Beispiel #1
0
        def loss_func(y_true, y_pred_mll):
            y_true = y_true[:, 0]
            y_pred = y_pred_mll[:, 0]
            mll_pred = y_pred_mll[:, 1]

            mll_loss = K.mean(K.abs(mll_pred - 91.2))
            mll_sigma_loss = K.abs(K.std(mll_pred) - 7.67)

            return binary_crossentropy(
                y_true, y_pred) + c * mll_loss + c * mll_sigma_loss
Beispiel #2
0
 def _compute_cost_huber(self, q, a, r, t, q2):
     preds = slice_tensor_tensor(q, a)
     bootstrap = K.max if not self.use_mean else K.mean
     targets = r + (1 - t) * self.gamma * bootstrap(q2, axis=1)
     err = targets - preds
     cond = K.abs(err) > 1.0
     L2 = 0.5 * K.square(err)
     L1 = (K.abs(err) - 0.5)
     cost = tf.where(cond, L2, L1)
     return K.mean(cost)
Beispiel #3
0
def custom_mean_squared_loss(y_true, y_pred):
    print(y_true)
    print(y_pred)
    diff = K.abs(y_true - y_pred)
    angle_diff = K.minimum(diff[:, :, 6:], 360 - diff[:, :, 6:])
    error = tf.concat([diff[:, :, :6], angle_diff], axis=-1)

    return K.mean(K.square(error), axis=-1)
Beispiel #4
0
def confidence_reconstruction_loss(y_true, y_pred, mask, num_steps,
                                   gaussian_kernel_size, gaussian_kernel_std):
    mask_blurred = gaussian_utils.blur_mask(mask, num_steps,
                                            gaussian_kernel_size,
                                            gaussian_kernel_std)
    valid_mask = 1 - mask
    diff = K.abs(y_true - y_pred)
    l1 = K.mean(diff * valid_mask + diff * mask_blurred, axis=[1, 2, 3])
    return l1
Beispiel #5
0
        def loss_func(y_true, y_pred_mll):
            y_true = y_true[:, 0]
            y_pred = y_pred_mll[:, 0]
            mll_pred = y_pred_mll[:, 1]

            mll_loss = K.mean(K.abs(mll_pred - 91.2))

            #         pseudomll = K.random_normal_variable(shape=(1,1), mean=91.2, scale=2)
            #         mll_loss = K.mean((mll_pred - pseudomll)**2)

            return binary_crossentropy(y_true, y_pred) + c * mll_loss
def reconstruction_loss(y_true, y_pred):
    diff = K.abs(y_pred - y_true)
    l1 = K.mean(diff, axis=[1, 2, 3])
    return l1
Beispiel #7
0
 def jaccard(x):
     return x[0] * x[1] / (
         K.sum(x[0]**2, axis=1, keepdims=True) +
         K.sum(x[1]**2, axis=1, keepdims=True) -
         K.sum(K.abs(x[0] * x[1]), axis=1, keepdims=True))