def buildnetwork(self):
        model = Sequential()
        model.add(lstm(20, dropout=0.2,input_shape = (self.seq_len, self.n_feature)))
        model.add(Dense(1, activation=None))
        model.compile(loss='mean_squared_error', optimizer=Adagrad(lr=0.002,clipvalue=10), metrics=['mean_squared_error'])

        return model
Beispiel #2
0
	def buildModel(shape, lstm_layers, lstm_units, dense_layers, dense_units):
		print(shape)
		model = Sequential()
		# LSTM layers		
		for l in range(lstm_layers):
			if l == 0:
				this_shape = (shape[1], shape[2])
			else:
				this_shape = (lstm_units, 1)

			if l == lstm_layers - 1:
				this_return = False
			else:
				this_return = True

			model.add(lstm(lstm_units, input_shape=this_shape, return_sequences=this_return))				
			model.add(Activation('relu'))

		# Dense layers
		for l in range(dense_layers):				
			model.add(Dense(dense_units))
			model.add(Activation('relu'))
			model.add(Dropout(0.1))	
		
		model.add(Dense(1))				
		model.compile(loss="mse", optimizer="adam", metrics=['mae'])
		model.summary()
		return model
Beispiel #3
0
    def buildnetwork(self):
        model = Sequential()
        model.add(
            lstm(20, dropout=0.2, input_shape=(self.seq_len, self.n_feature)))
        model.add(Dense(1, activation=None))
        model.compile(loss='mean_squared_error',
                      optimizer=Adagrad(lr=0.002, clipvalue=10),
                      metrics=['mean_squared_error'])

        return model
 def make_default_model(self):
     self.model.add(
         lstm(128, input_shape=(self.input_shape[0], self.input_shape[1])))
     self.model.add(Dropout(0.5))
     self.model.add(Dense(32, activation='relu'))
     self.model.add(Dense(16, activation='tanh'))