Beispiel #1
0
 def test_batch_dot_shape(self):
     x_batch = KTF.ones(shape=(32, 20))
     y_batch = KTF.ones(shape=(32, 20))
     xy_batch_dot = KTF.batch_dot(x_batch, y_batch, axes=1)
     assert_allclose(KTF.eval(xy_batch_dot), np.ones((32, 1)) * 20, atol=1e-05)
     xy_batch_dot = KTF.batch_dot(x_batch, y_batch, axes=0)
     assert_allclose(KTF.eval(xy_batch_dot), np.ones((20, 1)) * 32, atol=1e-05)
     # making sure swapping axes when ndim == 2 works
     x_batch = KTF.ones(shape=(32, 20))
     y_batch = KTF.ones(shape=(20, 32))
     xy_batch_dot = KTF.batch_dot(x_batch, y_batch, axes=(0, 1))
     assert_allclose(KTF.eval(xy_batch_dot), np.ones((20, 1)) * 32, atol=1e-05)
     xy_batch_dot = KTF.batch_dot(x_batch, y_batch, axes=(1, 0))
     assert_allclose(KTF.eval(xy_batch_dot), np.ones((32, 1)) * 20, atol=1e-05)
Beispiel #2
0
 def test_batch_dot_shape(self):
     x_batch = KTF.ones(shape=(32, 20))
     y_batch = KTF.ones(shape=(32, 20))
     xy_batch_dot = KTF.batch_dot(x_batch, y_batch, axes=1)
     assert_allclose(KTF.eval(xy_batch_dot), np.ones((32, 1)) * 20, atol=1e-05)
     xy_batch_dot = KTF.batch_dot(x_batch, y_batch, axes=0)
     assert_allclose(KTF.eval(xy_batch_dot), np.ones((20, 1)) * 32, atol=1e-05)
     # making sure swapping axes when ndim == 2 works
     x_batch = KTF.ones(shape=(32, 20))
     y_batch = KTF.ones(shape=(20, 32))
     xy_batch_dot = KTF.batch_dot(x_batch, y_batch, axes=(0, 1))
     assert_allclose(KTF.eval(xy_batch_dot), np.ones((20, 1)) * 32, atol=1e-05)
     xy_batch_dot = KTF.batch_dot(x_batch, y_batch, axes=(1, 0))
     assert_allclose(KTF.eval(xy_batch_dot), np.ones((32, 1)) * 20, atol=1e-05)
Beispiel #3
0
def get_weightnorm_params_and_grads(p, g):
    ps = K.get_variable_shape(p)

    # construct weight scaler: V_scaler = g/||V||
    V_scaler_shape = (ps[-1], )  # assumes we're using tensorflow!
    V_scaler = K.ones(
        V_scaler_shape)  # init to ones, so effective parameters don't change

    # get V parameters = ||V||/g * W
    norm_axes = [i for i in range(len(ps) - 1)]
    V = p / tf.reshape(V_scaler, [1] * len(norm_axes) + [-1])

    # split V_scaler into ||V|| and g parameters
    V_norm = tf.sqrt(tf.reduce_sum(tf.square(V), norm_axes))
    g_param = V_scaler * V_norm

    # get grad in V,g parameters
    grad_g = tf.reduce_sum(g * V, norm_axes) / V_norm
    grad_V = tf.reshape(V_scaler, [1] * len(norm_axes) + [-1]) * \
             (g - tf.reshape(grad_g / V_norm, [1] * len(norm_axes) + [-1]) * V)

    return V, V_norm, V_scaler, g_param, grad_g, grad_V
Beispiel #4
0
 def test_batch_dot_shape(self):
     with pytest.raises(ValueError):
         x_batch = KTF.ones(shape=(32, 20))
         y_batch = KTF.ones(shape=(32, 20))
         xy_batch_dot = KTF.batch_dot(x_batch, y_batch, axes=1)
Beispiel #5
0
 def test_batch_dot_shape(self):
     with pytest.raises(ValueError):
         x_batch = KTF.ones(shape=(32, 20))
         y_batch = KTF.ones(shape=(32, 20))
         xy_batch_dot = KTF.batch_dot(x_batch, y_batch, axes=1)