def __init__(self, n_head, d_model, d_k=None, d_v=None, dropout_rate=0.1):
        super(MultiHeadAttention, self).__init__()
        self.n_head = n_head
        self.d_model = d_model
        self.d_k = d_k if d_k else int(d_model / n_head)
        self.d_v = d_v if d_v else int(d_model / n_head)

        d_k_w_init = normal(mean=0.,
                            stddev=np.sqrt(2.0 / (d_model + self.d_k)))
        d_v_w_init = normal(mean=0.,
                            stddev=np.sqrt(2.0 / (d_model + self.d_v)))

        self.w_qs = Dense(self.d_k * n_head,
                          use_bias=False,
                          kernel_initializer=d_k_w_init)
        self.w_ks = Dense(self.d_k * n_head,
                          use_bias=False,
                          kernel_initializer=d_k_w_init)
        self.w_vs = Dense(self.d_v * n_head,
                          use_bias=False,
                          kernel_initializer=d_v_w_init)

        self.attention = ScaledDotProductAttention(
            temperature=np.power(self.d_k, 0.5))
        self.layer_norm = LayerNorm(d_model)

        self.fc = Dense(self.d_model,
                        use_bias=False,
                        kernel_initializer='glorot_normal')
        self.dropout = Dropout(dropout_rate)
        self.shape_q, self.shape_k, self.shape_v = None, None, None
def model_function(input_shape, action_size, data_format, learning_rate):
    model = Sequential()

    model.add(
        Convolution2D(16, (3, 3),
                      strides=(3, 3),
                      name='first',
                      data_format=data_format,
                      padding='same',
                      activation='relu',
                      kernel_initializer=normal(stddev=0.01),
                      input_shape=input_shape))
    model.add(
        Convolution2D(32, (3, 3),
                      strides=(3, 3),
                      name='second',
                      data_format=data_format,
                      padding='same',
                      activation='relu',
                      kernel_initializer=normal(stddev=0.01)))
    model.add(Flatten(name='flat'))

    model.add(
        Dense(64,
              name='dense',
              activation='relu',
              kernel_initializer=normal(stddev=0.01)))
    model.add(
        Dense(action_size,
              name='out',
              activation='linear',
              kernel_initializer=normal(stddev=0.01)))
    model.compile(optimizer=optimizers.Adam(learning_rate), loss=cl.huber_loss)
    return model
Beispiel #3
0
def generator(d=128, image_shape=[64, 64, 3]):
    conv_options = {
        'kernel_initializer': initializers.normal(mean=0.0, stddev=0.02),
    }
    batchnor_options = {
        'gamma_initializer': initializers.normal(mean=0.1, stddev=0.02),
        'beta_initializer': initializers.constant(0),
        'momentum': 0.9
    }

    inputs = layers.Input([
        100,
    ])

    s_h, s_w = image_shape[0], image_shape[1]
    s_h2, s_w2 = conv_out_size_same(s_h, 2), conv_out_size_same(s_w, 2)
    s_h4, s_w4 = conv_out_size_same(s_h2, 2), conv_out_size_same(s_w2, 2)
    s_h8, s_w8 = conv_out_size_same(s_h4, 2), conv_out_size_same(s_w4, 2)
    s_h16, s_w16 = conv_out_size_same(s_h8, 2), conv_out_size_same(s_w8, 2)

    x = layers.Dense(s_h16 * s_w16 * d * 8, **conv_options)(inputs)
    x = layers.Reshape([s_h16, s_w16, d * 8])(x)
    x = layers.BatchNormalization(**batchnor_options)(x)
    x = layers.Activation("relu")(x)

    x = layers.Conv2DTranspose(filters=d * 4,
                               kernel_size=4,
                               strides=2,
                               padding="same",
                               **conv_options)(x)
    x = layers.BatchNormalization(**batchnor_options)(x)
    x = layers.Activation("relu")(x)

    x = layers.Conv2DTranspose(filters=d * 2,
                               kernel_size=4,
                               strides=2,
                               padding="same",
                               **conv_options)(x)
    x = layers.BatchNormalization(**batchnor_options)(x)
    x = layers.Activation("relu")(x)

    x = layers.Conv2DTranspose(filters=d,
                               kernel_size=4,
                               strides=2,
                               padding="same",
                               **conv_options)(x)
    x = layers.BatchNormalization(**batchnor_options)(x)
    x = layers.Activation("relu")(x)

    x = layers.Conv2DTranspose(filters=3,
                               kernel_size=4,
                               strides=2,
                               padding="same",
                               **conv_options)(x)
    x = layers.Activation("tanh")(x)

    model = Model(inputs, x)
    return model
 def create_actor_network(self, state_size, action_dim):
     print("Now we build the model")
     S = Input(shape=[state_size])
     h0 = Dense(HIDDEN1_UNITS, activation='relu')(S)
     h1 = Dense(HIDDEN2_UNITS, activation='relu')(h0)
     Steering = Dense(1, activation='tanh', kernel_initializer=normal(stddev=1e-4))(h1)
     Acceleration = Dense(1, activation='sigmoid', kernel_initializer=normal(stddev=1e-4))(h1)
     Brake = Dense(1, activation='sigmoid', kernel_initializer=normal(stddev=1e-4))(h1)
     V = Concatenate()([Steering, Acceleration, Brake])
     model = Model(inputs=S, outputs=V)
     return model, model.trainable_weights, S
Beispiel #5
0
def discriminator(d=128, image_shape=[64, 64, 3]):
    conv_options = {
        'kernel_initializer': initializers.normal(mean=0., stddev=0.02),
    }
    batchnor_options = {
        'gamma_initializer': initializers.normal(mean=0.1, stddev=0.02),
        'beta_initializer': initializers.constant(0),
        'momentum': 0.9
    }

    inputs = layers.Input(image_shape)
    x = layers.Conv2D(filters=d,
                      kernel_size=4,
                      strides=2,
                      padding="same",
                      **conv_options)(inputs)
    x = layers.LeakyReLU(0.2)(x)

    x = layers.Conv2D(filters=2 * d,
                      kernel_size=4,
                      strides=2,
                      padding="same",
                      **conv_options)(x)
    x = layers.BatchNormalization(**batchnor_options)(x)
    x = layers.LeakyReLU(0.2)(x)

    x = layers.Conv2D(filters=4 * d,
                      kernel_size=4,
                      strides=2,
                      padding="same",
                      **conv_options)(x)
    x = layers.BatchNormalization(**batchnor_options)(x)
    x = layers.LeakyReLU(0.2)(x)

    x = layers.Conv2D(filters=8 * d,
                      kernel_size=4,
                      strides=2,
                      padding="same",
                      **conv_options)(x)
    x = layers.BatchNormalization(**batchnor_options)(x)
    x = layers.LeakyReLU(0.2)(x)

    x = layers.Flatten()(x)

    x = layers.Dropout(0.3)(x)
    x = layers.Dense(1, **conv_options)(x)
    x = layers.Activation("sigmoid")(x)

    model = Model(inputs, x)
    return model
Beispiel #6
0
    def __init__(self,
                 input_dim,
                 output_dim,
                 embeddings_initializer=initializers.normal(stddev=1.0),
                 embeddings_regularizer=None,
                 activity_regularizer=None,
                 embeddings_constraint=None,
                 mask_zero=False,
                 input_length=None,
                 **kwargs):
        if 'input_shape' not in kwargs:
            if input_length:
                kwargs['input_shape'] = (input_length, )
            else:
                kwargs['input_shape'] = (None, )
        super(EmbeddingNorm, self).__init__(**kwargs)

        self.input_dim = input_dim
        self.output_dim = output_dim
        self.embeddings_initializer = initializers.get(embeddings_initializer)
        self.embeddings_regularizer = regularizers.get(embeddings_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.embeddings_constraint = constraints.get(embeddings_constraint)
        self.mask_zero = mask_zero
        self.supports_masking = mask_zero
        self.input_length = input_length
Beispiel #7
0
def Layer_deNovo(filters, kernel_size, strides=1, padding='valid', activation='sigmoid', lambda_pos =3e-3,
                 lambda_l1=3e-3, lambda_filter = 1e-8, name='denovo'):
    return Conv1D( filters, kernel_size, strides=strides, padding=padding, activation=activation,
                   kernel_initializer=normal(0,0.5), bias_initializer='zeros',
                   kernel_regularizer=lambda w: total_reg(w, lambda_filter, lambda_l1, lambda_pos, kernel_size),
                   kernel_constraint=InfoConstraint(), bias_constraint=NegativeConstraint(),
                   name=name)
Beispiel #8
0
def loadModel(target, source, sourceIndex, predLabel, path):
    mmdNetLayerSizes = [25, 25]
    l2_penalty = 1e-2
    init = lambda shape, name: initializers.normal(
        shape, scale=.1e-4, name=name)
    space_dim = target.X.shape[1]

    calibInput = Input(shape=(space_dim, ))
    block1_bn1 = BatchNormalization()(calibInput)
    block1_a1 = Activation('relu')(block1_bn1)
    block1_w1 = Dense(mmdNetLayerSizes[0],
                      activation='linear',
                      W_regularizer=l2(l2_penalty),
                      init=init)(block1_a1)
    block1_bn2 = BatchNormalization()(block1_w1)
    block1_a2 = Activation('relu')(block1_bn2)
    block1_w2 = Dense(space_dim,
                      activation='linear',
                      W_regularizer=l2(l2_penalty),
                      init=init)(block1_a2)
    block1_output = merge([block1_w2, calibInput], mode='sum')
    block2_bn1 = BatchNormalization()(block1_output)
    block2_a1 = Activation('relu')(block2_bn1)
    block2_w1 = Dense(mmdNetLayerSizes[1],
                      activation='linear',
                      W_regularizer=l2(l2_penalty),
                      init=init)(block2_a1)
    block2_bn2 = BatchNormalization()(block2_w1)
    block2_a2 = Activation('relu')(block2_bn2)
    block2_w2 = Dense(space_dim,
                      activation='linear',
                      W_regularizer=l2(l2_penalty),
                      init=init)(block2_a2)
    block2_output = merge([block2_w2, block1_output], mode='sum')
    block3_bn1 = BatchNormalization()(block2_output)
    block3_a1 = Activation('relu')(block3_bn1)
    block3_w1 = Dense(mmdNetLayerSizes[1],
                      activation='linear',
                      W_regularizer=l2(l2_penalty),
                      init=init)(block3_a1)
    block3_bn2 = BatchNormalization()(block3_w1)
    block3_a2 = Activation('relu')(block3_bn2)
    block3_w2 = Dense(space_dim,
                      activation='linear',
                      W_regularizer=l2(l2_penalty),
                      init=init)(block3_a2)
    block3_output = merge([block3_w2, block2_output], mode='sum')

    calibMMDNet = Model(input=calibInput, output=block3_output)

    calibMMDNet.load_weights(
        os.path.join(
            io.DeepLearningRoot(),
            'savemodels/' + path + '/ResNet' + str(sourceIndex) + '.h5'))

    return calibMMDNet
Beispiel #9
0
 def create_actor_network(self, state_size, action_dim):
     print("Now we build the model")
     S = Input(shape=[state_size])
     h0 = Dense(HIDDEN1_UNITS, activation='tanh')(S)
     h1 = Dense(HIDDEN2_UNITS, activation='tanh')(h0)
     V = Dense(1, activation='tanh', init=lambda shape, name: normal(shape, scale=1e-4, name=name))(h1)
     model = Model(input=S, output=V)
     adam = Adam(lr=self.LEARNING_RATE)
     model.compile(loss='mse', optimizer=adam)
     return model, model.trainable_weights, S
Beispiel #10
0
    def build(self, input_shape):  
        self._trainable_weights.append(prior_params) 

        self.kernel_mu = self.add_weight(name='kernel_mu', 
                                         shape=(input_shape[1], self.output_dim),
                                         initializer=initializers.normal(stddev=prior_sigma),
                                         trainable=True)
        self.bias_mu = self.add_weight(name='bias_mu', 
                                       shape=(self.output_dim,),
                                       initializer=initializers.normal(stddev=prior_sigma),
                                       trainable=True)
        self.kernel_rho = self.add_weight(name='kernel_rho', 
                                          shape=(input_shape[1], self.output_dim),
                                          initializer=initializers.constant(0.0),
                                          trainable=True)
        self.bias_rho = self.add_weight(name='bias_rho', 
                                        shape=(self.output_dim,),
                                        initializer=initializers.constant(0.0),
                                        trainable=True)
        super().build(input_shape)
 def create_actor_network(self, state_size, action_dim):
     print("Now we build the model")
     S = Input(shape=[state_size])
     h0 = Dense(HIDDEN1_UNITS, activation='relu')(S)
     h1 = Dense(HIDDEN2_UNITS, activation='relu')(h0)
     Steering = Dense(
         1,
         activation='tanh',
         init=lambda shape, name: normal(shape, scale=1e-4, name=name))(h1)
     Acceleration = Dense(
         1,
         activation='sigmoid',
         init=lambda shape, name: normal(shape, scale=1e-4, name=name))(h1)
     Brake = Dense(
         1,
         activation='sigmoid',
         init=lambda shape, name: normal(shape, scale=1e-4, name=name))(h1)
     V = merge([Steering, Acceleration, Brake], mode='concat')
     model = Model(input=S, output=V)
     return model, model.trainable_weights, S
 def build(self, input_shape):
     self.kernel_mu = self.add_weight(
         name='kernel_mu',
         shape=(input_shape[1], self.units),
         initializer=initializers.normal(stddev=self.init_sigma),
         trainable=True)
     self.bias_mu = self.add_weight(
         name='bias_mu',
         shape=(self.units, ),
         initializer=initializers.normal(stddev=self.init_sigma),
         trainable=True)
     self.kernel_rho = self.add_weight(
         name='kernel_rho',
         shape=(input_shape[1], self.units),
         initializer=initializers.constant(0.0),
         trainable=True)
     self.bias_rho = self.add_weight(name='bias_rho',
                                     shape=(self.units, ),
                                     initializer=initializers.constant(0.0),
                                     trainable=True)
     super().build(input_shape)
Beispiel #13
0
def constructMMD(target):

    mmdNetLayerSizes = [25, 25]
    l2_penalty = 1e-2
    init = lambda shape, name: initializers.normal(
        shape, scale=.1e-4, name=name)
    space_dim = target.X.shape[1]

    calibInput = Input(shape=(space_dim, ))
    block1_bn1 = BatchNormalization()(calibInput)
    block1_a1 = Activation('relu')(block1_bn1)
    block1_w1 = Dense(mmdNetLayerSizes[0],
                      activation='linear',
                      W_regularizer=l2(l2_penalty),
                      init=init)(block1_a1)
    block1_bn2 = BatchNormalization()(block1_w1)
    block1_a2 = Activation('relu')(block1_bn2)
    block1_w2 = Dense(space_dim,
                      activation='linear',
                      W_regularizer=l2(l2_penalty),
                      init=init)(block1_a2)
    block1_output = merge([block1_w2, calibInput], mode='sum')
    block2_bn1 = BatchNormalization()(block1_output)
    block2_a1 = Activation('relu')(block2_bn1)
    block2_w1 = Dense(mmdNetLayerSizes[1],
                      activation='linear',
                      W_regularizer=l2(l2_penalty),
                      init=init)(block2_a1)
    block2_bn2 = BatchNormalization()(block2_w1)
    block2_a2 = Activation('relu')(block2_bn2)
    block2_w2 = Dense(space_dim,
                      activation='linear',
                      W_regularizer=l2(l2_penalty),
                      init=init)(block2_a2)
    block2_output = merge([block2_w2, block1_output], mode='sum')
    block3_bn1 = BatchNormalization()(block2_output)
    block3_a1 = Activation('relu')(block3_bn1)
    block3_w1 = Dense(mmdNetLayerSizes[1],
                      activation='linear',
                      W_regularizer=l2(l2_penalty),
                      init=init)(block3_a1)
    block3_bn2 = BatchNormalization()(block3_w1)
    block3_a2 = Activation('relu')(block3_bn2)
    block3_w2 = Dense(space_dim,
                      activation='linear',
                      W_regularizer=l2(l2_penalty),
                      init=init)(block3_a2)
    block3_output = merge([block3_w2, block2_output], mode='sum')

    calibMMDNet = Model(input=calibInput, output=block3_output)

    return calibMMDNet, block3_output
Beispiel #14
0
def EmgLstmNet(input_shape,
               classes,
               n_dropout=0.,
               n_l2=0.0005,
               n_init='glorot_normal',
               lstm_units=[256]):

    if n_init == 'glorot_normal':
        kernel_init = initializers.glorot_normal(seed=0)
    elif n_init == 'glorot_uniform':
        kernel_init = initializers.glorot_uniform(seed=0)
    elif n_init == 'he_normal':
        kernel_init = initializers.he_normal(seed=0)
    elif n_init == 'he_uniform':
        kernel_init = initializers.he_uniform(seed=0)
    elif n_init == 'normal':
        kernel_init = initializers.normal(seed=0)
    elif n_init == 'uniform':
        kernel_init = initializers.uniform(seed=0)
    kernel_regl = regularizers.l2(n_l2)

    x_input = Input(input_shape)
    x = Masking(-10.0)(x_input)

    for i in range(len(lstm_units) - 1):
        x = LSTM(lstm_units[i],
                 dropout=n_dropout,
                 recurrent_dropout=n_dropout,
                 kernel_regularizer=kernel_regl,
                 kernel_initializer=kernel_init,
                 recurrent_regularizer=kernel_regl,
                 recurrent_initializer=kernel_init,
                 return_sequences=True,
                 input_shape=input_shape)(x)

    x = LSTM(lstm_units[-1],
             dropout=n_dropout,
             recurrent_dropout=n_dropout,
             kernel_regularizer=kernel_regl,
             kernel_initializer=kernel_init,
             recurrent_regularizer=kernel_regl,
             recurrent_initializer=kernel_init,
             return_sequences=False)(x)

    y = Dense(classes,
              activation='softmax',
              kernel_regularizer=kernel_regl,
              kernel_initializer=kernel_init)(x)

    model = Model(x_input, y)
    return model
Beispiel #15
0
def train_model(model_name, x_train, y_train):
    model = Sequential()
    model.add(Conv2D(64, kernel_size=4, activation='relu', input_shape=(27, 27, 3)))
    model.add(Conv2D(64, kernel_size=3, activation='relu', padding='same'))
    if model_name != 'nopool':
        model.add(MaxPooling2D())
    model.add(Conv2D(128, kernel_size=3, activation='relu', padding='same'))
    model.add(Conv2D(128, kernel_size=3, activation='relu', padding='same'))
    if model_name != 'nopool':
        model.add(MaxPooling2D())
    model.add(Flatten())
    model.add(Dense(512, activation='relu', kernel_initializer=normal(0, 0.01), kernel_regularizer=l2(0.0005)))
    model.add(Dropout(0.5))
    model.add(Dense(512, activation='relu', kernel_initializer=normal(0, 0.01), kernel_regularizer=l2(0.0005)))
    model.add(Dropout(0.5))
    model.add(Dense(2, activation='sigmoid', kernel_initializer=normal(0, 0.01)))

    model.compile(SGD(lr=0.001, momentum=0.9), loss='categorical_crossentropy', metrics=['accuracy'])

    #model = load_model('nopool_checkpoint.keras')
    model.fit(x_train, y_train, batch_size=256, epochs=19, callbacks=[LearningRateScheduler(schedule, verbose=1), ModelCheckpoint('data/'+model_name+'_checkpoint.keras')])
    model.save('data/'+model_name+'.keras')

    os.remove('data/'+model_name+'_checkpoint.keras')
Beispiel #16
0
def training_data(tmpdir_factory):
    import h5py
    from keras.layers import Dense
    from keras.models import Sequential
    from keras.optimizers import SGD
    from keras.initializers import glorot_normal, normal

    from deepreplay.datasets.parabola import load_data
    from deepreplay.callbacks import ReplayData

    filename = str(tmpdir_factory.mktemp('data').join('training.h5'))

    X, y = load_data(xlim=(-1, 1), n_points=1000, shuffle=True, seed=13)

    sgd = SGD(lr=0.05)

    glorot_initializer = glorot_normal(seed=42)
    normal_initializer = normal(seed=42)

    replaydata = ReplayData(X,
                            y,
                            filename=filename,
                            group_name='part1_activation_functions')

    np.random.seed(13)
    model = Sequential()
    model.add(
        Dense(input_dim=2,
              units=2,
              kernel_initializer=glorot_initializer,
              activation='sigmoid',
              name='hidden'))

    model.add(
        Dense(units=1,
              kernel_initializer=normal_initializer,
              activation='sigmoid',
              name='output'))

    model.compile(loss='binary_crossentropy', optimizer=sgd, metrics=['acc'])

    model.fit(X, y, epochs=20, batch_size=16, callbacks=[replaydata])

    training_data = h5py.File(filename, 'r')
    return training_data['part1_activation_functions']
Beispiel #17
0
 def __init__(self):
     self.width = 8
     self.number_of_pieces = 4  # normal, king for each colour
     self.constant_planes = 2  # colour, total_moves
     self.planes_per_board = self.number_of_pieces + self.constant_planes
     self.history_len = 4
     self.n_actions = 32 * 8
     self.game_logic = Draughts()
     self.n_kernels = 32
     self.shared_layers = 3
     self.kernel_size = (3, 3)
     self.initialiser = normal(mean=0, stddev=0.01)
     self.regularisation = 0.01
     self.crossentropy_constant = 1e-8
     self.model = self.make_uniform()
     self.policy_keys = [
         self.index_to_xy(index) for index in range(self.n_actions)
     ]
Beispiel #18
0
def training_data(tmpdir_factory):
    import h5py
    from keras.layers import Dense
    from keras.models import Sequential
    from keras.optimizers import SGD
    from keras.initializers import glorot_normal, normal

    from deepreplay.datasets.parabola import load_data
    from deepreplay.callbacks import ReplayData

    filename = str(tmpdir_factory.mktemp('data').join('training.h5'))

    X, y = load_data(xlim=(-1, 1), n_points=1000, shuffle=True, seed=13)

    sgd = SGD(lr=0.05)

    glorot_initializer = glorot_normal(seed=42)
    normal_initializer = normal(seed=42)

    replaydata = ReplayData(X, y, filename=filename, group_name='part1_activation_functions')

    model = Sequential()
    model.add(Dense(input_dim=2,
                    units=2,
                    kernel_initializer=glorot_initializer,
                    activation='sigmoid',
                    name='hidden'))

    model.add(Dense(units=1,
                    kernel_initializer=normal_initializer,
                    activation='sigmoid',
                    name='output'))

    model.compile(loss='binary_crossentropy',
                  optimizer=sgd,
                  metrics=['acc'])

    model.fit(X, y, epochs=20, batch_size=16, callbacks=[replaydata])

    training_data = h5py.File(filename, 'r')
    return training_data['part1_activation_functions']
 def __init__(
         self,
         input_dim,
         output_dim,
         kl_loss_weight,
         mask_zero=False,
         input_length=None,
         embeddings_initializer=initializers.normal(stddev=prior_sigma),
         **kwargs):
     self.input_dim = input_dim
     self.output_dim = output_dim
     self.kl_loss_weight = kl_loss_weight
     self.embeddings_initializer = embeddings_initializer
     self.mask_zero = mask_zero
     self.supports_masking = mask_zero
     self.input_length = input_length
     if 'input_shape' not in kwargs:
         if input_length:
             kwargs['input_shape'] = (input_length, )
         else:
             kwargs['input_shape'] = (None, )
     super(EmbeddingVariation, self).__init__(**kwargs)
Beispiel #20
0
def init_normal(shape, name=None):
    return initializers.normal(shape)
Beispiel #21
0
def init_normal(shape, name=None):
    return initializers.normal(shape)
Beispiel #22
0
    def __init__(self,
                 input_dim,
                 n_hidden_units,
                 n_hidden_layers,
                 rho=0.6,
                 nonlinearity='tanh',
                 init='gau',
                 bias_sigma=0.0,
                 weight_sigma=1.25,
                 input_layer=None,
                 flip=False,
                 output_dim=None):
        #if input_layer is not None:
        #    assert input_layer.output_shape[1] == input_dim
        self.input_dim = input_dim
        self.n_hidden_units = n_hidden_units
        self.n_hidden_layers = n_hidden_layers
        self.nonlinearity = nonlinearity
        self.bias_sigma = bias_sigma
        self.weight_sigma = weight_sigma
        self.input_layer = input_layer

        if output_dim is None:
            output_dim = n_hidden_units
        self.output_dim = output_dim

        model = Sequential()
        get_custom_objects().update({'hard_tanh': Activation(hard_tanh)})
        get_custom_objects().update({'erf2': Activation(erf2)})
        if input_layer is not None:
            model.add(input_layer)
        # model.add(Dropout(0.1, input_layer))

        #model.add(Activation('tanh'))
        for i in range(n_hidden_layers):
            nunits = n_hidden_units if i < n_hidden_layers - 1 else output_dim
            if flip:
                if nonlinearity == 'prelu':
                    model.add(
                        LeakyReLU(alpha=0.5,
                                  input_shape=(input_dim, ),
                                  name='a%d' % i))
                else:
                    model.add(
                        Activation(nonlinearity,
                                   input_shape=(input_dim, ),
                                   name='a%d' % i))

            # model.add(Activation(nonlinearity, input_dim=1000, name='a%d'%i))
                model.add(Dropout(1 - rho))  # dropout = 1 - rho
                if init == 'gau':
                    model.add(
                        Dense(nunits,
                              name='d%d' % i,
                              kernel_initializer=normal(
                                  mean=0.0,
                                  stddev=weight_sigma * 1.0 /
                                  np.sqrt(n_hidden_units)),
                              bias_initializer=normal(mean=0.0,
                                                      stddev=bias_sigma)))
                if init == 'orth':
                    model.add(
                        Dense(nunits,
                              name='d%d' % i,
                              kernel_initializer=orthogonal(gain=weight_sigma),
                              bias_initializer=normal(mean=0.0,
                                                      stddev=bias_sigma)))
            # model.add(Dense(nunits, name='d%d'%i))
            else:
                model.add(
                    Dense(nunits, input_shape=(input_dim, ), name='%d' % i))
                if i < n_hidden_layers - 1 or self.output_dim == self.n_hidden_units:
                    model.add(Activation(nonlinearity, name='a%d' % i))
                else:
                    # Theano is optimizing out the nonlinearity if it can which is breaking shit
                    # Give it something that it won't optimize out.
                    model.add(
                        Activation(lambda x: T.minimum(x, 999999.999),
                                   name='a%d' % i))

        model.build()
        self.model = model
        # print(self.hs)

        self.weights = model.get_weights()
        self.dense_layers = filter(lambda x: x.name.startswith('d'),
                                   model.layers)
        self.activ_layers = filter(lambda x: x.name.startswith('a'),
                                   model.layers)

        self.hs = [h.output for h in self.dense_layers]
        self.ac = [b.output for b in self.activ_layers]

        self.f_acts = self.f_jac = self.f_jac_hess = self.f_act = None
        vec = K.ones_like(self.model.input)
def initNormal():
    return initializers.normal(stddev=0.02)
Beispiel #24
0
    def build(self, input_shape):

        # Initialize the fixed dictionary
        d = np.linspace(-self.boundary, self.boundary,
                        self.D).astype(np.float32).reshape(-1, 1)

        if self.conv:
            self.dict = self.add_weight(name='dict',
                                        shape=(1, 1, 1, 1, self.D),
                                        initializer='uniform',
                                        trainable=False)
            K.set_value(self.dict, d.reshape(1, 1, 1, 1, -1))
        else:
            self.dict = self.add_weight(name='dict',
                                        shape=(1, 1, self.D),
                                        initializer='uniform',
                                        trainable=False)
            K.set_value(self.dict, d.reshape(1, 1, -1))

        if self.kernel == 'gaussian':
            self.kernel_fcn = self.gaussian_kernel
            # Rule of thumb for gamma
            interval = (d[1] - d[0])
            sigma = 2 * interval  # empirically chosen
            self.gamma = 0.5 / np.square(sigma)
        elif self.kernel == 'softplus':
            self.kernel_fcn = self.softplus_kernel
        else:
            self.kernel_fcn = self.relu_kernel

        # Mixing coefficients
        if self.conv:
            self.alpha = self.add_weight(name='alpha',
                                         shape=(1, 1, 1, self.num_parameters,
                                                self.D),
                                         initializer=normal(0, 0.4),
                                         trainable=True)
        else:
            self.alpha = self.add_weight(name='alpha',
                                         shape=(1, self.num_parameters,
                                                self.D),
                                         initializer=normal(0, 0.4),
                                         trainable=True)

        # Optional initialization with kernel ridge regression
        if self.init_fcn is not None:
            if self.kernel == 'gaussian':
                kernel_matrix = np.exp(-self.gamma * (d - d.T)**2)
            elif self.kernel == 'softplus':
                kernel_matrix = np.log(np.exp(d - d.T) + 1.0)
            else:
                raise ValueError(
                    'Cannot perform kernel ridge regression with ReLU kernel (singular matrix)'
                )

            alpha_init = np.linalg.solve(kernel_matrix + 1e-5 * np.eye(self.D),
                                         self.init_fcn(d)).reshape(-1)
            if self.conv:
                K.set_value(
                    self.alpha,
                    np.repeat(alpha_init.reshape(1, 1, 1, 1, -1),
                              self.num_parameters,
                              axis=3))
            else:
                K.set_value(
                    self.alpha,
                    np.repeat(alpha_init.reshape(1, 1, -1),
                              self.num_parameters,
                              axis=1))

        super(KAF, self).build(input_shape)
def gaussian_init(shape, name=None, dim_ordering=None):
    return initializers.normal(shape,
                               scale=0.001,
                               name=name,
                               dim_ordering=dim_ordering)
def normal(shape, name=None):
    if keras.__version__.startswith("1"):
        return initializations.normal(shape, scale=0.05, name=name)
    else:
        return initializers.normal(shape, scale=0.05, name=name)
Beispiel #27
0
def calibrate(target, source, sourceIndex, predLabel, path):
    
    mmdNetLayerSizes = [25, 25]
    l2_penalty = 1e-2
    init = lambda shape, name:initializers.normal(shape,
                                                     scale=.1e-4, name=name)
    space_dim = target.X.shape[1]
    
    calibInput = Input(shape=(space_dim,))
    block1_bn1 = BatchNormalization()(calibInput)
    block1_a1 = Activation('relu')(block1_bn1)
    block1_w1 = Dense(mmdNetLayerSizes[0], activation='linear',
                      W_regularizer=l2(l2_penalty), init = init)(block1_a1) 
    block1_bn2 = BatchNormalization()(block1_w1)
    block1_a2 = Activation('relu')(block1_bn2)
    block1_w2 = Dense(space_dim, activation='linear',
                      W_regularizer=l2(l2_penalty), init = init)(block1_a2) 
    block1_output = merge([block1_w2, calibInput], mode = 'sum')
    block2_bn1 = BatchNormalization()(block1_output)
    block2_a1 = Activation('relu')(block2_bn1)
    block2_w1 = Dense(mmdNetLayerSizes[1], activation='linear',
                      W_regularizer=l2(l2_penalty), init = init)(block2_a1) 
    block2_bn2 = BatchNormalization()(block2_w1)
    block2_a2 = Activation('relu')(block2_bn2)
    block2_w2 = Dense(space_dim, activation='linear',
                      W_regularizer=l2(l2_penalty), init = init)(block2_a2) 
    block2_output = merge([block2_w2, block1_output], mode = 'sum')
    block3_bn1 = BatchNormalization()(block2_output)
    block3_a1 = Activation('relu')(block3_bn1)
    block3_w1 = Dense(mmdNetLayerSizes[1], activation='linear',
                      W_regularizer=l2(l2_penalty), init = init)(block3_a1) 
    block3_bn2 = BatchNormalization()(block3_w1)
    block3_a2 = Activation('relu')(block3_bn2)
    block3_w2 = Dense(space_dim, activation='linear',
                      W_regularizer=l2(l2_penalty), init = init)(block3_a2) 
    block3_output = merge([block3_w2, block2_output], mode = 'sum')
    
    calibMMDNet = Model(input=calibInput, output=block3_output)

    n = target.X.shape[0]
    p = np.random.permutation(n)
    toTake = p[range(int(.2*n))] 
    targetXMMD = target.X[toTake]
    targetYMMD = target.y[toTake]
    
    targetXMMD = targetXMMD[targetYMMD!=0]
    targetYMMD = targetYMMD[targetYMMD!=0]
    
    targetYMMD = np.reshape(targetYMMD, (-1, 1))

    n = source.X.shape[0]
    p = np.random.permutation(n)
    toTake = p[range(int(.2*n))] 
    sourceXMMD = source.X[toTake]
    sourceYMMD = predLabel[toTake]
    
    sourceXMMD = sourceXMMD[sourceYMMD!=0]
    sourceYMMD = sourceYMMD[sourceYMMD!=0]
    
    sourceYMMD = np.reshape(sourceYMMD, (-1, 1))

    lrate = LearningRateScheduler(step_decay)
    optimizer = opt.rmsprop(lr=0.0)
    calibMMDNet.compile(optimizer = optimizer, loss = lambda y_true,y_pred: 
       cf.MMD(block3_output, targetXMMD, 
            MMDTargetValidation_split = 0.1).KerasCost(y_true,y_pred))

    sourceLabels = np.zeros(sourceXMMD.shape[0])

    calibMMDNet.fit(sourceXMMD,sourceLabels,nb_epoch=500,
            batch_size=1000,validation_split=0.1,verbose=0,
            callbacks=[lrate,mn.monitorMMD(sourceXMMD, sourceYMMD, targetXMMD,
                                           targetYMMD, calibMMDNet.predict),
              cb.EarlyStopping(monitor='val_loss',patience=20,mode='auto')])
    plt.close('all')
    calibMMDNet.save_weights(os.path.join(io.DeepLearningRoot(),
                                          'savemodels/' + path + '/ResNet'+ str(sourceIndex)+'.h5'))
    calibrateSource = Sample(calibMMDNet.predict(source.X),
                                             source.y)
    calibMMDNet = None
    return calibrateSource
from deepreplay.plot import compose_animations, compose_plots

import matplotlib.pyplot as plt
import pandas as pd
from sklearn.preprocessing import StandardScaler

# Fetch the data file from the Data Folder at https://archive.ics.uci.edu/ml/datasets/spambase

group_name = 'spam'

df = pd.read_csv('spambase.data', header=None)
X, y = df.iloc[:, :57].values, df.iloc[:, 57].values
X = StandardScaler().fit_transform(X)

he_initializer = he_normal(seed=42)
normal_initializer = normal(seed=42)

replaydata = ReplayData(X, y, filename='spambase_dataset.h5', group_name=group_name)

model = Sequential()
model.add(Dense(input_dim=57,
                units=10,
                kernel_initializer=he_initializer,
                activation='tanh'))
model.add(Dense(units=2,
                kernel_initializer=normal_initializer,
                activation='linear',
                name='hidden'))
model.add(Dense(units=1,
                kernel_initializer=normal_initializer,
                activation='sigmoid',
Beispiel #29
0
def AtzoriNet(input_shape,
              classes,
              n_pool='average',
              n_dropout=0.,
              n_l2=0.0005,
              n_init='glorot_normal',
              batch_norm=False):
    """ Creates the Deep Neural Network architecture described in the paper of Manfredo Atzori:
    Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013051/
    
    Arguments:
        input_shape -- tuple, dimensions of the input in the form (height, width, channels)
        classes -- integer, number of classes to be classified, defines the dimension of the softmax unit
        n_pool -- string, pool method to be used {'max', 'average'}
        n_dropout -- float, rate of dropping units
        n_l2 -- float, ampunt of weight decay regularization
        n_init -- string, type of kernel initializer {'glorot_normal', 'glorot_uniform', 'he_normal', 'he_uniform', 'normal', 'uniform'}
        batch_norm -- boolean, whether BatchNormalization is applied to the input
    
    Returns:
        model -- keras.models.Model (https://keras.io)
    """

    if n_init == 'glorot_normal':
        kernel_init = initializers.glorot_normal(seed=0)
    elif n_init == 'glorot_uniform':
        kernel_init = initializers.glorot_uniform(seed=0)
    elif n_init == 'he_normal':
        kernel_init = initializers.he_normal(seed=0)
    elif n_init == 'he_uniform':
        kernel_init = initializers.he_uniform(seed=0)
    elif n_init == 'normal':
        kernel_init = initializers.normal(seed=0)
    elif n_init == 'uniform':
        kernel_init = initializers.uniform(seed=0)
    # kernel_init = n_init
    kernel_regl = regularizers.l2(n_l2)

    ## Block 0 [Input]
    X_input = Input(input_shape, name='b0_input')
    X = X_input
    if batch_norm:
        X = BatchNormalization()(X)

    ## Block 1 [Pad -> Conv -> ReLU -> Dropout]
    X = ZeroPadding2D((0, 4))(X)
    X = Conv2D(32, (1, 10),
               padding='valid',
               kernel_regularizer=kernel_regl,
               kernel_initializer=kernel_init,
               name='b1_conv2d_32_1x10')(X)
    X = Activation('relu', name='b1_relu')(X)
    X = Dropout(n_dropout, name='b1_dropout')(X)

    ## Block 2 [Pad -> Conv -> ReLU -> -> Dropout -> Pool]
    X = ZeroPadding2D((1, 1))(X)
    X = Conv2D(32, (3, 3),
               padding='valid',
               kernel_regularizer=kernel_regl,
               kernel_initializer=kernel_init,
               name='b2_conv2d_32_3x3')(X)
    X = Activation('relu', name='b2_relu')(X)
    X = Dropout(n_dropout, name='b2_dropout')(X)
    if n_pool == 'max':
        X = MaxPooling2D((3, 3), strides=(3, 3), name='b2_pool')(X)
    else:
        X = AveragePooling2D((3, 3), strides=(3, 3), name='b2_pool')(X)

    ## Block 3 [Pad -> Conv -> ReLU -> Dropout -> Pool]
    X = ZeroPadding2D((2, 2))(X)
    X = Conv2D(64, (5, 5),
               padding='valid',
               kernel_regularizer=kernel_regl,
               kernel_initializer=kernel_init,
               name='b3_conv2d_64_5x5')(X)
    X = Activation('relu', name='b3_relu')(X)
    X = Dropout(n_dropout, name='b3_dropout')(X)
    if n_pool == 'max':
        X = MaxPooling2D((3, 3), strides=(3, 3), name='b3_pool')(X)
    else:
        X = AveragePooling2D((3, 3), strides=(3, 3), name='b3_pool')(X)

    ## Block 4 [Pad -> Conv -> ReLU -> Dropout]
    X = ZeroPadding2D((2, 0))(X)
    X = Conv2D(64, (5, 1),
               padding='valid',
               kernel_regularizer=kernel_regl,
               kernel_initializer=kernel_init,
               name='b4_conv2d_64_5x1')(X)
    X = Activation('relu', name='b4_relu')(X)
    X = Dropout(n_dropout, name='b4_dropout')(X)

    ## Block 5 [Pad -> Conv -> Softmax]
    X = Conv2D(classes, (1, 1),
               padding='same',
               kernel_regularizer=kernel_regl,
               kernel_initializer=kernel_init,
               name='b5_conv2d_{}_1x1'.format(classes))(X)
    X = Activation('softmax', name='b5_soft')(X)
    X = Reshape((-1, ), name='b5_reshape')(X)

    model = Model(inputs=X_input, outputs=X, name='AtzoriNet')

    return model
Beispiel #30
0
def init_normal(shape, name=None):
    return initializers.normal(shape, scale=0.01, name=name)
X_train = X_train.reshape(60000, 784)


# Function for initializing network weights
def initNormal():
    return initializers.normal(stddev=0.02)


# Optimizer
adam = Adam(lr=0.0002, beta_1=0.5)

generator = Sequential()
generator.add(
    Dense(256,
          input_dim=randomDim,
          kernel_initializer=initializers.normal(stddev=0.02)))
generator.add(LeakyReLU(0.2))
generator.add(Dense(512))
generator.add(LeakyReLU(0.2))
generator.add(Dense(1024))
generator.add(LeakyReLU(0.2))
generator.add(Dense(784, activation='tanh'))
generator.compile(loss='binary_crossentropy', optimizer=adam)

discriminator = Sequential()
discriminator.add(
    Dense(1024,
          input_dim=784,
          kernel_initializer=initializers.normal(stddev=0.02)))
discriminator.add(LeakyReLU(0.2))
discriminator.add(Dropout(0.3))
Beispiel #32
0
def init_normal(shape):
    return initializers.normal(shape, initializers.VarianceScaling(scale=0.01))
from deepreplay.callbacks import ReplayData
from deepreplay.replay import Replay
from deepreplay.plot import compose_animations, compose_plots

from sklearn.datasets import make_circles

import matplotlib.pyplot as plt

group_name = 'circles'

X, y = make_circles(n_samples=2000, random_state=27, noise=0.03)

sgd = SGD(lr=0.02)

he_initializer = he_normal(seed=42)
normal_initializer = normal(seed=42)

replaydata = ReplayData(X,
                        y,
                        filename='circles_dataset.h5',
                        group_name=group_name)

model = Sequential()
model.add(Dense(input_dim=2, units=5, kernel_initializer=he_initializer))
model.add(Activation('relu'))
model.add(Dense(units=3, kernel_initializer=he_initializer))
model.add(Activation('relu'))
model.add(
    Dense(units=1,
          kernel_initializer=normal_initializer,
          activation='sigmoid',