ptime2 = insert(ptime2, [0], ptime2[0] - 1.0 / nbins) ptime2 = insert(ptime2, [0], ptime2[0]) ptime2 = append( ptime2, [ptime2[-1] + 1.0 / nbins, ptime2[-1] + 1.0 / nbins]) pout2 = insert(pout2, [0], [pout2[-1]]) pout2 = insert(pout2, [0], [0.0]) pout2 = append(pout2, [pout2[2], 0.0]) # plot new light curve if status == 0 and plottype != 'none': try: params = { 'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight': 'bold', 'text.fontsize': 18, 'legend.fontsize': 18, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize } pylab.rcParams.update(params) except: print('ERROR -- KEPFOLD: install latex for scientific plotting') status = 1 if status == 0 and plottype != 'none': pylab.figure(figsize=[17, 7]) pylab.clf() ax = pylab.axes([0.06, 0.11, 0.93, 0.86]) pylab.gca().xaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) labels = ax.get_yticklabels() setp(labels, 'rotation', 90) if bindata: pylab.fill(ptime2, pout2, color=fcolor, linewidth=0.0, alpha=falpha) else: if 'det' in plottype: pylab.fill(ptime1, pout1, color=fcolor, linewidth=0.0, alpha=falpha) pylab.plot(ptime1, pout1, color=lcolor, linestyle='', linewidth=lwidth, marker='.') if bindata: pylab.plot(ptime2[1:-1], pout2[1:-1], color='r', linestyle='-', linewidth=lwidth, marker='') xlabel(xlab, {'color': 'k'}) ylabel(ylab, {'color': 'k'}) xlim(-0.49999, 1.49999) if ymin >= 0.0: ylim(ymin - yr * 0.01, ymax + yr * 0.01) # ylim(0.96001,1.03999) else: ylim(1.0e-10, ymax + yr * 0.01) grid() if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() # close input file if status == 0: status = kepio.closefits(instr, logfile, verbose) # stop time kepmsg.clock('KEPFOLD ended at: ', logfile, verbose)
def kepcotrendsc(infile,outfile,bvfile,listbv,fitmethod,fitpower,iterate,sigma,maskfile,scinterp,plot,clobber,verbose,logfile, status,cmdLine=False): """ Setup the kepcotrend environment infile: the input file in the FITS format obtained from MAST outfile: The output will be a fits file in the same style as the input file but with two additional columns: CBVSAP_MODL and CBVSAP_FLUX. The first of these is the best fitting linear combination of basis vectors. The second is the new flux with the basis vector sum subtracted. This is the new flux value. plot: either True or False if you want to see a plot of the light curve The top plot shows the original light curve in blue and the sum of basis vectors in red The bottom plot has had the basis vector sum subracted bvfile: the name of the FITS file containing the basis vectors listbv: the basis vectors to fit to the data fitmethod: fit using either the 'llsq' or the 'simplex' method. 'llsq' is usually the correct one to use because as the basis vectors are orthogonal. Simplex gives you option of using a different merit function - ie. you can minimise the least absolute residual instead of the least squares which weights outliers less fitpower: if using a simplex you can chose your own power in the metir function - i.e. the merit function minimises abs(Obs - Mod)^P. P=2 is least squares, P = 1 minimises least absolutes iterate: should the program fit the basis vectors to the light curve data then remove data points further than 'sigma' from the fit and then refit maskfile: this is the name of a mask file which can be used to define regions of the flux time series to exclude from the fit. The easiest way to create this is by using keprange from the PyKE set of tools. You can also make this yourself with two BJDs on each line in the file specifying the beginning and ending date of the region to exclude. scinterp: the basis vectors are only calculated for long cadence data, therefore if you want to use short cadence data you have to interpolate the basis vectors. There are several methods to do this, the best of these probably being nearest which picks the value of the nearest long cadence data point. The options available are None|linear|nearest|zero|slinear|quadratic|cubic If you are using short cadence data don't choose none """ # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPCOTREND -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'bvfile='+bvfile+' ' # call += 'numpcomp= '+str(numpcomp)+' ' call += 'listbv= '+str(listbv)+' ' call += 'fitmethod=' +str(fitmethod)+ ' ' call += 'fitpower=' + str(fitpower)+ ' ' iterateit = 'n' if (iterate): iterateit = 'y' call += 'iterate='+iterateit+ ' ' call += 'sigma_clip='+str(sigma)+' ' call += 'mask_file='+maskfile+' ' call += 'scinterp=' + str(scinterp)+ ' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot='+plotit+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPCOTREND started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPCOTREND: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile,message,verbose) # open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr, infile,logfile,verbose,status) # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) if status == 0: if not kepio.fileexists(bvfile): message = 'ERROR -- KEPCOTREND: ' + bvfile + ' does not exist.' status = kepmsg.err(logfile,message,verbose) #lsq_sq - nonlinear least squares fitting and simplex_abs have been #removed from the options in PyRAF but they are still in the code! if status == 0: if fitmethod not in ['llsq','matrix','lst_sq','simplex_abs','simplex']: message = 'Fit method must either: llsq, matrix, lst_sq or simplex' status = kepmsg.err(logfile,message,verbose) if status == 0: if not is_numlike(fitpower) and fitpower is not None: message = 'Fit power must be an real number or None' status = kepmsg.err(logfile,message,verbose) if status == 0: if fitpower is None: fitpower = 1. # input data if status == 0: short = False try: test = str(instr[0].header['FILEVER']) version = 2 except KeyError: version = 1 table = instr[1].data if version == 1: if str(instr[1].header['DATATYPE']) == 'long cadence': #print 'Light curve was taken in Lond Cadence mode!' quarter = str(instr[1].header['QUARTER']) module = str(instr[1].header['MODULE']) output = str(instr[1].header['OUTPUT']) channel = str(instr[1].header['CHANNEL']) lc_cad_o = table.field('cadence_number') lc_date_o = table.field('barytime') lc_flux_o = table.field('ap_raw_flux') / 1625.3468 #convert to e-/s lc_err_o = table.field('ap_raw_err') / 1625.3468 #convert to e-/s elif str(instr[1].header['DATATYPE']) == 'short cadence': short = True #print 'Light curve was taken in Short Cadence mode!' quarter = str(instr[1].header['QUARTER']) module = str(instr[1].header['MODULE']) output = str(instr[1].header['OUTPUT']) channel = str(instr[1].header['CHANNEL']) lc_cad_o = table.field('cadence_number') lc_date_o = table.field('barytime') lc_flux_o = table.field('ap_raw_flux') / 54.178 #convert to e-/s lc_err_o = table.field('ap_raw_err') / 54.178 #convert to e-/s elif version >= 2: if str(instr[0].header['OBSMODE']) == 'long cadence': #print 'Light curve was taken in Long Cadence mode!' quarter = str(instr[0].header['QUARTER']) module = str(instr[0].header['MODULE']) output = str(instr[0].header['OUTPUT']) channel = str(instr[0].header['CHANNEL']) lc_cad_o = table.field('CADENCENO') lc_date_o = table.field('TIME') lc_flux_o = table.field('SAP_FLUX') lc_err_o = table.field('SAP_FLUX_ERR') elif str(instr[0].header['OBSMODE']) == 'short cadence': #print 'Light curve was taken in Short Cadence mode!' short = True quarter = str(instr[0].header['QUARTER']) module = str(instr[0].header['MODULE']) output = str(instr[0].header['OUTPUT']) channel = str(instr[0].header['CHANNEL']) lc_cad_o = table.field('CADENCENO') lc_date_o = table.field('TIME') lc_flux_o = table.field('SAP_FLUX') lc_err_o = table.field('SAP_FLUX_ERR') if str(quarter) == str(4) and version == 1: lc_cad_o = lc_cad_o[lc_cad_o >= 11914] lc_date_o = lc_date_o[lc_cad_o >= 11914] lc_flux_o = lc_flux_o[lc_cad_o >= 11914] lc_err_o = lc_err_o[lc_cad_o >= 11914] # bvfilename = '%s/Q%s_%s_%s_map.txt' %(bvfile,quarter,module,output) # if str(quarter) == str(5): # bvdata = genfromtxt(bvfilename) # elif str(quarter) == str(3) or str(quarter) == str(4): # bvdata = genfromtxt(bvfilename,skip_header=22) # elif str(quarter) == str(1): # bvdata = genfromtxt(bvfilename,skip_header=10) # else: # bvdata = genfromtxt(bvfilename,skip_header=13) if short and scinterp == 'None': message = 'You cannot select None as the interpolation method because you are using short cadence data and therefore must use some form of interpolation. I reccommend nearest if you are unsure.' status = kepmsg.err(logfile,message,verbose) bvfiledata = pyfits.open(bvfile) bvdata = bvfiledata['MODOUT_%s_%s' %(module,output)].data if int(bvfiledata[0].header['QUARTER']) != int(quarter): message = 'CBV file and light curve file are from different quarters. CBV file is from Q%s and light curve is from Q%s' %(int(bvfiledata[0].header['QUARTER']),int(quarter)) status = kepmsg.err(logfile,message,verbose) if status == 0: if int(quarter) == 4 and int(module) == 3: message = 'Approximately twenty days into Q4 Module 3 failed. As a result, Q4 light curves contain these 20 day of data. However, we do not calculate CBVs for this section of data.' status = kepmsg.err(logfile,message,verbose) if status == 0: #cut out infinites and zero flux columns lc_cad,lc_date,lc_flux,lc_err,bad_data = cutBadData(lc_cad_o, lc_date_o,lc_flux_o,lc_err_o) #get a list of basis vectors to use from the list given #accept different seperators listbv = listbv.strip() if listbv[1] in [' ',',',':',';','|',', ']: separator = str(listbv)[1] else: message = 'You must separate your basis vector numbers to use with \' \' \',\' \':\' \';\' or \'|\' and the first basis vector to use must be between 1 and 9' status = kepmsg.err(logfile,message,verbose) if status == 0: bvlist = fromstring(listbv,dtype=int,sep=separator) if bvlist[0] == 0: message = 'Must use at least one basis vector' status = kepmsg.err(logfile,message,verbose) if status == 0: #pcomps = get_pcomp(pcompdata,n_comps,lc_cad) # if str(quarter) == str(5): # bvectors = get_pcomp_list(bvdata,bvlist,lc_cad) # else: # bvectors = get_pcomp_list_newformat(bvdata,bvlist,lc_cad) if short: bvdata.field('CADENCENO')[:] = (((bvdata.field('CADENCENO')[:] + (7.5/15.) )* 30.) - 11540.).round() bvectors,in1derror = get_pcomp_list_newformat(bvdata,bvlist,lc_cad,short,scinterp) if in1derror: message = 'It seems that you have an old version of numpy which does not have the in1d function included. Please update your version of numpy to a version 1.4.0 or later' status = kepmsg.err(logfile,message,verbose) if status == 0: medflux = median(lc_flux) n_flux = (lc_flux /medflux)-1 n_err = sqrt(pow(lc_err,2)/ pow(medflux,2)) #plt.errorbar(lc_cad,n_flux,yerr=n_err) #plt.errorbar(lc_cad,lc_flux,yerr=lc_err) #n_err = median(lc_err/lc_flux) * n_flux #print n_err #does an iterative least squares fit #t1 = do_leastsq(pcomps,lc_cad,n_flux) # if maskfile != '': domasking = True if not kepio.fileexists(maskfile): message = 'Maskfile %s does not exist' %maskfile status = kepmsg.err(logfile,message,verbose) else: domasking = False if status == 0: if domasking: lc_date_masked = copy(lc_date) n_flux_masked = copy(n_flux) lc_cad_masked = copy(lc_cad) n_err_masked = copy(n_err) maskdata = atleast_2d(genfromtxt(maskfile,delimiter=',')) #make a mask of True values incase there are not regions in maskfile to exclude. mask = zeros(len(lc_date_masked)) == 0. for maskrange in maskdata: if version == 1: start = maskrange[0] - 2400000.0 end = maskrange[1] - 2400000.0 elif version == 2: start = maskrange[0] - 2454833. end = maskrange[1] - 2454833. masknew = logical_xor(lc_date < start,lc_date > end) mask = logical_and(mask,masknew) lc_date_masked = lc_date_masked[mask] n_flux_masked = n_flux_masked[mask] lc_cad_masked = lc_cad_masked[mask] n_err_masked = n_err_masked[mask] else: lc_date_masked = copy(lc_date) n_flux_masked = copy(n_flux) lc_cad_masked = copy(lc_cad) n_err_masked = copy(n_err) #pcomps = get_pcomp(pcompdata,n_comps,lc_cad) bvectors_masked,hasin1d = get_pcomp_list_newformat(bvdata,bvlist,lc_cad_masked,short,scinterp) if (iterate) and sigma is None: message = 'If fitting iteratively you must specify a clipping range' status = kepmsg.err(logfile,message,verbose) if status == 0: #uses Pvals = yhat * U_transpose if (iterate): coeffs,fittedmask = do_lst_iter(bvectors_masked,lc_cad_masked ,n_flux_masked,sigma,50.,fitmethod,fitpower) else: if fitmethod == 'matrix' and domasking: coeffs = do_lsq_uhat(bvectors_masked,lc_cad_masked,n_flux_masked,False) if fitmethod == 'llsq' and domasking: coeffs = do_lsq_uhat(bvectors_masked,lc_cad_masked,n_flux_masked,False) elif fitmethod == 'lst_sq': coeffs = do_lsq_nlin(bvectors_masked,lc_cad_masked,n_flux_masked) elif fitmethod == 'simplex_abs': coeffs = do_lsq_fmin(bvectors_masked,lc_cad_masked,n_flux_masked) elif fitmethod == 'simplex': coeffs = do_lsq_fmin_pow(bvectors_masked,lc_cad_masked,n_flux_masked,fitpower) else: coeffs = do_lsq_uhat(bvectors_masked,lc_cad_masked,n_flux_masked) flux_after = (get_newflux(n_flux,bvectors,coeffs) +1) * medflux flux_after_masked = (get_newflux(n_flux_masked,bvectors_masked,coeffs) +1) * medflux bvsum = get_pcompsum(bvectors,coeffs) bvsum_masked = get_pcompsum(bvectors_masked,coeffs) #print 'chi2: ' + str(chi2_gtf(n_flux,bvsum,n_err,2.*len(n_flux)-2)) #print 'rms: ' + str(rms(n_flux,bvsum)) bvsum_nans = putInNans(bad_data,bvsum) flux_after_nans = putInNans(bad_data,flux_after) if plot and status == 0: newmedflux = median(flux_after + 1) bvsum_un_norm = newmedflux*(1-bvsum) #bvsum_un_norm = 0-bvsum #lc_flux = n_flux do_plot(lc_date,lc_flux,flux_after, bvsum_un_norm,lc_cad,bad_data,lc_cad_o,version,cmdLine) if status== 0: make_outfile(instr,outfile,flux_after_nans,bvsum_nans,version) # close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) #print some results to screen: print ' ----- ' if iterate: flux_fit = n_flux_masked[fittedmask] sum_fit = bvsum_masked[fittedmask] err_fit = n_err_masked[fittedmask] else: flux_fit = n_flux_masked sum_fit = bvsum_masked err_fit = n_err_masked print 'reduced chi2: ' + str(chi2_gtf(flux_fit,sum_fit,err_fit,len(flux_fit)-len(coeffs))) print 'rms: ' + str(medflux*rms(flux_fit,sum_fit)) for i in range(len(coeffs)): print 'Coefficient of CBV #%s: %s' %(i+1,coeffs[i]) print ' ----- ' # end time if (status == 0): message = 'KEPCOTREND completed at' else: message = '\nKEPCOTTREND aborted at' kepmsg.clock(message,logfile,verbose) return
def kepextract(infile,maskfile,outfile,subback,clobber,verbose,logfile,status): # startup parameters status = 0 seterr(all="ignore") # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPEXTRACT -- ' call += 'infile='+infile+' ' call += 'maskfile='+maskfile+' ' call += 'outfile='+outfile+' ' backgr = 'n' if (subback): backgr = 'y' call += 'background='+backgr+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPEXTRACT started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPEXTRACT: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile,message,verbose) # open input file status = 0 instr = pyfits.open(infile,mode='readonly',memmap=True) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # input file data if status == 0: cards0 = instr[0].header.cards cards1 = instr[1].header.cards cards2 = instr[2].header.cards table = instr[1].data[:] maskmap = copy(instr[2].data) # input table data if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, time, status = \ kepio.readTPF(infile,'TIME',logfile,verbose) time = numpy.array(time,dtype='float64') if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, timecorr, status = \ kepio.readTPF(infile,'TIMECORR',logfile,verbose) timecorr = numpy.array(timecorr,dtype='float32') if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, cadenceno, status = \ kepio.readTPF(infile,'CADENCENO',logfile,verbose) cadenceno = numpy.array(cadenceno,dtype='int') if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, raw_cnts, status = \ kepio.readTPF(infile,'RAW_CNTS',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, flux, status = \ kepio.readTPF(infile,'FLUX',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, flux_err, status = \ kepio.readTPF(infile,'FLUX_ERR',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, flux_bkg, status = \ kepio.readTPF(infile,'FLUX_BKG',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, flux_bkg_err, status = \ kepio.readTPF(infile,'FLUX_BKG_ERR',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, cosmic_rays, status = \ kepio.readTPF(infile,'COSMIC_RAYS',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, quality, status = \ kepio.readTPF(infile,'QUALITY',logfile,verbose) quality = numpy.array(quality,dtype='int') if status == 0: try: pos_corr1 = numpy.array(table.field('POS_CORR1'),dtype='float64') # ---for FITS wave #2 except: pos_corr1 = empty(len(time)); pos_corr1[:] = numpy.nan # ---temporary before FITS wave #2 try: pos_corr2 = numpy.array(table.field('POS_CORR2'),dtype='float64') # ---for FITS wave #2 except: pos_corr2 = empty(len(time)); pos_corr2[:] = numpy.nan # ---temporary before FITS wave #2 # dummy columns for output file psf_centr1 = empty(len(time)); psf_centr1[:] = numpy.nan psf_centr1_err = empty(len(time)); psf_centr1_err[:] = numpy.nan psf_centr2 = empty(len(time)); psf_centr2[:] = numpy.nan psf_centr2_err = empty(len(time)); psf_centr2_err[:] = numpy.nan # mom_centr1 = empty(len(time)); mom_centr1[:] = numpy.nan mom_centr1_err = empty(len(time)); mom_centr1_err[:] = numpy.nan # mom_centr2 = empty(len(time)); mom_centr2[:] = numpy.nan mom_centr2_err = empty(len(time)); mom_centr2_err[:] = numpy.nan # read mask definition file if status == 0 and 'aper' not in maskfile.lower() and maskfile.lower() != 'all': maskx = array([],'int') masky = array([],'int') lines, status = kepio.openascii(maskfile,'r',logfile,verbose) for line in lines: line = line.strip().split('|') if len(line) == 6: y0 = int(line[3]) x0 = int(line[4]) line = line[5].split(';') for items in line: try: masky = append(masky,y0 + int(items.split(',')[0])) maskx = append(maskx,x0 + int(items.split(',')[1])) except: continue status = kepio.closeascii(lines,logfile,verbose) if len(maskx) == 0 or len(masky) == 0: message = 'ERROR -- KEPEXTRACT: ' + maskfile + ' contains no pixels.' status = kepmsg.err(logfile,message,verbose) # subimage physical WCS data if status == 0: crpix1p = cards2['CRPIX1P'].value crpix2p = cards2['CRPIX2P'].value crval1p = cards2['CRVAL1P'].value crval2p = cards2['CRVAL2P'].value cdelt1p = cards2['CDELT1P'].value cdelt2p = cards2['CDELT2P'].value # define new subimage bitmap... if status == 0 and 'aper' not in maskfile.lower() and maskfile.lower() != 'all': aperx = array([],'int') apery = array([],'int') aperb = array([],'int') for i in range(maskmap.shape[0]): for j in range(maskmap.shape[1]): aperx = append(aperx,crval1p + (j + 1 - crpix1p) * cdelt1p) apery = append(apery,crval2p + (i + 1 - crpix2p) * cdelt2p) if maskmap[i,j] == 0: aperb = append(aperb,0) else: aperb = append(aperb,1) maskmap[i,j] = 1 for k in range(len(maskx)): if aperx[-1] == maskx[k] and apery[-1] == masky[k]: aperb[-1] = 3 maskmap[i,j] = 3 # trap case where no aperture needs to be defined but pixel positions are still required for centroiding if status == 0 and maskfile.lower() == 'all': aperx = array([],'int') apery = array([],'int') for i in range(maskmap.shape[0]): for j in range(maskmap.shape[1]): aperx = append(aperx,crval1p + (j + 1 - crpix1p) * cdelt1p) apery = append(apery,crval2p + (i + 1 - crpix2p) * cdelt2p) # ...or use old subimage bitmap if status == 0 and 'aper' in maskfile.lower(): aperx = array([],'int') apery = array([],'int') aperb = array([],'int') for i in range(maskmap.shape[0]): for j in range(maskmap.shape[1]): aperb = append(aperb,maskmap[i,j]) aperx = append(aperx,crval1p + (j + 1 - crpix1p) * cdelt1p) apery = append(apery,crval2p + (i + 1 - crpix2p) * cdelt2p) # ...or use all pixels if status == 0 and maskfile.lower() == 'all': aperb = array([],'int') for i in range(maskmap.shape[0]): for j in range(maskmap.shape[1]): if maskmap[i,j] == 0: aperb = append(aperb,0) else: aperb = append(aperb,3) maskmap[i,j] = 3 # subtract median pixel value for background? if status == 0: sky = array([],'float32') for i in range(len(time)): sky = append(sky,median(flux[i,:])) if not subback: sky[:] = 0.0 # legal mask defined? if status == 0: if len(aperb) == 0: message = 'ERROR -- KEPEXTRACT: no legal pixels within the subimage are defined.' status = kepmsg.err(logfile,message,verbose) # construct new table flux data if status == 0: naper = (aperb == 3).sum() ntime = len(time) sap_flux = array([],'float32') sap_flux_err = array([],'float32') sap_bkg = array([],'float32') sap_bkg_err = array([],'float32') raw_flux = array([],'float32') for i in range(len(time)): work1 = array([],'float64') work2 = array([],'float64') work3 = array([],'float64') work4 = array([],'float64') work5 = array([],'float64') for j in range(len(aperb)): if (aperb[j] == 3): work1 = append(work1,flux[i,j]-sky[i]) work2 = append(work2,flux_err[i,j]) work3 = append(work3,flux_bkg[i,j]) work4 = append(work4,flux_bkg_err[i,j]) work5 = append(work5,raw_cnts[i,j]) sap_flux = append(sap_flux,kepstat.sum(work1)) sap_flux_err = append(sap_flux_err,kepstat.sumerr(work2)) sap_bkg = append(sap_bkg,kepstat.sum(work3)) sap_bkg_err = append(sap_bkg_err,kepstat.sumerr(work4)) raw_flux = append(raw_flux,kepstat.sum(work5)) # construct new table moment data if status == 0: mom_centr1 = zeros(shape=(ntime)) mom_centr2 = zeros(shape=(ntime)) mom_centr1_err = zeros(shape=(ntime)) mom_centr2_err = zeros(shape=(ntime)) for i in range(ntime): xf = zeros(shape=(naper)) yf = zeros(shape=(naper)) f = zeros(shape=(naper)) xfe = zeros(shape=(naper)) yfe = zeros(shape=(naper)) fe = zeros(shape=(naper)) k = -1 for j in range(len(aperb)): if (aperb[j] == 3): k += 1 xf[k] = aperx[j] * flux[i,j] xfe[k] = aperx[j] * flux_err[i,j] yf[k] = apery[j] * flux[i,j] yfe[k] = apery[j] * flux_err[i,j] f[k] = flux[i,j] fe[k] = flux_err[i,j] xfsum = kepstat.sum(xf) yfsum = kepstat.sum(yf) fsum = kepstat.sum(f) xfsume = sqrt(kepstat.sum(square(xfe)) / naper) yfsume = sqrt(kepstat.sum(square(yfe)) / naper) fsume = sqrt(kepstat.sum(square(fe)) / naper) mom_centr1[i] = xfsum / fsum mom_centr2[i] = yfsum / fsum mom_centr1_err[i] = sqrt((xfsume / xfsum)**2 + ((fsume / fsum)**2)) mom_centr2_err[i] = sqrt((yfsume / yfsum)**2 + ((fsume / fsum)**2)) mom_centr1_err = mom_centr1_err * mom_centr1 mom_centr2_err = mom_centr2_err * mom_centr2 # construct new table PSF data if status == 0: psf_centr1 = zeros(shape=(ntime)) psf_centr2 = zeros(shape=(ntime)) psf_centr1_err = zeros(shape=(ntime)) psf_centr2_err = zeros(shape=(ntime)) modx = zeros(shape=(naper)) mody = zeros(shape=(naper)) k = -1 for j in range(len(aperb)): if (aperb[j] == 3): k += 1 modx[k] = aperx[j] mody[k] = apery[j] for i in range(ntime): modf = zeros(shape=(naper)) k = -1 guess = [mom_centr1[i], mom_centr2[i], nanmax(flux[i:]), 1.0, 1.0, 0.0, 0.0] for j in range(len(aperb)): if (aperb[j] == 3): k += 1 modf[k] = flux[i,j] args = (modx, mody, modf) try: ans = leastsq(kepfunc.PRFgauss2d,guess,args=args,xtol=1.0e-8,ftol=1.0e-4,full_output=True) s_sq = (ans[2]['fvec']**2).sum() / (ntime-len(guess)) psf_centr1[i] = ans[0][0] psf_centr2[i] = ans[0][1] except: pass try: psf_centr1_err[i] = sqrt(diag(ans[1] * s_sq))[0] except: psf_centr1_err[i] = numpy.nan try: psf_centr2_err[i] = sqrt(diag(ans[1] * s_sq))[1] except: psf_centr2_err[i] = numpy.nan # construct output primary extension if status == 0: hdu0 = pyfits.PrimaryHDU() for i in range(len(cards0)): if cards0[i].key not in hdu0.header.keys(): hdu0.header.update(cards0[i].key, cards0[i].value, cards0[i].comment) else: hdu0.header.cards[cards0[i].key].comment = cards0[i].comment status = kepkey.history(call,hdu0,outfile,logfile,verbose) outstr = HDUList(hdu0) # construct output light curve extension if status == 0: col1 = Column(name='TIME',format='D',unit='BJD - 2454833',array=time) col2 = Column(name='TIMECORR',format='E',unit='d',array=timecorr) col3 = Column(name='CADENCENO',format='J',array=cadenceno) col4 = Column(name='SAP_FLUX',format='E',array=sap_flux) col5 = Column(name='SAP_FLUX_ERR',format='E',array=sap_flux_err) col6 = Column(name='SAP_BKG',format='E',array=sap_bkg) col7 = Column(name='SAP_BKG_ERR',format='E',array=sap_bkg_err) col8 = Column(name='PDCSAP_FLUX',format='E',array=sap_flux) col9 = Column(name='PDCSAP_FLUX_ERR',format='E',array=sap_flux_err) col10 = Column(name='SAP_QUALITY',format='J',array=quality) col11 = Column(name='PSF_CENTR1',format='E',unit='pixel',array=psf_centr1) col12 = Column(name='PSF_CENTR1_ERR',format='E',unit='pixel',array=psf_centr1_err) col13 = Column(name='PSF_CENTR2',format='E',unit='pixel',array=psf_centr2) col14 = Column(name='PSF_CENTR2_ERR',format='E',unit='pixel',array=psf_centr2_err) col15 = Column(name='MOM_CENTR1',format='E',unit='pixel',array=mom_centr1) col16 = Column(name='MOM_CENTR1_ERR',format='E',unit='pixel',array=mom_centr1_err) col17 = Column(name='MOM_CENTR2',format='E',unit='pixel',array=mom_centr2) col18 = Column(name='MOM_CENTR2_ERR',format='E',unit='pixel',array=mom_centr2_err) col19 = Column(name='POS_CORR1',format='E',unit='pixel',array=pos_corr1) col20 = Column(name='POS_CORR2',format='E',unit='pixel',array=pos_corr2) col21 = Column(name='RAW_FLUX',format='E',array=raw_flux) cols = ColDefs([col1,col2,col3,col4,col5,col6,col7,col8,col9,col10,col11, \ col12,col13,col14,col15,col16,col17,col18,col19,col20,col21]) hdu1 = new_table(cols) hdu1.header.update('TTYPE1','TIME','column title: data time stamps') hdu1.header.update('TFORM1','D','data type: float64') hdu1.header.update('TUNIT1','BJD - 2454833','column units: barycenter corrected JD') hdu1.header.update('TDISP1','D12.7','column display format') hdu1.header.update('TTYPE2','TIMECORR','column title: barycentric-timeslice correction') hdu1.header.update('TFORM2','E','data type: float32') hdu1.header.update('TUNIT2','d','column units: days') hdu1.header.update('TTYPE3','CADENCENO','column title: unique cadence number') hdu1.header.update('TFORM3','J','column format: signed integer32') hdu1.header.update('TTYPE4','SAP_FLUX','column title: aperture photometry flux') hdu1.header.update('TFORM4','E','column format: float32') hdu1.header.update('TUNIT4','e-/s','column units: electrons per second') hdu1.header.update('TTYPE5','SAP_FLUX_ERR','column title: aperture phot. flux error') hdu1.header.update('TFORM5','E','column format: float32') hdu1.header.update('TUNIT5','e-/s','column units: electrons per second (1-sigma)') hdu1.header.update('TTYPE6','SAP_BKG','column title: aperture phot. background flux') hdu1.header.update('TFORM6','E','column format: float32') hdu1.header.update('TUNIT6','e-/s','column units: electrons per second') hdu1.header.update('TTYPE7','SAP_BKG_ERR','column title: ap. phot. background flux error') hdu1.header.update('TFORM7','E','column format: float32') hdu1.header.update('TUNIT7','e-/s','column units: electrons per second (1-sigma)') hdu1.header.update('TTYPE8','PDCSAP_FLUX','column title: PDC photometry flux') hdu1.header.update('TFORM8','E','column format: float32') hdu1.header.update('TUNIT8','e-/s','column units: electrons per second') hdu1.header.update('TTYPE9','PDCSAP_FLUX_ERR','column title: PDC flux error') hdu1.header.update('TFORM9','E','column format: float32') hdu1.header.update('TUNIT9','e-/s','column units: electrons per second (1-sigma)') hdu1.header.update('TTYPE10','SAP_QUALITY','column title: aperture photometry quality flag') hdu1.header.update('TFORM10','J','column format: signed integer32') hdu1.header.update('TTYPE11','PSF_CENTR1','column title: PSF fitted column centroid') hdu1.header.update('TFORM11','E','column format: float32') hdu1.header.update('TUNIT11','pixel','column units: pixel') hdu1.header.update('TTYPE12','PSF_CENTR1_ERR','column title: PSF fitted column error') hdu1.header.update('TFORM12','E','column format: float32') hdu1.header.update('TUNIT12','pixel','column units: pixel') hdu1.header.update('TTYPE13','PSF_CENTR2','column title: PSF fitted row centroid') hdu1.header.update('TFORM13','E','column format: float32') hdu1.header.update('TUNIT13','pixel','column units: pixel') hdu1.header.update('TTYPE14','PSF_CENTR2_ERR','column title: PSF fitted row error') hdu1.header.update('TFORM14','E','column format: float32') hdu1.header.update('TUNIT14','pixel','column units: pixel') hdu1.header.update('TTYPE15','MOM_CENTR1','column title: moment-derived column centroid') hdu1.header.update('TFORM15','E','column format: float32') hdu1.header.update('TUNIT15','pixel','column units: pixel') hdu1.header.update('TTYPE16','MOM_CENTR1_ERR','column title: moment-derived column error') hdu1.header.update('TFORM16','E','column format: float32') hdu1.header.update('TUNIT16','pixel','column units: pixel') hdu1.header.update('TTYPE17','MOM_CENTR2','column title: moment-derived row centroid') hdu1.header.update('TFORM17','E','column format: float32') hdu1.header.update('TUNIT17','pixel','column units: pixel') hdu1.header.update('TTYPE18','MOM_CENTR2_ERR','column title: moment-derived row error') hdu1.header.update('TFORM18','E','column format: float32') hdu1.header.update('TUNIT18','pixel','column units: pixel') hdu1.header.update('TTYPE19','POS_CORR1','column title: col correction for vel. abbern') hdu1.header.update('TFORM19','E','column format: float32') hdu1.header.update('TUNIT19','pixel','column units: pixel') hdu1.header.update('TTYPE20','POS_CORR2','column title: row correction for vel. abbern') hdu1.header.update('TFORM20','E','column format: float32') hdu1.header.update('TUNIT20','pixel','column units: pixel') hdu1.header.update('TTYPE21','RAW_FLUX','column title: raw aperture photometry flux') hdu1.header.update('TFORM21','E','column format: float32') hdu1.header.update('TUNIT21','e-/s','column units: electrons per second') hdu1.header.update('EXTNAME','LIGHTCURVE','name of extension') for i in range(len(cards1)): if (cards1[i].key not in hdu1.header.keys() and cards1[i].key[:4] not in ['TTYP','TFOR','TUNI','TDIS','TDIM','WCAX','1CTY', '2CTY','1CRP','2CRP','1CRV','2CRV','1CUN','2CUN', '1CDE','2CDE','1CTY','2CTY','1CDL','2CDL','11PC', '12PC','21PC','22PC']): hdu1.header.update(cards1[i].key, cards1[i].value, cards1[i].comment) outstr.append(hdu1) # construct output mask bitmap extension if status == 0: hdu2 = ImageHDU(maskmap) for i in range(len(cards2)): if cards2[i].key not in hdu2.header.keys(): hdu2.header.update(cards2[i].key, cards2[i].value, cards2[i].comment) else: hdu2.header.cards[cards2[i].key].comment = cards2[i].comment outstr.append(hdu2) # write output file if status == 0: outstr.writeto(outfile,checksum=True) # close input structure if status == 0: status = kepio.closefits(instr,logfile,verbose) # end time kepmsg.clock('KEPEXTRACT finished at',logfile,verbose)
def kepwindow(infile, outfile, fcol, fmax, nfreq, plot, clobber, verbose, logfile, status, cmdLine=False): ## startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 18 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 ## log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPWINDOW -- ' call += 'infile=' + infile + ' ' call += 'outfile=' + outfile + ' ' call += 'fcol=' + fcol + ' ' call += 'fmax=' + str(fmax) + ' ' call += 'nfreq=' + str(nfreq) + ' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot=' + plotit + ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber=' + overwrite + ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose=' + chatter + ' ' call += 'logfile=' + logfile kepmsg.log(logfile, call + '\n', verbose) ## start time kepmsg.clock('KEPWINDOW started at', logfile, verbose) ## test log file logfile = kepmsg.test(logfile) ## clobber output file if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPWINDOW: ' + outfile + ' exists. Use clobber=yes' status = kepmsg.err(logfile, message, verbose) ## open input file if status == 0: instr, status = kepio.openfits(infile, 'readonly', logfile, verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys( instr, infile, logfile, verbose, status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence ## fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr, file, logfile, verbose) ## read table columns if status == 0: try: barytime = instr[1].data.field('barytime') except: barytime, status = kepio.readfitscol(infile, instr[1].data, 'time', logfile, verbose) signal, status = kepio.readfitscol(infile, instr[1].data, fcol, logfile, verbose) ## remove infinite data from time series if status == 0: incols = [barytime, signal] outcols = kepstat.removeinfinlc(signal, incols) barytime = outcols[0] signal = outcols[1] ## reset signal data to zero if status == 0: signal = ones(len(outcols[1])) ## frequency steps if status == 0: deltaf = fmax / nfreq ## loop through frequency steps; determine FT power if status == 0: fr, power = kepfourier.ft(barytime, signal, 0.0, fmax, deltaf, True) power[0] = 1.0 ## mirror window function around ordinate if status == 0: work1 = [] work2 = [] for i in range(len(fr) - 1, 0, -1): work1.append(-fr[i]) work2.append(power[i]) for i in range(len(fr)): work1.append(fr[i]) work2.append(power[i]) fr = array(work1, dtype='float32') power = array(work2, dtype='float32') ## write output file if status == 0: col1 = Column(name='FREQUENCY', format='E', unit='days', array=fr) col2 = Column(name='POWER', format='E', array=power) cols = ColDefs([col1, col2]) instr.append(new_table(cols)) instr[-1].header.update('EXTNAME', 'WINDOW FUNCTION', 'extension name') ## comment keyword in output file if status == 0: status = kepkey.comment(call, instr[0], outfile, logfile, verbose) instr.writeto(outfile) ## close input file if status == 0: status = kepio.closefits(instr, logfile, verbose) ## data limits if status == 0: nrm = len(str(int(power.max()))) - 1 power = power / 10**nrm ylab = 'Power (x10$^%d$)' % nrm xmin = fr.min() xmax = fr.max() ymin = power.min() ymax = power.max() xr = xmax - xmin yr = ymax - ymin fr = insert(fr, [0], fr[0]) fr = append(fr, fr[-1]) power = insert(power, [0], 0.0) power = append(power, 0.0) ## plot power spectrum if status == 0 and plot: try: params = { 'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight': 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize } rcParams.update(params) except: print('ERROR -- KEPWINDOW: install latex for scientific plotting') status = 1 if status == 0 and plot: pylab.figure(1, figsize=[xsize, ysize]) pylab.axes([0.06, 0.113, 0.93, 0.86]) pylab.plot(fr, power, color=lcolor, linestyle='-', linewidth=lwidth) fill(fr, power, color=fcolor, linewidth=0.0, alpha=falpha) xlim(xmin - xr * 0.01, xmax + xr * 0.01) if ymin - yr * 0.01 <= 0.0: ylim(1.0e-10, ymax + yr * 0.01) else: ylim(ymin - yr * 0.01, ymax + yr * 0.01) xlabel(r'Frequency (d$^{-1}$)', {'color': 'k'}) ylabel('Power', {'color': 'k'}) # render plot if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() ## end time if (status == 0): message = 'KEPWINDOW completed at' else: message = '\nKEPWINDOW aborted at' kepmsg.clock(message, logfile, verbose)
def kepbinary(infile,outfile,datacol,m1,m2,r1,r2,period,bjd0,eccn,omega,inclination, c1,c2,c3,c4,albedo,depth,contamination,gamma,fitparams,eclipses,dopboost, tides,job,clobber,verbose,logfile,status): # startup parameters status = 0 labelsize = 24; ticksize = 16; xsize = 17; ysize = 7 lcolor = '#0000ff'; lwidth = 1.0; fcolor = '#ffff00'; falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPBINARY -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+datacol+' ' call += 'm1='+str(m1)+' ' call += 'm2='+str(m2)+' ' call += 'r1='+str(r1)+' ' call += 'r2='+str(r2)+' ' call += 'period='+str(period)+' ' call += 'bjd0='+str(bjd0)+' ' call += 'eccn='+str(eccn)+' ' call += 'omega='+str(omega)+' ' call += 'inclination='+str(inclination)+' ' call += 'c1='+str(c1)+' ' call += 'c2='+str(c2)+' ' call += 'c3='+str(c3)+' ' call += 'c4='+str(c4)+' ' call += 'albedo='+str(albedo)+' ' call += 'depth='+str(depth)+' ' call += 'contamination='+str(contamination)+' ' call += 'gamma='+str(gamma)+' ' call += 'fitparams='+str(fitparams)+' ' eclp = 'n' if (eclipses): eclp = 'y' call += 'eclipses='+eclp+ ' ' boost = 'n' if (dopboost): boost = 'y' call += 'dopboost='+boost+ ' ' distort = 'n' if (tides): distort = 'y' call += 'tides='+distort+ ' ' call += 'job='+str(job)+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPBINARY started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # check and format the list of fit parameters if status == 0 and job == 'fit': allParams = [m1,m2,r1,r2,period,bjd0,eccn,omega,inclination] allNames = ['m1','m2','r1','r2','period','bjd0','eccn','omega','inclination'] fitparams = re.sub('\|',',',fitparams.strip()) fitparams = re.sub('\.',',',fitparams.strip()) fitparams = re.sub(';',',',fitparams.strip()) fitparams = re.sub(':',',',fitparams.strip()) fitparams = re.sub('\s+',',',fitparams.strip()) fitparams, status = kepio.parselist(fitparams,logfile,verbose) for fitparam in fitparams: if fitparam.strip() not in allNames: message = 'ERROR -- KEPBINARY: unknown field in list of fit parameters' status = kepmsg.err(logfile,message,verbose) # clobber output file if status == 0: if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPBINARY: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile,message,verbose) # open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # check the data column exists if status == 0: try: instr[1].data.field(datacol) except: message = 'ERROR -- KEPBINARY: ' + datacol + ' column does not exist in ' + infile + '[1]' status = kepmsg.err(logfile,message,verbose) # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # read table structure if status == 0: table, status = kepio.readfitstab(infile,instr[1],logfile,verbose) # filter input data table if status == 0: try: nanclean = instr[1].header['NANCLEAN'] except: naxis2 = 0 try: for i in range(len(table.field(0))): if numpy.isfinite(table.field('barytime')[i]) and \ numpy.isfinite(table.field(datacol)[i]): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] except: for i in range(len(table.field(0))): if numpy.isfinite(table.field('time')[i]) and \ numpy.isfinite(table.field(datacol)[i]): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] comment = 'NaN cadences removed from data' status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose) # read table columns if status == 0: try: time = instr[1].data.field('barytime') except: time, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose) indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose) if status == 0: time = time + bjdref indata = indata / cadenom # limb-darkening cofficients if status == 0: limbdark = numpy.array([c1,c2,c3,c4],dtype='float32') # time details for model if status == 0: npt = len(time) exptime = numpy.zeros((npt),dtype='float64') dtype = numpy.zeros((npt),dtype='int') for i in range(npt): try: exptime[i] = time[i+1] - time[i] except: exptime[i] = time[i] - time[i-1] # calculate binary model if status == 0: tmodel = kepsim.transitModel(1.0,m1,m2,r1,r2,period,inclination,bjd0,eccn,omega,depth, albedo,c1,c2,c3,c4,gamma,contamination,npt,time,exptime, dtype,eclipses,dopboost,tides) # re-normalize binary model to data if status == 0 and (job == 'overlay' or job == 'fit'): dmedian = numpy.median(indata) tmodel = tmodel / numpy.median(tmodel) * dmedian # define arrays of floating and frozen parameters if status == 0 and job =='fit': params = []; paramNames = []; arguments = []; argNames = [] for i in range(len(allNames)): if allNames[i] in fitparams: params.append(allParams[i]) paramNames.append(allNames[i]) else: arguments.append(allParams[i]) argNames.append(allNames[i]) params.append(dmedian) params = numpy.array(params,dtype='float32') # subtract model from data if status == 0 and job == 'fit': deltam = numpy.abs(indata - tmodel) # fit statistics if status == 0 and job == 'fit': aveDelta = numpy.sum(deltam) / npt chi2 = math.sqrt(numpy.sum((indata - tmodel) * (indata - tmodel) / (npt - len(params)))) # fit model to data using downhill simplex if status == 0 and job == 'fit': print '' print '%4s %11s %11s' % ('iter', 'delta', 'chi^2') print '----------------------------' print '%4d %.5E %.5E' % (0,aveDelta,chi2) bestFit = scipy.optimize.fmin(fitModel,params,args=(paramNames,dmedian,m1,m2,r1,r2,period,bjd0,eccn, omega,inclination,depth,albedo,c1,c2,c3,c4, gamma,contamination,npt,time,exptime,indata, dtype,eclipses,dopboost,tides),maxiter=1e4) # calculate best fit binary model if status == 0 and job == 'fit': print '' for i in range(len(paramNames)): if 'm1' in paramNames[i].lower(): m1 = bestFit[i] print ' M1 = %.3f Msun' % bestFit[i] elif 'm2' in paramNames[i].lower(): m2 = bestFit[i] print ' M2 = %.3f Msun' % bestFit[i] elif 'r1' in paramNames[i].lower(): r1 = bestFit[i] print ' R1 = %.4f Rsun' % bestFit[i] elif 'r2' in paramNames[i].lower(): r2 = bestFit[i] print ' R2 = %.4f Rsun' % bestFit[i] elif 'period' in paramNames[i].lower(): period = bestFit[i] elif 'bjd0' in paramNames[i].lower(): bjd0 = bestFit[i] print 'BJD0 = %.8f' % bestFit[i] elif 'eccn' in paramNames[i].lower(): eccn = bestFit[i] print ' e = %.3f' % bestFit[i] elif 'omega' in paramNames[i].lower(): omega = bestFit[i] print ' w = %.3f deg' % bestFit[i] elif 'inclination' in paramNames[i].lower(): inclination = bestFit[i] print ' i = %.3f deg' % bestFit[i] flux = bestFit[-1] print '' tmodel = kepsim.transitModel(flux,m1,m2,r1,r2,period,inclination,bjd0,eccn,omega,depth, albedo,c1,c2,c3,c4,gamma,contamination,npt,time,exptime, dtype,eclipses,dopboost,tides) # subtract model from data if status == 0: deltaMod = indata - tmodel # standard deviation of model if status == 0: stdDev = math.sqrt(numpy.sum((indata - tmodel) * (indata - tmodel)) / npt) # clean up x-axis unit if status == 0: time0 = float(int(tstart / 100) * 100.0) ptime = time - time0 xlab = 'BJD $-$ %d' % time0 # clean up y-axis units if status == 0: nrm = len(str(int(indata.max())))-1 pout = indata / 10**nrm pmod = tmodel / 10**nrm pres = deltaMod / stdDev if job == 'fit' or job == 'overlay': try: ylab1 = 'Flux (10$^%d$ e$^-$ s$^{-1}$)' % nrm ylab2 = 'Residual ($\sigma$)' except: ylab1 = 'Flux (10**%d e-/s)' % nrm ylab2 = 'Residual (sigma)' else: ylab1 = 'Normalized Flux' # dynamic range of model plot if status == 0 and job == 'model': xmin = ptime.min() xmax = ptime.max() ymin = tmodel.min() ymax = tmodel.max() # dynamic range of model/data overlay or fit if status == 0 and (job == 'overlay' or job == 'fit'): xmin = ptime.min() xmax = ptime.max() ymin = pout.min() ymax = pout.max() tmin = pmod.min() tmax = pmod.max() ymin = numpy.array([ymin,tmin]).min() ymax = numpy.array([ymax,tmax]).max() rmin = pres.min() rmax = pres.max() # pad the dynamic range if status == 0: xr = (xmax - xmin) / 80 yr = (ymax - ymin) / 40 if job == 'overlay' or job == 'fit': rr = (rmax - rmin) / 40 # set up plot style if status == 0: labelsize = 24; ticksize = 16; xsize = 17; ysize = 7 lcolor = '#0000ff'; lwidth = 1.0; fcolor = '#ffff00'; falpha = 0.2 params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': 24, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': 16, 'ytick.labelsize': 16} pylab.rcParams.update(params) pylab.figure(figsize=[14,10]) pylab.clf() # main plot window ax = pylab.axes([0.05,0.3,0.94,0.68]) pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) labels = ax.get_yticklabels() setp(labels, 'rotation', 90, fontsize=12) # plot model time series if status == 0 and job == 'model': pylab.plot(ptime,tmodel,color='#0000ff',linestyle='-',linewidth=1.0) ptime = numpy.insert(ptime,[0.0],ptime[0]) ptime = numpy.append(ptime,ptime[-1]) tmodel = numpy.insert(tmodel,[0.0],0.0) tmodel = numpy.append(tmodel,0.0) pylab.fill(ptime,tmodel,fc='#ffff00',linewidth=0.0,alpha=0.2) # plot data time series and best fit if status == 0 and (job == 'overlay' or job == 'fit'): pylab.plot(ptime,pout,color='#0000ff',linestyle='-',linewidth=1.0) ptime = numpy.insert(ptime,[0.0],ptime[0]) ptime = numpy.append(ptime,ptime[-1]) pout = numpy.insert(pout,[0],0.0) pout = numpy.append(pout,0.0) pylab.fill(ptime,pout,fc='#ffff00',linewidth=0.0,alpha=0.2) pylab.plot(ptime[1:-1],pmod,color='r',linestyle='-',linewidth=2.0) # ranges and labels if status == 0: pylab.xlim(xmin-xr,xmax+xr) pylab.ylim(ymin-yr,ymax+yr) pylab.xlabel(xlab, {'color' : 'k'}) pylab.ylabel(ylab1, {'color' : 'k'}) # residual plot window if status == 0 and (job == 'overlay' or job == 'fit'): ax = pylab.axes([0.05,0.07,0.94,0.23]) pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) labels = ax.get_yticklabels() setp(labels, 'rotation', 90, fontsize=12) # plot residual time series if status == 0 and (job == 'overlay' or job == 'fit'): pylab.plot([ptime[0],ptime[-1]],[0.0,0.0],color='r',linestyle='--',linewidth=1.0) pylab.plot([ptime[0],ptime[-1]],[-1.0,-1.0],color='r',linestyle='--',linewidth=1.0) pylab.plot([ptime[0],ptime[-1]],[1.0,1.0],color='r',linestyle='--',linewidth=1.0) pylab.plot(ptime[1:-1],pres,color='#0000ff',linestyle='-',linewidth=1.0) pres = numpy.insert(pres,[0],rmin) pres = numpy.append(pres,rmin) pylab.fill(ptime,pres,fc='#ffff00',linewidth=0.0,alpha=0.2) # ranges and labels of residual time series if status == 0 and (job == 'overlay' or job == 'fit'): pylab.xlim(xmin-xr,xmax+xr) pylab.ylim(rmin-rr,rmax+rr) pylab.xlabel(xlab, {'color' : 'k'}) pylab.ylabel(ylab2, {'color' : 'k'}) # display the plot if status == 0: pylab.draw()
def kepcotrendsc(infile, outfile, bvfile, listbv, fitmethod, fitpower, iterate, sigma, maskfile, scinterp, plot, clobber, verbose, logfile, status): """ Setup the kepcotrend environment infile: the input file in the FITS format obtained from MAST outfile: The output will be a fits file in the same style as the input file but with two additional columns: CBVSAP_MODL and CBVSAP_FLUX. The first of these is the best fitting linear combination of basis vectors. The second is the new flux with the basis vector sum subtracted. This is the new flux value. plot: either True or False if you want to see a plot of the light curve The top plot shows the original light curve in blue and the sum of basis vectors in red The bottom plot has had the basis vector sum subracted bvfile: the name of the FITS file containing the basis vectors listbv: the basis vectors to fit to the data fitmethod: fit using either the 'llsq' or the 'simplex' method. 'llsq' is usually the correct one to use because as the basis vectors are orthogonal. Simplex gives you option of using a different merit function - ie. you can minimise the least absolute residual instead of the least squares which weights outliers less fitpower: if using a simplex you can chose your own power in the metir function - i.e. the merit function minimises abs(Obs - Mod)^P. P=2 is least squares, P = 1 minimises least absolutes iterate: should the program fit the basis vectors to the light curve data then remove data points further than 'sigma' from the fit and then refit maskfile: this is the name of a mask file which can be used to define regions of the flux time series to exclude from the fit. The easiest way to create this is by using keprange from the PyKE set of tools. You can also make this yourself with two BJDs on each line in the file specifying the beginning and ending date of the region to exclude. scinterp: the basis vectors are only calculated for long cadence data, therefore if you want to use short cadence data you have to interpolate the basis vectors. There are several methods to do this, the best of these probably being nearest which picks the value of the nearest long cadence data point. The options available are None|linear|nearest|zero|slinear|quadratic|cubic If you are using short cadence data don't choose none """ # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPCOTREND -- ' call += 'infile=' + infile + ' ' call += 'outfile=' + outfile + ' ' call += 'bvfile=' + bvfile + ' ' # call += 'numpcomp= '+str(numpcomp)+' ' call += 'listbv= ' + str(listbv) + ' ' call += 'fitmethod=' + str(fitmethod) + ' ' call += 'fitpower=' + str(fitpower) + ' ' iterateit = 'n' if (iterate): iterateit = 'y' call += 'iterate=' + iterateit + ' ' call += 'sigma_clip=' + str(sigma) + ' ' call += 'mask_file=' + maskfile + ' ' call += 'scinterp=' + str(scinterp) + ' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot=' + plotit + ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber=' + overwrite + ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose=' + chatter + ' ' call += 'logfile=' + logfile kepmsg.log(logfile, call + '\n', verbose) # start time kepmsg.clock('KEPCOTREND started at', logfile, verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPCOTREND: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile, message, verbose) # open input file if status == 0: instr, status = kepio.openfits(infile, 'readonly', logfile, verbose) tstart, tstop, bjdref, cadence, status = kepio.timekeys( instr, infile, logfile, verbose, status) # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr, file, logfile, verbose) if status == 0: if not kepio.fileexists(bvfile): message = 'ERROR -- KEPCOTREND: ' + bvfile + ' does not exist.' status = kepmsg.err(logfile, message, verbose) #lsq_sq - nonlinear least squares fitting and simplex_abs have been removed from the option in PyRAF but they are still in the code! if status == 0: if fitmethod not in [ 'llsq', 'matrix', 'lst_sq', 'simplex_abs', 'simplex' ]: message = 'Fit method must either: llsq, matrix, lst_sq or simplex' status = kepmsg.err(logfile, message, verbose) if status == 0: if not is_numlike(fitpower) and fitpower is not None: message = 'Fit power must be an real number or None' status = kepmsg.err(logfile, message, verbose) if status == 0: if fitpower is None: fitpower = 1. # input data if status == 0: short = False try: test = str(instr[0].header['FILEVER']) version = 2 except KeyError: version = 1 table = instr[1].data if version == 1: if str(instr[1].header['DATATYPE']) == 'long cadence': #print 'Light curve was taken in Lond Cadence mode!' quarter = str(instr[1].header['QUARTER']) module = str(instr[1].header['MODULE']) output = str(instr[1].header['OUTPUT']) channel = str(instr[1].header['CHANNEL']) lc_cad_o = table.field('cadence_number') lc_date_o = table.field('barytime') lc_flux_o = table.field( 'ap_raw_flux') / 1625.3468 #convert to e-/s lc_err_o = table.field( 'ap_raw_err') / 1625.3468 #convert to e-/s elif str(instr[1].header['DATATYPE']) == 'short cadence': short = True #print 'Light curve was taken in Short Cadence mode!' quarter = str(instr[1].header['QUARTER']) module = str(instr[1].header['MODULE']) output = str(instr[1].header['OUTPUT']) channel = str(instr[1].header['CHANNEL']) lc_cad_o = table.field('cadence_number') lc_date_o = table.field('barytime') lc_flux_o = table.field( 'ap_raw_flux') / 54.178 #convert to e-/s lc_err_o = table.field('ap_raw_err') / 54.178 #convert to e-/s elif version == 2: if str(instr[0].header['OBSMODE']) == 'long cadence': #print 'Light curve was taken in Long Cadence mode!' quarter = str(instr[0].header['QUARTER']) module = str(instr[0].header['MODULE']) output = str(instr[0].header['OUTPUT']) channel = str(instr[0].header['CHANNEL']) lc_cad_o = table.field('CADENCENO') lc_date_o = table.field('TIME') lc_flux_o = table.field('SAP_FLUX') lc_err_o = table.field('SAP_FLUX_ERR') elif str(instr[0].header['OBSMODE']) == 'short cadence': #print 'Light curve was taken in Short Cadence mode!' short = True quarter = str(instr[0].header['QUARTER']) module = str(instr[0].header['MODULE']) output = str(instr[0].header['OUTPUT']) channel = str(instr[0].header['CHANNEL']) lc_cad_o = table.field('CADENCENO') lc_date_o = table.field('TIME') lc_flux_o = table.field('SAP_FLUX') lc_err_o = table.field('SAP_FLUX_ERR') if str(quarter) == str(4) and version == 1: lc_cad_o = lc_cad_o[lc_cad_o >= 11914] lc_date_o = lc_date_o[lc_cad_o >= 11914] lc_flux_o = lc_flux_o[lc_cad_o >= 11914] lc_err_o = lc_err_o[lc_cad_o >= 11914] # bvfilename = '%s/Q%s_%s_%s_map.txt' %(bvfile,quarter,module,output) # if str(quarter) == str(5): # bvdata = genfromtxt(bvfilename) # elif str(quarter) == str(3) or str(quarter) == str(4): # bvdata = genfromtxt(bvfilename,skip_header=22) # elif str(quarter) == str(1): # bvdata = genfromtxt(bvfilename,skip_header=10) # else: # bvdata = genfromtxt(bvfilename,skip_header=13) if short and scinterp == 'None': message = 'You cannot select None as the interpolation method because you are using short cadence data and therefore must use some form of interpolation. I reccommend nearest if you are unsure.' status = kepmsg.err(logfile, message, verbose) bvfiledata = pyfits.open(bvfile) bvdata = bvfiledata['MODOUT_%s_%s' % (module, output)].data if int(bvfiledata[0].header['QUARTER']) != int(quarter): message = 'CBV file and light curve file are from different quarters. CBV file is from Q%s and light curve is from Q%s' % ( int(bvfiledata[0].header['QUARTER']), int(quarter)) status = kepmsg.err(logfile, message, verbose) if status == 0: if int(quarter) == 4 and int(module) == 3: message = 'Approximately twenty days into Q4 Module 3 failed. As a result, Q4 light curves contain these 20 day of data. However, we do not calculate CBVs for this section of data.' status = kepmsg.err(logfile, message, verbose) if status == 0: #cut out infinites and zero flux columns lc_cad, lc_date, lc_flux, lc_err, bad_data = cutBadData( lc_cad_o, lc_date_o, lc_flux_o, lc_err_o) #get a list of basis vectors to use from the list given #accept different seperators listbv = listbv.strip() if listbv[1] in [' ', ',', ':', ';', '|', ', ']: separator = str(listbv)[1] else: message = 'You must separate your basis vector numbers to use with \' \' \',\' \':\' \';\' or \'|\' and the first basis vector to use must be between 1 and 9' status = kepmsg.err(logfile, message, verbose) if status == 0: bvlist = fromstring(listbv, dtype=int, sep=separator) if bvlist[0] == 0: message = 'Must use at least one basis vector' status = kepmsg.err(logfile, message, verbose) if status == 0: #pcomps = get_pcomp(pcompdata,n_comps,lc_cad) # if str(quarter) == str(5): # bvectors = get_pcomp_list(bvdata,bvlist,lc_cad) # else: # bvectors = get_pcomp_list_newformat(bvdata,bvlist,lc_cad) if short: bvdata.field('CADENCENO')[:] = (((bvdata.field('CADENCENO')[:] + (7.5 / 15.)) * 30.) - 11540.).round() bvectors, in1derror = get_pcomp_list_newformat(bvdata, bvlist, lc_cad, short, scinterp) if in1derror: message = 'It seems that you have an old version of numpy which does not have the in1d function included. Please update your version of numpy to a version 1.4.0 or later' status = kepmsg.err(logfile, message, verbose) if status == 0: medflux = median(lc_flux) n_flux = (lc_flux / medflux) - 1 n_err = sqrt(pow(lc_err, 2) / pow(medflux, 2)) #plt.errorbar(lc_cad,n_flux,yerr=n_err) #plt.errorbar(lc_cad,lc_flux,yerr=lc_err) #n_err = median(lc_err/lc_flux) * n_flux #print n_err #does an iterative least squares fit #t1 = do_leastsq(pcomps,lc_cad,n_flux) # if maskfile != '': domasking = True if not kepio.fileexists(maskfile): message = 'Maskfile %s does not exist' % maskfile status = kepmsg.err(logfile, message, verbose) else: domasking = False if status == 0: if domasking: lc_date_masked = copy(lc_date) n_flux_masked = copy(n_flux) lc_cad_masked = copy(lc_cad) n_err_masked = copy(n_err) maskdata = atleast_2d(genfromtxt(maskfile, delimiter=',')) #make a mask of True values incase there are not regions in maskfile to exclude. mask = zeros(len(lc_date_masked)) == 0. for maskrange in maskdata: if version == 1: start = maskrange[0] - 2400000.0 end = maskrange[1] - 2400000.0 elif version == 2: start = maskrange[0] - 2454833. end = maskrange[1] - 2454833. masknew = logical_xor(lc_date < start, lc_date > end) mask = logical_and(mask, masknew) lc_date_masked = lc_date_masked[mask] n_flux_masked = n_flux_masked[mask] lc_cad_masked = lc_cad_masked[mask] n_err_masked = n_err_masked[mask] else: lc_date_masked = copy(lc_date) n_flux_masked = copy(n_flux) lc_cad_masked = copy(lc_cad) n_err_masked = copy(n_err) #pcomps = get_pcomp(pcompdata,n_comps,lc_cad) bvectors_masked, hasin1d = get_pcomp_list_newformat( bvdata, bvlist, lc_cad_masked, short, scinterp) if (iterate) and sigma is None: message = 'If fitting iteratively you must specify a clipping range' status = kepmsg.err(logfile, message, verbose) if status == 0: #uses Pvals = yhat * U_transpose if (iterate): coeffs, fittedmask = do_lst_iter(bvectors_masked, lc_cad_masked, n_flux_masked, sigma, 50., fitmethod, fitpower) else: if fitmethod == 'matrix' and domasking: coeffs = do_lsq_uhat(bvectors_masked, lc_cad_masked, n_flux_masked, False) if fitmethod == 'llsq' and domasking: coeffs = do_lsq_uhat(bvectors_masked, lc_cad_masked, n_flux_masked, False) elif fitmethod == 'lst_sq': coeffs = do_lsq_nlin(bvectors_masked, lc_cad_masked, n_flux_masked) elif fitmethod == 'simplex_abs': coeffs = do_lsq_fmin(bvectors_masked, lc_cad_masked, n_flux_masked) elif fitmethod == 'simplex': coeffs = do_lsq_fmin_pow(bvectors_masked, lc_cad_masked, n_flux_masked, fitpower) else: coeffs = do_lsq_uhat(bvectors_masked, lc_cad_masked, n_flux_masked) flux_after = (get_newflux(n_flux, bvectors, coeffs) + 1) * medflux flux_after_masked = ( get_newflux(n_flux_masked, bvectors_masked, coeffs) + 1) * medflux bvsum = get_pcompsum(bvectors, coeffs) bvsum_masked = get_pcompsum(bvectors_masked, coeffs) #print 'chi2: ' + str(chi2_gtf(n_flux,bvsum,n_err,2.*len(n_flux)-2)) #print 'rms: ' + str(rms(n_flux,bvsum)) bvsum_nans = putInNans(bad_data, bvsum) flux_after_nans = putInNans(bad_data, flux_after) if plot and status == 0: bvsum_un_norm = medflux * (1 - bvsum) #bvsum_un_norm = 0-bvsum #lc_flux = n_flux do_plot(lc_date, lc_flux, flux_after, bvsum_un_norm, lc_cad, bad_data, lc_cad_o, version) if status == 0: make_outfile(instr, outfile, flux_after_nans, bvsum_nans, version) # close input file if status == 0: status = kepio.closefits(instr, logfile, verbose) #print some results to screen: print(' ----- ') if iterate: flux_fit = n_flux_masked[fittedmask] sum_fit = bvsum_masked[fittedmask] err_fit = n_err_masked[fittedmask] else: flux_fit = n_flux_masked sum_fit = bvsum_masked err_fit = n_err_masked print('reduced chi2: ' + str( chi2_gtf(flux_fit, sum_fit, err_fit, len(flux_fit) - len(coeffs)))) print('rms: ' + str(medflux * rms(flux_fit, sum_fit))) for i in range(len(coeffs)): print('Coefficient of CBV #%s: %s' % (i + 1, coeffs[i])) print(' ----- ') # end time if (status == 0): message = 'KEPCOTREND completed at' else: message = '\nKEPCOTTREND aborted at' kepmsg.clock(message, logfile, verbose) return
def kepfoldimg(infile,outfile,datacol,period,phasezero,binmethod,threshold,niter,nbins, plot,plotlab,clobber,verbose,logfile,status): # startup parameters status = 0 labelsize = 24; ticksize = 16; xsize = 17; ysize = 7 lcolor = '#0000ff'; lwidth = 1.0; fcolor = '#ffff00'; falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPFOLD -- ' call += 'infile='+infile+' ' call += 'outfile='+outfile+' ' call += 'datacol='+datacol+' ' call += 'period='+str(period)+' ' call += 'phasezero='+str(phasezero)+' ' call += 'binmethod='+binmethod+' ' call += 'threshold='+str(threshold)+' ' call += 'niter='+str(niter)+' ' call += 'nbins='+str(nbins)+' ' plotres = 'n' if (plot): plotres = 'y' call += 'plot='+plotres+ ' ' call += 'plotlab='+plotlab+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPFOLDIMG started at: ',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPFOLDIMG: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile,message,verbose) # open input file if status == 0: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,infile,logfile,verbose) # input data if status == 0: table = instr[1].data incards = instr[1].header.cards indata, status = kepio.readfitscol(infile,table,datacol,logfile,verbose) barytime, status = kepio.readtimecol(infile,table,logfile,verbose) # filter out NaNs work1 = []; work2 = [] if status == 0: for i in range(len(barytime)): if (numpy.isfinite(barytime[i]) and numpy.isfinite(indata[i]) and indata[i] != 0.0): work1.append(barytime[i]) work2.append(indata[i]) barytime = array(work1,dtype='float64') indata = array(work2,dtype='float32') # calculate phase if status == 0: phase2 = [] phase1 = (barytime - phasezero) / period for i in range(len(phase1)): phase2.append(phase1[i] - int(phase1[i])) if phase2[-1] < 0.0: phase2[-1] += 1.0 phase2 = array(phase2,'float32') # sort phases if status == 0: ptuple = [] phase3 = [] data3 = [] for i in range(len(phase2)): ptuple.append([phase2[i], indata[i]]) phsort = sorted(ptuple,key=lambda ph: ph[0]) for i in range(len(phsort)): phase3.append(phsort[i][0]) data3.append(phsort[i][1]) phase3 = array(phase3,'float32') data3 = array(data3,'float32') # bin phases if status == 0: work1 = array([data3[0]],'float32') phase4 = array([],'float32') data4 = array([],'float32') dt = (phase3[-1] - phase3[0]) / nbins nb = 0.0 for i in range(len(phase3)): if phase3[i] < phase3[0] + nb * dt or phase3[i] >= phase3[0] + (nb + 1.0) * dt: if len(work1) > 0: phase4 = append(phase4,phase3[0] + (nb + 0.5) * dt) if (binmethod == 'mean'): data4 = append(data4,kepstat.mean(work1)) elif (binmethod == 'median'): data4 = append(data4,kepstat.median(work1,logfile)) else: coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.lsqclip('poly0',[1.0],arange(0.0,float(len(work1)),1.0),work1,None, threshold,threshold,niter,logfile,verbose) data4 = append(data4,coeffs[0]) work1 = array([],'float32') nb += 1.0 else: work1 = append(work1,data3[i]) # update HDU1 for output file if status == 0: cols = (instr[1].columns + ColDefs([Column(name='PHASE',format='E',array=phase1)])) instr[1] = pyfits.new_table(cols) instr[1].header.cards['TTYPE20'].comment = 'column title: phase' instr[1].header.cards['TFORM20'].comment = 'data type: float32' for i in range(len(incards)): if incards[i].key not in instr[1].header.keys(): instr[1].header.update(incards[i].key, incards[i].value, incards[i].comment) else: instr[1].header.cards[incards[i].key].comment = incards[i].comment instr[1].header.update('PERIOD',period,'period defining the phase [d]') instr[1].header.update('BJD0',phasezero,'time of phase zero [BJD]') # write new phased data extension for output file if status == 0: col1 = Column(name='PHASE',format='E',array=phase4) col2 = Column(name=datacol,format='E',unit='e/s',array=data4/cadence) cols = ColDefs([col1,col2]) instr.append(new_table(cols)) instr[-1].header.cards['TTYPE1'].comment = 'column title: phase' instr[-1].header.cards['TTYPE2'].comment = 'column title: simple aperture photometry' instr[-1].header.cards['TFORM1'].comment = 'column type: float32' instr[-1].header.cards['TFORM2'].comment = 'column type: float32' instr[-1].header.cards['TUNIT2'].comment = 'column units: electrons per second' instr[-1].header.update('EXTNAME','FOLDED','extension name') instr[-1].header.update('PERIOD',period,'period defining the phase [d]') instr[-1].header.update('BJD0',phasezero,'time of phase zero [BJD]') instr[-1].header.update('BINMETHD',binmethod,'phase binning method') if binmethod =='sigclip': instr[-1].header.update('THRSHOLD',threshold,'sigma-clipping threshold [sigma]') instr[-1].header.update('NITER',niter,'max number of sigma-clipping iterations') # history keyword in output file if status == 0: status = kepkey.history(call,instr[0],outfile,logfile,verbose) instr.writeto(outfile) # close input file if status == 0: status = kepio.closefits(instr,logfile,verbose) # clean up x-axis unit if status == 0: ptime = array([],'float32') pout = array([],'float32') work = data4 for i in range(len(phase4)): if (phase4[i] > 0.5): ptime = append(ptime,phase4[i] - 1.0) pout = append(pout,work[i] / cadence) ptime = append(ptime,phase4) pout = append(pout,work / cadence) for i in range(len(phase4)): if (phase4[i] <= 0.5): ptime = append(ptime,phase4[i] + 1.0) pout = append(pout,work[i] / cadence) xlab = 'Phase ($\phi$)' # clean up y-axis units if status == 0: nrm = len(str(int(pout.max())))-1 pout = pout / 10**nrm ylab = '10$^%d$ %s' % (nrm, plotlab) # data limits xmin = ptime.min() xmax = ptime.max() ymin = pout.min() ymax = pout.max() xr = xmax - xmin yr = ymax - ymin ptime = insert(ptime,[0],[ptime[0]]) ptime = append(ptime,[ptime[-1]]) pout = insert(pout,[0],[0.0]) pout = append(pout,0.0) # plot new light curve if status == 0 and plot: try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} pylab.rcParams.update(params) except: print 'ERROR -- KEPFOLD: install latex for scientific plotting' status = 1 if status == 0 and plot: pylab.figure(1,figsize=[17,7]) pylab.clf() pylab.axes([0.06,0.1,0.93,0.87]) pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.plot(ptime,pout,color=lcolor,linestyle='-',linewidth=lwidth) fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha) xlabel(xlab, {'color' : 'k'}) ylabel(ylab, {'color' : 'k'}) xlim(-0.49999,1.49999) if ymin >= 0.0: ylim(ymin-yr*0.01,ymax+yr*0.01) else: ylim(1.0e-10,ymax+yr*0.01) pylab.grid() pylab.draw() # stop time kepmsg.clock('KEPFOLDIMG ended at: ',logfile,verbose)
def keptrial(infile, outfile, datacol, errcol, fmin, fmax, nfreq, method, ntrials, plot, clobber, verbose, logfile, status, cmdLine=False): # startup parameters status = 0 labelsize = 24 ticksize = 16 xsize = 18 ysize = 6 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPTRIAL -- ' call += 'infile=' + infile + ' ' call += 'outfile=' + outfile + ' ' call += 'datacol=' + datacol + ' ' call += 'errcol=' + errcol + ' ' call += 'fmin=' + str(fmin) + ' ' call += 'fmax=' + str(fmax) + ' ' call += 'nfreq=' + str(nfreq) + ' ' call += 'method=' + method + ' ' call += 'ntrials=' + str(ntrials) + ' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot=' + plotit + ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber=' + overwrite + ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose=' + chatter + ' ' call += 'logfile=' + logfile kepmsg.log(logfile, call + '\n', verbose) # start time kepmsg.clock('KEPTRIAL started at', logfile, verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPTRIAL: ' + outfile + ' exists. Use clobber=yes' kepmsg.err(logfile, message, verbose) status = 1 # open input file if status == 0: instr, status = kepio.openfits(infile, 'readonly', logfile, verbose) # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr, file, logfile, verbose) # input data if status == 0: try: barytime = instr[1].data.field('barytime') except: barytime, status = kepio.readfitscol(infile, instr[1].data, 'time', logfile, verbose) if status == 0: signal, status = kepio.readfitscol(infile, instr[1].data, datacol, logfile, verbose) if status == 0: err, status = kepio.readfitscol(infile, instr[1].data, errcol, logfile, verbose) # remove infinite data from time series if status == 0: try: nanclean = instr[1].header['NANCLEAN'] except: incols = [barytime, signal, err] [barytime, signal, err] = kepstat.removeinfinlc(signal, incols) # set up plot if status == 0: plotLatex = True try: params = { 'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight': 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize } rcParams.update(params) except: print('WARNING: install latex for scientific plotting') plotLatex = False # frequency steps and Monte Carlo iterations if status == 0: deltaf = (fmax - fmin) / nfreq freq = [] pmax = [] trial = [] for i in range(ntrials): trial.append(i + 1) # adjust data within the error bars work1 = kepstat.randarray(signal, err) # determine FT power fr, power = kepfourier.ft(barytime, work1, fmin, fmax, deltaf, False) # determine peak in FT pmax.append(-1.0e30) for j in range(len(fr)): if (power[j] > pmax[-1]): pmax[-1] = power[j] f1 = fr[j] freq.append(f1) # plot stop-motion histogram pylab.ion() pylab.figure(1, figsize=[7, 10]) clf() pylab.axes([0.08, 0.08, 0.88, 0.89]) pylab.gca().xaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) n, bins, patches = pylab.hist(freq, bins=nfreq, range=[fmin, fmax], align='mid', rwidth=1, ec='#0000ff', fc='#ffff00', lw=2) # fit normal distribution to histogram x = zeros(len(bins)) for j in range(1, len(bins)): x[j] = (bins[j] + bins[j - 1]) / 2 pinit = numpy.array([float(i), freq[-1], deltaf]) if i > 3: n = array(n, dtype='float32') coeffs, errors, covar, sigma, chi2, dof, fit, plotx, ploty, status = \ kepfit.leastsquare('gauss',pinit,x[1:],n,None,logfile,verbose) fitfunc = kepfunc.gauss() f = arange(fmin, fmax, (fmax - fmin) / 100) fit = fitfunc(coeffs, f) pylab.plot(f, fit, 'r-', linewidth=2) if plotLatex: xlabel(r'Frequency (d$^{-1}$)', {'color': 'k'}) else: xlabel(r'Frequency (1/d)', {'color': 'k'}) ylabel('N', {'color': 'k'}) xlim(fmin, fmax) grid() # render plot if plot: if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() # period results if status == 0: p = 1.0 / coeffs[1] perr = p * coeffs[2] / coeffs[1] f1 = fmin f2 = fmax gotbin = False for i in range(len(n)): if n[i] > 0 and not gotbin: f1 = bins[i] gotbin = True gotbin = False for i in range(len(n) - 1, 0, -1): if n[i] > 0 and not gotbin: f2 = bins[i + 1] gotbin = True powave, powstdev = kepstat.stdev(pmax) # print result if status == 0: print(' best period: %.10f days (%.7f min)' % (p, p * 1440.0)) print(' 1-sigma period error: %.10f days (%.7f min)' % (perr, perr * 1440.0)) print(' search range: %.10f - %.10f days ' % (1.0 / fmax, 1.0 / fmin)) print(' 100%% confidence range: %.10f - %.10f days ' % (1.0 / f2, 1.0 / f1)) # print ' detection confidence: %.2f sigma' % (powave / powstdev) print(' number of trials: %d' % ntrials) print(' number of frequency bins: %d' % nfreq) # history keyword in output file if status == 0: status = kepkey.history(call, instr[0], outfile, logfile, verbose) ## write output file if status == 0: col1 = Column(name='TRIAL', format='J', array=trial) col2 = Column(name='FREQUENCY', format='E', unit='1/day', array=freq) col3 = Column(name='POWER', format='E', array=pmax) cols = ColDefs([col1, col2, col3]) instr.append(new_table(cols)) try: instr[-1].header.update('EXTNAME', 'TRIALS', 'Extension name') except: status = 1 try: instr[-1].header.update('SEARCHR1', 1.0 / fmax, 'Search range lower bound (days)') except: status = 1 try: instr[-1].header.update('SEARCHR2', 1.0 / fmin, 'Search range upper bound (days)') except: status = 1 try: instr[-1].header.update('NFREQ', nfreq, 'Number of frequency bins') except: status = 1 try: instr[-1].header.update('PERIOD', p, 'Best period (days)') except: status = 1 try: instr[-1].header.update('PERIODE', perr, '1-sigma period error (days)') except: status = 1 # instr[-1].header.update('DETNCONF',powave/powstdev,'Detection significance (sigma)') try: instr[-1].header.update('CONFIDR1', 1.0 / f2, 'Trial confidence lower bound (days)') except: status = 1 try: instr[-1].header.update('CONFIDR2', 1.0 / f1, 'Trial confidence upper bound (days)') except: status = 1 try: instr[-1].header.update('NTRIALS', ntrials, 'Number of trials') except: status = 1 instr.writeto(outfile) # close input file if status == 0: status = kepio.closefits(instr, logfile, verbose) ## end time if (status == 0): message = 'KEPTRAIL completed at' else: message = '\nKEPTRIAL aborted at' kepmsg.clock(message, logfile, verbose)
def kepextract(infile,maskfile,outfile,subback,clobber,verbose,logfile,status): # startup parameters status = 0 seterr(all="ignore") # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPEXTRACT -- ' call += 'infile='+infile+' ' call += 'maskfile='+maskfile+' ' call += 'outfile='+outfile+' ' backgr = 'n' if (subback): backgr = 'y' call += 'background='+backgr+ ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPEXTRACT started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPEXTRACT: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile,message,verbose) # open input file status = 0 instr = pyfits.open(infile,mode='readonly',memmap=True) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # input file data if status == 0: cards0 = instr[0].header.cards cards1 = instr[1].header.cards cards2 = instr[2].header.cards table = instr[1].data[:] maskmap = copy(instr[2].data) # input table data if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, time, status = \ kepio.readTPF(infile,'TIME',logfile,verbose) time = numpy.array(time,dtype='float64') if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, timecorr, status = \ kepio.readTPF(infile,'TIMECORR',logfile,verbose) timecorr = numpy.array(timecorr,dtype='float32') if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, cadenceno, status = \ kepio.readTPF(infile,'CADENCENO',logfile,verbose) cadenceno = numpy.array(cadenceno,dtype='int') if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, raw_cnts, status = \ kepio.readTPF(infile,'RAW_CNTS',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, flux, status = \ kepio.readTPF(infile,'FLUX',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, flux_err, status = \ kepio.readTPF(infile,'FLUX_ERR',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, flux_bkg, status = \ kepio.readTPF(infile,'FLUX_BKG',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, flux_bkg_err, status = \ kepio.readTPF(infile,'FLUX_BKG_ERR',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, cosmic_rays, status = \ kepio.readTPF(infile,'COSMIC_RAYS',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, quality, status = \ kepio.readTPF(infile,'QUALITY',logfile,verbose) quality = numpy.array(quality,dtype='int') if status == 0: try: pos_corr1 = numpy.array(table.field('POS_CORR1'),dtype='float64') # ---for FITS wave #2 except: pos_corr1 = empty(len(time)); pos_corr1[:] = numpy.nan # ---temporary before FITS wave #2 try: pos_corr2 = numpy.array(table.field('POS_CORR2'),dtype='float64') # ---for FITS wave #2 except: pos_corr2 = empty(len(time)); pos_corr2[:] = numpy.nan # ---temporary before FITS wave #2 # dummy columns for output file psf_centr1 = empty(len(time)); psf_centr1[:] = numpy.nan psf_centr1_err = empty(len(time)); psf_centr1_err[:] = numpy.nan psf_centr2 = empty(len(time)); psf_centr2[:] = numpy.nan psf_centr2_err = empty(len(time)); psf_centr2_err[:] = numpy.nan # mom_centr1 = empty(len(time)); mom_centr1[:] = numpy.nan mom_centr1_err = empty(len(time)); mom_centr1_err[:] = numpy.nan # mom_centr2 = empty(len(time)); mom_centr2[:] = numpy.nan mom_centr2_err = empty(len(time)); mom_centr2_err[:] = numpy.nan # read mask definition file if status == 0 and 'aper' not in maskfile.lower() and maskfile.lower() != 'all': maskx = array([],'int') masky = array([],'int') lines, status = kepio.openascii(maskfile,'r',logfile,verbose) for line in lines: line = line.strip().split('|') if len(line) == 6: y0 = int(line[3]) x0 = int(line[4]) line = line[5].split(';') for items in line: try: masky = append(masky,y0 + int(items.split(',')[0])) maskx = append(maskx,x0 + int(items.split(',')[1])) except: continue status = kepio.closeascii(lines,logfile,verbose) if len(maskx) == 0 or len(masky) == 0: message = 'ERROR -- KEPEXTRACT: ' + maskfile + ' contains no pixels.' status = kepmsg.err(logfile,message,verbose) # subimage physical WCS data if status == 0: crpix1p = cards2['CRPIX1P'].value crpix2p = cards2['CRPIX2P'].value crval1p = cards2['CRVAL1P'].value crval2p = cards2['CRVAL2P'].value cdelt1p = cards2['CDELT1P'].value cdelt2p = cards2['CDELT2P'].value # define new subimage bitmap... if status == 0 and 'aper' not in maskfile.lower() and maskfile.lower() != 'all': aperx = array([],'int') apery = array([],'int') aperb = array([],'int') for i in range(maskmap.shape[0]): for j in range(maskmap.shape[1]): aperx = append(aperx,crval1p + (j + 1 - crpix1p) * cdelt1p) apery = append(apery,crval2p + (i + 1 - crpix2p) * cdelt2p) if maskmap[i,j] == 0: aperb = append(aperb,0) else: aperb = append(aperb,1) maskmap[i,j] = 1 for k in range(len(maskx)): if aperx[-1] == maskx[k] and apery[-1] == masky[k]: aperb[-1] = 3 maskmap[i,j] = 3 # trap case where no aperture needs to be defined but pixel positions are still required for centroiding if status == 0 and maskfile.lower() == 'all': aperx = array([],'int') apery = array([],'int') for i in range(maskmap.shape[0]): for j in range(maskmap.shape[1]): aperx = append(aperx,crval1p + (j + 1 - crpix1p) * cdelt1p) apery = append(apery,crval2p + (i + 1 - crpix2p) * cdelt2p) # ...or use old subimage bitmap if status == 0 and 'aper' in maskfile.lower(): aperb = array([],'int') for i in range(maskmap.shape[0]): for j in range(maskmap.shape[1]): aperb = append(aperb,maskmap[i,j]) # ...or use all pixels if status == 0 and maskfile.lower() == 'all': aperb = array([],'int') for i in range(maskmap.shape[0]): for j in range(maskmap.shape[1]): if maskmap[i,j] == 0: aperb = append(aperb,0) else: aperb = append(aperb,3) maskmap[i,j] = 3 # subtract median pixel value for background? if status == 0: sky = array([],'float32') for i in range(len(time)): sky = append(sky,median(flux[i,:])) if not subback: sky[:] = 0.0 # legal mask defined? if status == 0: if len(aperb) == 0: message = 'ERROR -- KEPEXTRACT: no legal pixels within the subimage are defined.' status = kepmsg.err(logfile,message,verbose) # construct new table flux data if status == 0: naper = (aperb == 3).sum() ntime = len(time) sap_flux = array([],'float32') sap_flux_err = array([],'float32') sap_bkg = array([],'float32') sap_bkg_err = array([],'float32') raw_flux = array([],'float32') for i in range(len(time)): work1 = array([],'float64') work2 = array([],'float64') work3 = array([],'float64') work4 = array([],'float64') work5 = array([],'float64') for j in range(len(aperb)): if (aperb[j] == 3): work1 = append(work1,flux[i,j]-sky[i]) work2 = append(work2,flux_err[i,j]) work3 = append(work3,flux_bkg[i,j]) work4 = append(work4,flux_bkg_err[i,j]) work5 = append(work5,raw_cnts[i,j]) sap_flux = append(sap_flux,kepstat.sum(work1)) sap_flux_err = append(sap_flux_err,kepstat.sumerr(work2)) sap_bkg = append(sap_bkg,kepstat.sum(work3)) sap_bkg_err = append(sap_bkg_err,kepstat.sumerr(work4)) raw_flux = append(raw_flux,kepstat.sum(work5)) # construct new table moment data if status == 0: mom_centr1 = zeros(shape=(ntime)) mom_centr2 = zeros(shape=(ntime)) mom_centr1_err = zeros(shape=(ntime)) mom_centr2_err = zeros(shape=(ntime)) for i in range(ntime): xf = zeros(shape=(naper)) yf = zeros(shape=(naper)) f = zeros(shape=(naper)) xfe = zeros(shape=(naper)) yfe = zeros(shape=(naper)) fe = zeros(shape=(naper)) k = -1 for j in range(len(aperb)): if (aperb[j] == 3): k += 1 xf[k] = aperx[j] * flux[i,j] xfe[k] = aperx[j] * flux_err[i,j] yf[k] = apery[j] * flux[i,j] yfe[k] = apery[j] * flux_err[i,j] f[k] = flux[i,j] fe[k] = flux_err[i,j] xfsum = kepstat.sum(xf) yfsum = kepstat.sum(yf) fsum = kepstat.sum(f) xfsume = sqrt(kepstat.sum(square(xfe)) / naper) yfsume = sqrt(kepstat.sum(square(yfe)) / naper) fsume = sqrt(kepstat.sum(square(fe)) / naper) mom_centr1[i] = xfsum / fsum mom_centr2[i] = yfsum / fsum mom_centr1_err[i] = sqrt((xfsume / xfsum)**2 + ((fsume / fsum)**2)) mom_centr2_err[i] = sqrt((yfsume / yfsum)**2 + ((fsume / fsum)**2)) mom_centr1_err = mom_centr1_err * mom_centr1 mom_centr2_err = mom_centr2_err * mom_centr2 # construct new table PSF data if status == 0: psf_centr1 = zeros(shape=(ntime)) psf_centr2 = zeros(shape=(ntime)) psf_centr1_err = zeros(shape=(ntime)) psf_centr2_err = zeros(shape=(ntime)) modx = zeros(shape=(naper)) mody = zeros(shape=(naper)) k = -1 for j in range(len(aperb)): if (aperb[j] == 3): k += 1 modx[k] = aperx[j] mody[k] = apery[j] for i in range(ntime): modf = zeros(shape=(naper)) k = -1 guess = [mom_centr1[i], mom_centr2[i], nanmax(flux[i:]), 1.0, 1.0, 0.0, 0.0] for j in range(len(aperb)): if (aperb[j] == 3): k += 1 modf[k] = flux[i,j] args = (modx, mody, modf) ans = leastsq(kepfunc.PRFgauss2d,guess,args=args,xtol=1.0e-8,ftol=1.0e-4,full_output=True) s_sq = (ans[2]['fvec']**2).sum() / (ntime-len(guess)) psf_centr1[i] = ans[0][0] psf_centr2[i] = ans[0][1] try: psf_centr1_err[i] = sqrt(diag(ans[1] * s_sq))[0] except: psf_centr1_err[i] = numpy.nan try: psf_centr2_err[i] = sqrt(diag(ans[1] * s_sq))[1] except: psf_centr2_err[i] = numpy.nan # construct output primary extension if status == 0: hdu0 = pyfits.PrimaryHDU() for i in range(len(cards0)): if cards0[i].key not in hdu0.header.keys(): hdu0.header.update(cards0[i].key, cards0[i].value, cards0[i].comment) else: hdu0.header.cards[cards0[i].key].comment = cards0[i].comment status = kepkey.history(call,hdu0,outfile,logfile,verbose) outstr = HDUList(hdu0) # construct output light curve extension if status == 0: col1 = Column(name='TIME',format='D',unit='BJD - 2454833',array=time) col2 = Column(name='TIMECORR',format='E',unit='d',array=timecorr) col3 = Column(name='CADENCENO',format='J',array=cadenceno) col4 = Column(name='SAP_FLUX',format='E',array=sap_flux) col5 = Column(name='SAP_FLUX_ERR',format='E',array=sap_flux_err) col6 = Column(name='SAP_BKG',format='E',array=sap_bkg) col7 = Column(name='SAP_BKG_ERR',format='E',array=sap_bkg_err) col8 = Column(name='PDCSAP_FLUX',format='E',array=sap_flux) col9 = Column(name='PDCSAP_FLUX_ERR',format='E',array=sap_flux_err) col10 = Column(name='SAP_QUALITY',format='J',array=quality) col11 = Column(name='PSF_CENTR1',format='E',unit='pixel',array=psf_centr1) col12 = Column(name='PSF_CENTR1_ERR',format='E',unit='pixel',array=psf_centr1_err) col13 = Column(name='PSF_CENTR2',format='E',unit='pixel',array=psf_centr2) col14 = Column(name='PSF_CENTR2_ERR',format='E',unit='pixel',array=psf_centr2_err) col15 = Column(name='MOM_CENTR1',format='E',unit='pixel',array=mom_centr1) col16 = Column(name='MOM_CENTR1_ERR',format='E',unit='pixel',array=mom_centr1_err) col17 = Column(name='MOM_CENTR2',format='E',unit='pixel',array=mom_centr2) col18 = Column(name='MOM_CENTR2_ERR',format='E',unit='pixel',array=mom_centr2_err) col19 = Column(name='POS_CORR1',format='E',unit='pixel',array=pos_corr1) col20 = Column(name='POS_CORR2',format='E',unit='pixel',array=pos_corr2) col21 = Column(name='RAW_FLUX',format='E',array=raw_flux) cols = ColDefs([col1,col2,col3,col4,col5,col6,col7,col8,col9,col10,col11, \ col12,col13,col14,col15,col16,col17,col18,col19,col20,col21]) hdu1 = new_table(cols) hdu1.header.update('TTYPE1','TIME','column title: data time stamps') hdu1.header.update('TFORM1','D','data type: float64') hdu1.header.update('TUNIT1','BJD - 2454833','column units: barycenter corrected JD') hdu1.header.update('TDISP1','D12.7','column display format') hdu1.header.update('TTYPE2','TIMECORR','column title: barycentric-timeslice correction') hdu1.header.update('TFORM2','E','data type: float32') hdu1.header.update('TUNIT2','d','column units: days') hdu1.header.update('TTYPE3','CADENCENO','column title: unique cadence number') hdu1.header.update('TFORM3','J','column format: signed integer32') hdu1.header.update('TTYPE4','SAP_FLUX','column title: aperture photometry flux') hdu1.header.update('TFORM4','E','column format: float32') hdu1.header.update('TUNIT4','e-/s','column units: electrons per second') hdu1.header.update('TTYPE5','SAP_FLUX_ERR','column title: aperture phot. flux error') hdu1.header.update('TFORM5','E','column format: float32') hdu1.header.update('TUNIT5','e-/s','column units: electrons per second (1-sigma)') hdu1.header.update('TTYPE6','SAP_BKG','column title: aperture phot. background flux') hdu1.header.update('TFORM6','E','column format: float32') hdu1.header.update('TUNIT6','e-/s','column units: electrons per second') hdu1.header.update('TTYPE7','SAP_BKG_ERR','column title: ap. phot. background flux error') hdu1.header.update('TFORM7','E','column format: float32') hdu1.header.update('TUNIT7','e-/s','column units: electrons per second (1-sigma)') hdu1.header.update('TTYPE8','PDCSAP_FLUX','column title: PDC photometry flux') hdu1.header.update('TFORM8','E','column format: float32') hdu1.header.update('TUNIT8','e-/s','column units: electrons per second') hdu1.header.update('TTYPE9','PDCSAP_FLUX_ERR','column title: PDC flux error') hdu1.header.update('TFORM9','E','column format: float32') hdu1.header.update('TUNIT9','e-/s','column units: electrons per second (1-sigma)') hdu1.header.update('TTYPE10','SAP_QUALITY','column title: aperture photometry quality flag') hdu1.header.update('TFORM10','J','column format: signed integer32') hdu1.header.update('TTYPE11','PSF_CENTR1','column title: PSF fitted column centroid') hdu1.header.update('TFORM11','E','column format: float32') hdu1.header.update('TUNIT11','pixel','column units: pixel') hdu1.header.update('TTYPE12','PSF_CENTR1_ERR','column title: PSF fitted column error') hdu1.header.update('TFORM12','E','column format: float32') hdu1.header.update('TUNIT12','pixel','column units: pixel') hdu1.header.update('TTYPE13','PSF_CENTR2','column title: PSF fitted row centroid') hdu1.header.update('TFORM13','E','column format: float32') hdu1.header.update('TUNIT13','pixel','column units: pixel') hdu1.header.update('TTYPE14','PSF_CENTR2_ERR','column title: PSF fitted row error') hdu1.header.update('TFORM14','E','column format: float32') hdu1.header.update('TUNIT14','pixel','column units: pixel') hdu1.header.update('TTYPE15','MOM_CENTR1','column title: moment-derived column centroid') hdu1.header.update('TFORM15','E','column format: float32') hdu1.header.update('TUNIT15','pixel','column units: pixel') hdu1.header.update('TTYPE16','MOM_CENTR1_ERR','column title: moment-derived column error') hdu1.header.update('TFORM16','E','column format: float32') hdu1.header.update('TUNIT16','pixel','column units: pixel') hdu1.header.update('TTYPE17','MOM_CENTR2','column title: moment-derived row centroid') hdu1.header.update('TFORM17','E','column format: float32') hdu1.header.update('TUNIT17','pixel','column units: pixel') hdu1.header.update('TTYPE18','MOM_CENTR2_ERR','column title: moment-derived row error') hdu1.header.update('TFORM18','E','column format: float32') hdu1.header.update('TUNIT18','pixel','column units: pixel') hdu1.header.update('TTYPE19','POS_CORR1','column title: col correction for vel. abbern') hdu1.header.update('TFORM19','E','column format: float32') hdu1.header.update('TUNIT19','pixel','column units: pixel') hdu1.header.update('TTYPE20','POS_CORR2','column title: row correction for vel. abbern') hdu1.header.update('TFORM20','E','column format: float32') hdu1.header.update('TUNIT20','pixel','column units: pixel') hdu1.header.update('TTYPE21','RAW_FLUX','column title: raw aperture photometry flux') hdu1.header.update('TFORM21','E','column format: float32') hdu1.header.update('TUNIT21','e-/s','column units: electrons per second') hdu1.header.update('EXTNAME','LIGHTCURVE','name of extension') for i in range(len(cards1)): if (cards1[i].key not in hdu1.header.keys() and cards1[i].key[:4] not in ['TTYP','TFOR','TUNI','TDIS','TDIM','WCAX','1CTY', '2CTY','1CRP','2CRP','1CRV','2CRV','1CUN','2CUN', '1CDE','2CDE','1CTY','2CTY','1CDL','2CDL','11PC', '12PC','21PC','22PC']): hdu1.header.update(cards1[i].key, cards1[i].value, cards1[i].comment) outstr.append(hdu1) # construct output mask bitmap extension if status == 0: hdu2 = ImageHDU(maskmap) for i in range(len(cards2)): if cards2[i].key not in hdu2.header.keys(): hdu2.header.update(cards2[i].key, cards2[i].value, cards2[i].comment) else: hdu2.header.cards[cards2[i].key].comment = cards2[i].comment outstr.append(hdu2) # write output file if status == 0: outstr.writeto(outfile,checksum=True) # close input structure if status == 0: status = kepio.closefits(instr,logfile,verbose) # end time kepmsg.clock('KEPEXTRACT finished at',logfile,verbose)
def kepstitch(infiles,outfile,clobber,verbose,logfile,status): # startup parameters status = 0 lct = []; bjd = [] # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPSTITCH -- ' call += 'infiles='+infiles+' ' call += 'outfile='+outfile+' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPSTITCH started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # parse input file list infiles, status = kepio.parselist(infiles,logfile,verbose) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPSTITCH: ' + outfile + ' exists. Use clobber=yes' kepmsg.err(logfile,message,verbose) status = 1 # open output file if status == 0: outstr, status = kepio.openfits(infiles[0],'readonly',logfile,verbose) nrows1 = outstr[1].data.shape[0] # fudge non-compliant FITS keywords with no values if status == 0: outstr = kepkey.emptykeys(outstr,file,logfile,verbose) head0 = outstr[0].header head1 = outstr[1].header # open input files nfiles = 0 if status == 0: for infile in infiles: instr, status = kepio.openfits(infile,'readonly',logfile,verbose) # append table data if nfiles > 0: nrows2 = instr[1].data.shape[0] nrows = nrows1 + nrows2 outtab = pyfits.new_table(outstr[1].columns,nrows=nrows) for name in outstr[1].columns.names: try: outtab.data.field(name)[nrows1:]=instr[1].data.field(name) except: message = 'ERROR -- KEPSTITCH: column ' + name + ' missing from some files.' kepmsg.warn(logfile,message) pass outstr[1] = outtab outstr[0].header = head0 outstr[1].header = head1 nrows1 = nrows # start and stop times of data fitsvers = 1.0 lc_start, status = kepkey.get(infile,instr[1],'LC_START',logfile,verbose) lc_end, status = kepkey.get(infile,instr[1],'LC_END',logfile,verbose) try: startbjd = instr[1].header['STARTBJD'] except: startbjd, status = kepkey.get(infile,instr[1],'TSTART',logfile,verbose) fitsvers = 2.0 try: endbjd = instr[1].header['ENDBJD'] except: endbjd, status = kepkey.get(infile,instr[1],'TSTOP',logfile,verbose) fitsvers = 2.0 lct.append(lc_start); lct.append(lc_end) bjd.append(startbjd); bjd.append(endbjd) # close input files status = kepio.closefits(instr,logfile,verbose) nfiles += 1 # maxmimum and minimum times in file sample if status == 0: lc_start = kepstat.min(lct) lc_end = kepstat.max(lct) startbjd = kepstat.min(bjd) endbjd = kepstat.max(bjd) status = kepkey.change('LC_START',lc_start,outstr[1],outfile,logfile,verbose) status = kepkey.change('LC_END',lc_end,outstr[1],outfile,logfile,verbose) if fitsvers == 1.0: status = kepkey.change('STARTBJD',startbjd,outstr[1],outfile,logfile,verbose) status = kepkey.change('ENDBJD',endbjd,outstr[1],outfile,logfile,verbose) else: status = kepkey.change('TSTART',startbjd,outstr[1],outfile,logfile,verbose) status = kepkey.change('TSTOP',endbjd,outstr[1],outfile,logfile,verbose) # comment keyword in output file if status == 0: status = kepkey.comment(call,outstr[0],outfile,logfile,verbose) # close output file if status == 0: outstr.writeto(outfile) status = kepio.closefits(outstr,logfile,verbose) ## end time if (status == 0): message = 'KEPSTITCH completed at' else: message = '\nKEPSTITCH aborted at' kepmsg.clock(message,logfile,verbose)
def keppca(infile,maskfile,outfile,components,clobber,verbose,logfile,status): # startup parameters cmdLine=False status = 0 labelsize = 32 ticksize = 18 xsize = 16 ysize = 10 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 seterr(all="ignore") # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPPCA -- ' call += 'infile='+infile+' ' call += 'maskfile='+maskfile+' ' call += 'outfile='+outfile+' ' call += 'components='+components+' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber='+overwrite+ ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose='+chatter+' ' call += 'logfile='+logfile kepmsg.log(logfile,call+'\n',verbose) # start time kepmsg.clock('KEPPCA started at',logfile,verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile,logfile,verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPPCA: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile,message,verbose) # open input file status = 0 instr = pyfits.open(infile,mode='readonly',memmap=True) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status) # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # input file data if status == 0: cards0 = instr[0].header.ascardlist() cards1 = instr[1].header.ascardlist() cards2 = instr[2].header.ascardlist() table = instr[1].data[:] maskmap = copy(instr[2].data) # open TPF FITS file if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, barytime, status = \ kepio.readTPF(infile,'TIME',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, tcorr, status = \ kepio.readTPF(infile,'TIMECORR',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, cadno, status = \ kepio.readTPF(infile,'CADENCENO',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, fluxpixels, status = \ kepio.readTPF(infile,'FLUX',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, errpixels, status = \ kepio.readTPF(infile,'FLUX_ERR',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, flux_bkg, status = \ kepio.readTPF(infile,'FLUX_BKG',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, flux_bkg_err, status = \ kepio.readTPF(infile,'FLUX_BKG_ERR',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, qual, status = \ kepio.readTPF(infile,'QUALITY',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, pcorr1, status = \ kepio.readTPF(infile,'POS_CORR1',logfile,verbose) if status == 0: kepid, channel, skygroup, module, output, quarter, season, \ ra, dec, column, row, kepmag, xdim, ydim, pcorr2, status = \ kepio.readTPF(infile,'POS_CORR2',logfile,verbose) # read mask definition file if status == 0 and 'aper' not in maskfile.lower() and maskfile.lower() != 'all': maskx = array([],'int') masky = array([],'int') lines, status = kepio.openascii(maskfile,'r',logfile,verbose) for line in lines: line = line.strip().split('|') if len(line) == 6: y0 = int(line[3]) x0 = int(line[4]) line = line[5].split(';') for items in line: try: masky = numpy.append(masky,y0 + int(items.split(',')[0])) maskx = numpy.append(maskx,x0 + int(items.split(',')[1])) except: continue status = kepio.closeascii(lines,logfile,verbose) if len(maskx) == 0 or len(masky) == 0: message = 'ERROR -- KEPPCA: ' + maskfile + ' contains no pixels.' status = kepmsg.err(logfile,message,verbose) # subimage physical WCS data if status == 0: crpix1p = cards2['CRPIX1P'].value crpix2p = cards2['CRPIX2P'].value crval1p = cards2['CRVAL1P'].value crval2p = cards2['CRVAL2P'].value cdelt1p = cards2['CDELT1P'].value cdelt2p = cards2['CDELT2P'].value # define new subimage bitmap... if status == 0 and 'aper' not in maskfile.lower() and maskfile.lower() != 'all': aperx = numpy.array([],'int') apery = numpy.array([],'int') aperb = numpy.array([],'int') for i in range(maskmap.shape[0]): for j in range(maskmap.shape[1]): aperx = numpy.append(aperx,crval1p + (j + 1 - crpix1p) * cdelt1p) apery = numpy.append(apery,crval2p + (i + 1 - crpix2p) * cdelt2p) if maskmap[i,j] == 0: aperb = numpy.append(aperb,0) else: aperb = numpy.append(aperb,1) maskmap[i,j] = 1 for k in range(len(maskx)): if aperx[-1] == maskx[k] and apery[-1] == masky[k]: aperb[-1] = 3 maskmap[i,j] = 3 # ...or use old subimage bitmap if status == 0 and 'aper' in maskfile.lower(): aperb = array([],'int') for i in range(maskmap.shape[0]): for j in range(maskmap.shape[1]): aperb = numpy.append(aperb,maskmap[i,j]) # ...or use all pixels if status == 0 and maskfile.lower() == 'all': aperb = array([],'int') for i in range(maskmap.shape[0]): for j in range(maskmap.shape[1]): if maskmap[i,j] == 0: aperb = numpy.append(aperb,0) else: aperb = numpy.append(aperb,3) maskmap[i,j] = 3 # legal mask defined? if status == 0: if len(aperb) == 0: message = 'ERROR -- KEPPCA: no legal pixels within the subimage are defined.' status = kepmsg.err(logfile,message,verbose) # identify principal components to be combined if status == 0: pcaout = [] txt = components.strip().split(',') for work1 in txt: try: pcaout.append(int(work1.strip())) except: work2 = work1.strip().split('-') try: for work3 in range(int(work2[0]),int(work2[1]) + 1): pcaout.append(work3) except: message = 'ERROR -- KEPPCA: cannot understand principal component list requested' status = kepmsg.err(logfile,message,verbose) if status == 0: pcaout = set(sort(pcaout)) # flux pixel array size if status == 0: ntim = 0 time = numpy.array([],dtype='float64') timecorr = numpy.array([],dtype='float32') cadenceno = numpy.array([],dtype='int') pixseries = numpy.array([],dtype='float32') errseries = numpy.array([],dtype='float32') bkgseries = numpy.array([],dtype='float32') berseries = numpy.array([],dtype='float32') quality = numpy.array([],dtype='float32') pos_corr1 = numpy.array([],dtype='float32') pos_corr2 = numpy.array([],dtype='float32') nrows = numpy.size(fluxpixels,0) npix = numpy.size(fluxpixels,1) # remove NaN timestamps for i in range(nrows): if qual[i] == 0 and \ numpy.isfinite(barytime[i]) and \ numpy.isfinite(fluxpixels[i,ydim*xdim/2]) and \ numpy.isfinite(fluxpixels[i,1+ydim*xdim/2]): ntim += 1 time = numpy.append(time,barytime[i]) timecorr = numpy.append(timecorr,tcorr[i]) cadenceno = numpy.append(cadenceno,cadno[i]) pixseries = numpy.append(pixseries,fluxpixels[i]) errseries = numpy.append(errseries,errpixels[i]) bkgseries = numpy.append(bkgseries,flux_bkg[i]) berseries = numpy.append(berseries,flux_bkg_err[i]) quality = numpy.append(quality,qual[i]) pos_corr1 = numpy.append(pos_corr1,pcorr1[i]) pos_corr2 = numpy.append(pos_corr2,pcorr2[i]) pixseries = numpy.reshape(pixseries,(-1,npix)) errseries = numpy.reshape(errseries,(-1,npix)) bkgseries = numpy.reshape(bkgseries,(-1,npix)) berseries = numpy.reshape(berseries,(-1,npix)) # dummy columns for output file if status == 0: pdc_flux = numpy.empty(len(time)); pdc_flux[:] = numpy.nan pdc_flux_err = numpy.empty(len(time)); pdc_flux_err[:] = numpy.nan psf_centr1 = numpy.empty(len(time)); psf_centr1[:] = numpy.nan psf_centr1_err = numpy.empty(len(time)); psf_centr1_err[:] = numpy.nan psf_centr2 = numpy.empty(len(time)); psf_centr2[:] = numpy.nan psf_centr2_err = numpy.empty(len(time)); psf_centr2_err[:] = numpy.nan mom_centr1 = numpy.empty(len(time)); mom_centr1[:] = numpy.nan mom_centr1_err = numpy.empty(len(time)); mom_centr1_err[:] = numpy.nan mom_centr2 = numpy.empty(len(time)); mom_centr2[:] = numpy.nan mom_centr2_err = numpy.empty(len(time)); mom_centr2_err[:] = numpy.nan # subtract mean over time from each pixel in the mask if status == 0: nmask = 0 for i in range(npix): if aperb[i] == 3: nmask += 1 work1 = numpy.zeros((len(pixseries),nmask)) nmask = -1 for i in range(npix): if aperb[i] == 3: nmask += 1 maskedFlux = numpy.ma.masked_invalid(pixseries[:,i]) pixMean = numpy.mean(maskedFlux) if numpy.isfinite(pixMean): work1[:,nmask] = maskedFlux - pixMean else: work1[:,nmask] = numpy.zeros((ntim)) # calculate covariance matrix if status == 0: work2 = work1.T covariance = numpy.cov(work2) # determine eigenfunctions and eigenvectors of the covariance matrix if status == 0: [latent,coeff] = numpy.linalg.eig(covariance) # projection of the data in the new space if status == 0: score = numpy.dot(coeff.T,work2).T # construct new table data if status == 0: sap_flux = numpy.array([],'float32') sap_flux_err = numpy.array([],'float32') sap_bkg = numpy.array([],'float32') sap_bkg_err = numpy.array([],'float32') for i in range(len(time)): work1 = numpy.array([],'float64') work2 = numpy.array([],'float64') work3 = numpy.array([],'float64') work4 = numpy.array([],'float64') work5 = numpy.array([],'float64') for j in range(len(aperb)): if (aperb[j] == 3): work1 = numpy.append(work1,pixseries[i,j]) work2 = numpy.append(work2,errseries[i,j]) work3 = numpy.append(work3,bkgseries[i,j]) work4 = numpy.append(work4,berseries[i,j]) sap_flux = numpy.append(sap_flux,kepstat.sum(work1)) sap_flux_err = numpy.append(sap_flux_err,kepstat.sumerr(work2)) sap_bkg = numpy.append(sap_bkg,kepstat.sum(work3)) sap_bkg_err = numpy.append(sap_bkg_err,kepstat.sumerr(work4)) sap_mean = scipy.stats.stats.nanmean(sap_flux) # coadd principal components if status == 0: pca_flux = numpy.zeros((len(sap_flux))) for i in range(nmask): if (i + 1) in pcaout: pca_flux = pca_flux + score[:,i] pca_flux += sap_mean # construct output primary extension if status == 0: hdu0 = pyfits.PrimaryHDU() for i in range(len(cards0)): if cards0[i].key not in hdu0.header.ascardlist().keys(): hdu0.header.update(cards0[i].key, cards0[i].value, cards0[i].comment) else: hdu0.header.ascardlist()[cards0[i].key].comment = cards0[i].comment status = kepkey.history(call,hdu0,outfile,logfile,verbose) outstr = HDUList(hdu0) # construct output light curve extension if status == 0: col1 = Column(name='TIME',format='D',unit='BJD - 2454833',array=time) col2 = Column(name='TIMECORR',format='E',unit='d',array=timecorr) col3 = Column(name='CADENCENO',format='J',array=cadenceno) col4 = Column(name='SAP_FLUX',format='E',array=sap_flux) col5 = Column(name='SAP_FLUX_ERR',format='E',array=sap_flux_err) col6 = Column(name='SAP_BKG',format='E',array=sap_bkg) col7 = Column(name='SAP_BKG_ERR',format='E',array=sap_bkg_err) col8 = Column(name='PDCSAP_FLUX',format='E',array=pdc_flux) col9 = Column(name='PDCSAP_FLUX_ERR',format='E',array=pdc_flux_err) col10 = Column(name='SAP_QUALITY',format='J',array=quality) col11 = Column(name='PSF_CENTR1',format='E',unit='pixel',array=psf_centr1) col12 = Column(name='PSF_CENTR1_ERR',format='E',unit='pixel',array=psf_centr1_err) col13 = Column(name='PSF_CENTR2',format='E',unit='pixel',array=psf_centr2) col14 = Column(name='PSF_CENTR2_ERR',format='E',unit='pixel',array=psf_centr2_err) col15 = Column(name='MOM_CENTR1',format='E',unit='pixel',array=mom_centr1) col16 = Column(name='MOM_CENTR1_ERR',format='E',unit='pixel',array=mom_centr1_err) col17 = Column(name='MOM_CENTR2',format='E',unit='pixel',array=mom_centr2) col18 = Column(name='MOM_CENTR2_ERR',format='E',unit='pixel',array=mom_centr2_err) col19 = Column(name='POS_CORR1',format='E',unit='pixel',array=pos_corr1) col20 = Column(name='POS_CORR2',format='E',unit='pixel',array=pos_corr2) cols = ColDefs([col1,col2,col3,col4,col5,col6,col7,col8,col9,col10,col11, \ col12,col13,col14,col15,col16,col17,col18,col19,col20]) hdu1 = new_table(cols) hdu1.header.update('TTYPE1','TIME','column title: data time stamps') hdu1.header.update('TFORM1','D','data type: float64') hdu1.header.update('TUNIT1','BJD - 2454833','column units: barycenter corrected JD') hdu1.header.update('TDISP1','D12.7','column display format') hdu1.header.update('TTYPE2','TIMECORR','column title: barycentric-timeslice correction') hdu1.header.update('TFORM2','E','data type: float32') hdu1.header.update('TUNIT2','d','column units: days') hdu1.header.update('TTYPE3','CADENCENO','column title: unique cadence number') hdu1.header.update('TFORM3','J','column format: signed integer32') hdu1.header.update('TTYPE4','SAP_FLUX','column title: aperture photometry flux') hdu1.header.update('TFORM4','E','column format: float32') hdu1.header.update('TUNIT4','e-/s','column units: electrons per second') hdu1.header.update('TTYPE5','SAP_FLUX_ERR','column title: aperture phot. flux error') hdu1.header.update('TFORM5','E','column format: float32') hdu1.header.update('TUNIT5','e-/s','column units: electrons per second (1-sigma)') hdu1.header.update('TTYPE6','SAP_BKG','column title: aperture phot. background flux') hdu1.header.update('TFORM6','E','column format: float32') hdu1.header.update('TUNIT6','e-/s','column units: electrons per second') hdu1.header.update('TTYPE7','SAP_BKG_ERR','column title: ap. phot. background flux error') hdu1.header.update('TFORM7','E','column format: float32') hdu1.header.update('TUNIT7','e-/s','column units: electrons per second (1-sigma)') hdu1.header.update('TTYPE8','PDCSAP_FLUX','column title: PDC photometry flux') hdu1.header.update('TFORM8','E','column format: float32') hdu1.header.update('TUNIT8','e-/s','column units: electrons per second') hdu1.header.update('TTYPE9','PDCSAP_FLUX_ERR','column title: PDC flux error') hdu1.header.update('TFORM9','E','column format: float32') hdu1.header.update('TUNIT9','e-/s','column units: electrons per second (1-sigma)') hdu1.header.update('TTYPE10','SAP_QUALITY','column title: aperture photometry quality flag') hdu1.header.update('TFORM10','J','column format: signed integer32') hdu1.header.update('TTYPE11','PSF_CENTR1','column title: PSF fitted column centroid') hdu1.header.update('TFORM11','E','column format: float32') hdu1.header.update('TUNIT11','pixel','column units: pixel') hdu1.header.update('TTYPE12','PSF_CENTR1_ERR','column title: PSF fitted column error') hdu1.header.update('TFORM12','E','column format: float32') hdu1.header.update('TUNIT12','pixel','column units: pixel') hdu1.header.update('TTYPE13','PSF_CENTR2','column title: PSF fitted row centroid') hdu1.header.update('TFORM13','E','column format: float32') hdu1.header.update('TUNIT13','pixel','column units: pixel') hdu1.header.update('TTYPE14','PSF_CENTR2_ERR','column title: PSF fitted row error') hdu1.header.update('TFORM14','E','column format: float32') hdu1.header.update('TUNIT14','pixel','column units: pixel') hdu1.header.update('TTYPE15','MOM_CENTR1','column title: moment-derived column centroid') hdu1.header.update('TFORM15','E','column format: float32') hdu1.header.update('TUNIT15','pixel','column units: pixel') hdu1.header.update('TTYPE16','MOM_CENTR1_ERR','column title: moment-derived column error') hdu1.header.update('TFORM16','E','column format: float32') hdu1.header.update('TUNIT16','pixel','column units: pixel') hdu1.header.update('TTYPE17','MOM_CENTR2','column title: moment-derived row centroid') hdu1.header.update('TFORM17','E','column format: float32') hdu1.header.update('TUNIT17','pixel','column units: pixel') hdu1.header.update('TTYPE18','MOM_CENTR2_ERR','column title: moment-derived row error') hdu1.header.update('TFORM18','E','column format: float32') hdu1.header.update('TUNIT18','pixel','column units: pixel') hdu1.header.update('TTYPE19','POS_CORR1','column title: col correction for vel. abbern') hdu1.header.update('TFORM19','E','column format: float32') hdu1.header.update('TUNIT19','pixel','column units: pixel') hdu1.header.update('TTYPE20','POS_CORR2','column title: row correction for vel. abbern') hdu1.header.update('TFORM20','E','column format: float32') hdu1.header.update('TUNIT20','pixel','column units: pixel') hdu1.header.update('EXTNAME','LIGHTCURVE','name of extension') for i in range(len(cards1)): if (cards1[i].key not in hdu1.header.ascardlist().keys() and cards1[i].key[:4] not in ['TTYP','TFOR','TUNI','TDIS','TDIM','WCAX','1CTY', '2CTY','1CRP','2CRP','1CRV','2CRV','1CUN','2CUN', '1CDE','2CDE','1CTY','2CTY','1CDL','2CDL','11PC', '12PC','21PC','22PC']): hdu1.header.update(cards1[i].key, cards1[i].value, cards1[i].comment) outstr.append(hdu1) # construct output mask bitmap extension if status == 0: hdu2 = ImageHDU(maskmap) for i in range(len(cards2)): if cards2[i].key not in hdu2.header.ascardlist().keys(): hdu2.header.update(cards2[i].key, cards2[i].value, cards2[i].comment) else: hdu2.header.ascardlist()[cards2[i].key].comment = cards2[i].comment outstr.append(hdu2) # construct principal component table if status == 0: cols = [] for i in range(nmask): colname = 'PC' + str(i + 1) col = Column(name=colname,format='E',unit='e-/s',array=score[:,i]) cols.append(col) hdu3 = new_table(ColDefs(cols)) hdu3.header.update('EXTNAME','PRINCIPAL_COMPONENTS','name of extension') for i in range(nmask): hdu3.header.update('TTYPE' + str(i + 1),'PC' + str(i + 1),'column title: principal component number' + str(i + 1)) hdu3.header.update('TFORM' + str(i + 1),'E','column format: float32') hdu3.header.update('TUNIT' + str(i + 1),'e-/s','column units: electrons per sec') outstr.append(hdu3) # write output file if status == 0: outstr.writeto(outfile,checksum=True) # close input structure if status == 0: status = kepio.closefits(instr,logfile,verbose) # plotting defaults if status == 0: plotLatex = True try: params = {'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight' : 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize} rcParams.update(params) except: plotLatex = False if status == 0: pylab.figure(figsize=[xsize,ysize]) pylab.clf() # clean up x-axis unit if status == 0: intime0 = float(int(tstart / 100) * 100.0) ptime = time + bjdref - intime0 xlab = 'BJD $-$ %d' % intime0 # clean up y-axis units if status == 0: pout = copy(score) nrm = len(str(int(pout.max())))-1 pout = pout / 10**nrm ylab = '10$^%d$ e$^-$ s$^{-1}$' % nrm # data limits xmin = ptime.min() xmax = ptime.max() ymin = pout.min() ymax = pout.max() xr = xmax - xmin yr = ymax - ymin # plot window ax = pylab.axes([0.06,0.54,0.93,0.43]) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) # rotate y labels by 90 deg labels = ax.get_yticklabels() pylab.setp(labels, 'rotation', 90) pylab.setp(pylab.gca(),xticklabels=[]) # plot principal components for i in range(nmask): pylab.plot(ptime,pout[:,i],linestyle='-',linewidth=lwidth) if not plotLatex: ylab = '10**%d electrons/sec' % nrm ylabel(ylab, {'color' : 'k'}) grid() # plot ranges pylab.xlim(xmin-xr*0.01,xmax+xr*0.01) pylab.ylim(ymin-yr*0.01,ymax+yr*0.01) # plot output data ax = pylab.axes([0.06,0.09,0.93,0.43]) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False)) # rotate y labels by 90 deg labels = ax.get_yticklabels() setp(labels, 'rotation', 90) # clean up y-axis units if status == 0: pout = copy(pca_flux) nrm = len(str(int(pout.max())))-1 pout = pout / 10**nrm ylab = '10$^%d$ e$^-$ s$^{-1}$' % nrm # data limits ymin = pout.min() ymax = pout.max() yr = ymax - ymin ptime = numpy.insert(ptime,[0],[ptime[0]]) ptime = numpy.append(ptime,[ptime[-1]]) pout = numpy.insert(pout,[0],[0.0]) pout = numpy.append(pout,0.0) # plot time coadded principal component series pylab.plot(ptime[1:-1],pout[1:-1],color=lcolor,linestyle='-',linewidth=lwidth) pylab.fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha) pylab.xlabel(xlab, {'color' : 'k'}) pylab.ylabel(ylab, {'color' : 'k'}) pylab.grid() # plot ranges pylab.xlim(xmin-xr*0.01,xmax+xr*0.01) if ymin >= 0.0: pylab.ylim(ymin-yr*0.01,ymax+yr*0.01) else: pylab.ylim(1.0e-10,ymax+yr*0.01) # render plot if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() # stop time if status == 0: kepmsg.clock('KEPPCA ended at',logfile,verbose) return
def kepclip(infile, outfile, ranges, plot, plotcol, clobber, verbose, logfile, status, cmdLine=False): # startup parameters status = 0 labelsize = 32 ticksize = 24 xsize = 18 ysize = 10 lcolor = '#0000ff' lwidth = 1.0 fcolor = '#ffff00' falpha = 0.2 # log the call hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile, hashline, verbose) call = 'KEPCLIP -- ' call += 'infile=' + infile + ' ' call += 'outfile=' + outfile + ' ' call += 'ranges=' + ranges + ' ' plotit = 'n' if (plot): plotit = 'y' call += 'plot=' + plotit + ' ' call += 'plotcol=' + plotcol + ' ' overwrite = 'n' if (clobber): overwrite = 'y' call += 'clobber=' + overwrite + ' ' chatter = 'n' if (verbose): chatter = 'y' call += 'verbose=' + chatter + ' ' call += 'logfile=' + logfile kepmsg.log(logfile, call + '\n', verbose) # start time kepmsg.clock('KEPCLIP started at', logfile, verbose) # test log file logfile = kepmsg.test(logfile) # clobber output file if clobber: status = kepio.clobber(outfile, logfile, verbose) if kepio.fileexists(outfile): message = 'ERROR -- KEPCLIP: ' + outfile + ' exists. Use --clobber' status = kepmsg.err(logfile, message, verbose) # time ranges for region if status == 0: t1 = [] t2 = [] t1, t2, status = kepio.timeranges(ranges, logfile, verbose) # open input file if status == 0: instr, status = kepio.openfits(infile, 'readonly', logfile, verbose) tstart, tstop, bjdref, cadence, status = kepio.timekeys( instr, infile, logfile, verbose, status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr, file, logfile, verbose) # input data if status == 0: table = instr[1].data # read time and flux columns if status == 0: barytime, status = kepio.readtimecol(infile, table, logfile, verbose) if status == 0: flux, status = kepio.readfitscol(infile, table, plotcol, logfile, verbose) if status == 0: barytime = barytime + bjdref if 'flux' in plotcol.lower(): flux = flux / cadenom # filter input data table if status == 0: naxis2 = 0 work1 = array([], 'float64') work2 = array([], 'float32') for i in range(len(barytime)): if (numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i]) and flux[i] != 0.0): reject = False for j in range(len(t1)): if (barytime[i] >= t1[j] and barytime[i] <= t2[j]): reject = True if not reject: table[naxis2] = table[i] work1 = append(work1, barytime[i]) work2 = append(work2, flux[i]) naxis2 += 1 # comment keyword in output file if status == 0: status = kepkey.history(call, instr[0], outfile, logfile, verbose) # write output file if status == 0: instr[1].data = table[:naxis2] comment = 'NaN cadences removed from data' status = kepkey.new('NANCLEAN', True, comment, instr[1], outfile, logfile, verbose) instr.writeto(outfile) # clean up x-axis unit if status == 0: barytime0 = float(int(tstart / 100) * 100.0) barytime = work1 - barytime0 xlab = 'BJD $-$ %d' % barytime0 # clean up y-axis units if status == 0: try: nrm = len(str(int(work2.max()))) - 1 except: nrm = 0 flux = work2 / 10**nrm ylab = '10$^%d$ e$^-$ s$^{-1}$' % nrm # data limits xmin = barytime.min() xmax = barytime.max() ymin = flux.min() ymax = flux.max() xr = xmax - xmin yr = ymax - ymin # plotting arguments if status == 0 and plot: try: params = { 'backend': 'png', 'axes.linewidth': 2.5, 'axes.labelsize': labelsize, 'axes.font': 'sans-serif', 'axes.fontweight': 'bold', 'text.fontsize': 12, 'legend.fontsize': 12, 'xtick.labelsize': ticksize, 'ytick.labelsize': ticksize } rcParams.update(params) except: print('ERROR -- KEPCLIP: install latex for scientific plotting') status = 1 # clear window, plot box if status == 0 and plot: pylab.figure(figsize=[xsize, ysize]) pylab.clf() ax = pylab.axes([0.05, 0.1, 0.94, 0.88]) # force tick labels to be absolute rather than relative pylab.gca().xaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) pylab.gca().yaxis.set_major_formatter( pylab.ScalarFormatter(useOffset=False)) # rotate y labels by 90 deg labels = ax.get_yticklabels() setp(labels, 'rotation', 90, fontsize=12) # plot line data ltime = [barytime[0]] ldata = [flux[0]] for i in range(1, len(flux)): if (barytime[i - 1] > barytime[i] - 0.025): ltime.append(barytime[i]) ldata.append(flux[i]) else: ltime = array(ltime, dtype=float64) ldata = array(ldata, dtype=float64) pylab.plot(ltime, ldata, color=lcolor, linestyle='-', linewidth=lwidth) ltime = [] ldata = [] ltime = array(ltime, dtype=float64) ldata = array(ldata, dtype=float64) pylab.plot(ltime, ldata, color=lcolor, linestyle='-', linewidth=lwidth) # plot fill data barytime = insert(barytime, [0], [barytime[0]]) barytime = append(barytime, [barytime[-1]]) flux = insert(flux, [0], [0.0]) flux = append(flux, [0.0]) fill(barytime, flux, fc=fcolor, linewidth=0.0, alpha=falpha) xlim(xmin - xr * 0.01, xmax + xr * 0.01) if ymin - yr * 0.01 <= 0.0: ylim(1.0e-10, ymax + yr * 0.01) else: ylim(ymin - yr * 0.01, ymax + yr * 0.01) xlabel(xlab, {'color': 'k'}) ylabel(ylab, {'color': 'k'}) grid() # render plot if status == 0 and plot: if cmdLine: pylab.show() else: pylab.ion() pylab.plot([]) pylab.ioff() # close input file if status == 0: status = kepio.closefits(instr, logfile, verbose) # end time if (status == 0): message = 'KEPCLIP completed at' else: message = '\nKEPCLIP aborted at' kepmsg.clock(message, logfile, verbose)
def keptransitmodel(inputfile,datacol,errorcol,period_d,rprs,T0, Ecc,ars,inc,omega,LDparams,sec,norm=False, verbose=0,logfile='logfile.dat',status=0,cmdLine=False): #write to a logfile hashline = '----------------------------------------------------------------------------' kepmsg.log(logfile,hashline,verbose) call = 'KEPTRANSIT -- ' call += 'inputfile='+inputfile+' ' call += 'datacol='+str(datacol)+' ' call += 'errorcol='+str(errorcol)+' ' call += 'period_d='+str(period_d)+' ' call += 'rprs='+str(rprs)+' ' call += 'T0='+str(T0)+' ' call += 'Ecc='+str(Ecc)+' ' call += 'ars='+str(ars)+' ' call += 'inc='+str(inc)+' ' call += 'omega='+str(omega)+' ' call += 'LDparams='+str(LDparams)+' ' call += 'sec='+str(sec)+' ' #to finish # open input file if status == 0: instr, status = kepio.openfits(inputfile,'readonly',logfile,verbose) if status == 0: tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr, inputfile,logfile,verbose,status) if status == 0: try: work = instr[0].header['FILEVER'] cadenom = 1.0 except: cadenom = cadence # fudge non-compliant FITS keywords with no values if status == 0: instr = kepkey.emptykeys(instr,file,logfile,verbose) # read table structure if status == 0: table, status = kepio.readfitstab(inputfile,instr[1],logfile,verbose) # filter input data table if status == 0: try: nanclean = instr[1].header['NANCLEAN'] except: naxis2 = 0 try: for i in range(len(table.field(0))): if np.isfinite(table.field('barytime')[i]) and \ np.isfinite(table.field(datacol)[i]): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] except: for i in range(len(table.field(0))): if np.isfinite(table.field('time')[i]) and \ np.isfinite(table.field(datacol)[i]): table[naxis2] = table[i] naxis2 += 1 instr[1].data = table[:naxis2] # comment = 'NaN cadences removed from data' # status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose) # read table columns if status == 0: try: intime = instr[1].data.field('barytime') + 2.4e6 except: intime, status = kepio.readfitscol(inputfile,instr[1].data,'time',logfile,verbose) indata, status = kepio.readfitscol(inputfile,instr[1].data,datacol,logfile,verbose) inerr, status = kepio.readfitscol(inputfile,instr[1].data,errorcol,logfile,verbose) if status == 0: intime = intime + bjdref indata = indata / cadenom inerr = inerr / cadenom if status == 0 and norm: #first remove outliers before normalizing threesig = 3.* np.std(indata) mask = np.logical_and(indata< indata + threesig,indata > indata - threesig) #now normalize indata = indata / np.median(indata[mask]) if status == 0: #need to check if LD params are sensible and in right format LDparams = [float(i) for i in LDparams.split()] inc = inc * np.pi / 180. if status == 0: modelfit = tmod.lightcurve(intime,period_d,rprs,T0,Ecc, ars,inc,omega,LDparams,sec) if status == 0: phi, fluxfold, modelfold, errorfold, phiNotFold = fold_data(intime, modelfit,indata,inerr,period_d,T0) if status == 0: do_plot(intime,modelfit,indata,inerr,period_d,T0,cmdLine)