Beispiel #1
0
           kernel_size=(3, 3),
           activation='relu',
           name='block4_conv2')(h)
h = ZeroPadding2D(padding=(1, 1))(h)
h = Conv2D(filters=512,
           kernel_size=(3, 3),
           activation='relu',
           name='block4_conv3')(h)
h = ZeroPadding2D(padding=(1, 1))(h)
h = MaxPool2D(pool_size=(3, 3), strides=(1, 1))(h)

# block5 (start to use Atrous convolution)
h = ZeroPadding2D(padding=(2, 2))(h)  # padding <-> atrous_rate
h = AtrousConv2D(filters=512,
                 atrous_rate=(2, 2),
                 kernel_size=(3, 3),
                 activation='relu',
                 name='block5_conv1')(h)
h = ZeroPadding2D(padding=(2, 2))(h)
h = AtrousConv2D(filters=512,
                 atrous_rate=(2, 2),
                 kernel_size=(3, 3),
                 activation='relu',
                 name='block5_conv2')(h)
h = ZeroPadding2D(padding=(2, 2))(h)
h = AtrousConv2D(filters=512,
                 atrous_rate=(2, 2),
                 kernel_size=(3, 3),
                 activation='relu',
                 name='block5_conv3')(h)
h = ZeroPadding2D(padding=(1, 1))(h)
Beispiel #2
0
if args.model == "conv":
    model = Sequential()
    model.add(Conv2D(8, kernel_size=(3, 3),
                     activation="relu",
                     input_shape=input_shape))
    model.add(Conv2D(16, (3, 3), activation="relu"))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    model.add(Flatten())
    model.add(Dense(32, activation="relu"))
    model.add(Dropout(0.5))
    model.add(Dense(num_classes, activation="softmax"))
elif args.model == "dilated_conv":
    model = Sequential()
    model.add(AtrousConv2D(8, kernel_size=(3, 3), atrous_rate=(2, 2),
                           activation="relu",
                           input_shape=input_shape))  # shape is 5x5
    model.add(AtrousConv2D(16, kernel_size=(3, 3), atrous_rate=(3, 3),
                           activation="relu"))  # shape is 7x7
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    model.add(Flatten())
    model.add(Dense(32, activation="relu"))
    model.add(Dropout(0.5))
    model.add(Dense(num_classes, activation="softmax"))
elif args.model == "fc":
    model = Sequential()
    model.add(Dense(512, activation="hard_sigmoid", input_shape=(784,)))
    model.add(Dropout(0.2))
    model.add(Dense(512, activation="relu"))
    model.add(Dropout(0.2))
def _setup_model(model_type):
    from keras import backend as K
    from keras.layers import Dense, Dropout, Flatten, Conv2D, AtrousConv2D, MaxPooling2D, Input, add, GlobalAveragePooling2D, Activation
    from keras.models import Sequential, Model

    input_shape = get_input_shape(model_type)

    if model_type == "conv":
        model = Sequential()
        model.add(
            Conv2D(8,
                   kernel_size=(3, 3),
                   activation="relu",
                   input_shape=input_shape))
        model.add(Conv2D(16, (3, 3), activation="relu"))
        model.add(MaxPooling2D(pool_size=(2, 2)))
        model.add(Dropout(0.25))
        model.add(Flatten())
        model.add(Dense(32, activation="relu"))
        model.add(Dropout(0.5))
        model.add(Dense(num_classes, activation="softmax"))

    elif model_type == "dilated_conv":
        model = Sequential()
        model.add(
            AtrousConv2D(8,
                         kernel_size=(3, 3),
                         atrous_rate=(2, 2),
                         activation="relu",
                         input_shape=input_shape))  # shape is 5x5
        model.add(
            AtrousConv2D(16,
                         kernel_size=(3, 3),
                         atrous_rate=(3, 3),
                         activation="relu"))  # shape is 7x7
        model.add(MaxPooling2D(pool_size=(2, 2)))
        model.add(Dropout(0.25))
        model.add(Flatten())
        model.add(Dense(32, activation="relu"))
        model.add(Dropout(0.5))
        model.add(Dense(num_classes, activation="softmax"))

    elif model_type == "fc":
        model = Sequential()
        model.add(Dense(512, activation="hard_sigmoid", input_shape=(784, )))
        model.add(Dropout(0.2))
        model.add(Dense(512, activation="relu"))
        model.add(Dropout(0.2))
        model.add(Dense(10, activation="softmax"))

    elif model_type == "residual":
        nn_input = Input(shape=(28, 28, 1))
        hidden = Conv2D(8, kernel_size=(3, 3), activation="relu")(nn_input)
        hidden = MaxPooling2D(pool_size=(2, 2))(hidden)
        hidden_1 = Conv2D(16,
                          kernel_size=(1, 1),
                          activation="relu",
                          padding="same")(hidden)
        hidden_2 = Conv2D(16,
                          kernel_size=(3, 3),
                          activation="relu",
                          padding="same")(hidden)
        hidden = add([hidden_1, hidden_2])
        hidden_1 = hidden
        hidden_2 = Conv2D(16,
                          kernel_size=(3, 3),
                          activation="relu",
                          padding="same")(hidden)
        hidden = add([hidden_1, hidden_2])
        hidden = GlobalAveragePooling2D()(hidden)
        nn_output = Dense(num_classes, activation="softmax")(hidden)

        model = Model(inputs=[nn_input], outputs=[nn_output])

    elif model_type == "complex":
        # graph which has graph and sequential
        # this is for testing converting complex model
        nn_input = Input(shape=(28, 28, 1))

        hidden_1 = Conv2D(8, kernel_size=(3, 3), activation="relu")(nn_input)

        submodel_input = Input(shape=(26, 26, 8))
        submodel_conv = Conv2D(8, kernel_size=(3, 3), activation="relu")
        submodel_1 = submodel_conv(submodel_input)
        submodel_2 = submodel_conv(submodel_1)  # use same layer multiple times
        submodel_3 = Conv2D(16, kernel_size=(3, 3),
                            activation="relu")(submodel_1)
        submodel = Model(inputs=[submodel_input],
                         outputs=[submodel_3, submodel_2])

        subseq = Sequential()
        subseq.add(
            Conv2D(16,
                   kernel_size=(3, 3),
                   activation="relu",
                   input_shape=(22, 22, 16)))
        subseq.add(Flatten())
        subseq.add(Dense(10))

        hidden_2, hidden_3 = submodel(hidden_1)
        hidden_4 = subseq(hidden_2)
        hidden_5 = Flatten()(hidden_3)
        hidden_6 = Dense(10)(hidden_5)
        hidden_sum = add([hidden_4, hidden_6])
        nn_output = Activation(activation="softmax")(hidden_sum)

        model = Model(inputs=[nn_input], outputs=[nn_output])

    else:
        raise NotImplementedError("Unknown model type")

    print(f"input shape: {input_shape}, data_format: {K.image_data_format()}")
    return model
Beispiel #4
0
def VGG19Dense(weights='imagenet', input_tensor=None):
    '''Instantiate the VGG19 architecture,
    optionally loading weights pre-trained
    on ImageNet. Note that when using TensorFlow,
    for best performance you should set
    `image_dim_ordering="tf"` in your Keras config
    at ~/.keras/keras.json.

    The model and the weights are compatible with both
    TensorFlow and Theano. The dimension ordering
    convention used by the model is the one
    specified in your Keras config file.

    # Arguments
        weights: one of `None` (random initialization)
            or "imagenet" (pre-training on ImageNet).
        input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
            to use as image input for the model.

    # Returns
        A Keras model instance.
    '''
    if weights not in {'imagenet', None}:
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization) or `imagenet` '
                         '(pre-training on ImageNet).')
    # Determine proper input shape
    if K.image_dim_ordering() == 'th':
        input_shape = (3, None, None)
    else:
        input_shape = (None, None, 3)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor)
        else:
            img_input = input_tensor

    # Block 1
    x = AtrousConv2D(64, 3, 3, atrous_rate=(1,1), activation='relu', border_mode='same', name='block1_conv1')(img_input)
    x = AtrousConv2D(64, 3, 3, atrous_rate=(1,1), activation='relu', border_mode='same', name='block1_conv2')(x)
    #x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)

    # Block 2
    x = AtrousConv2D(128, 3, 3, atrous_rate=(2,2), activation='relu', border_mode='same', name='block2_conv1')(x)
    x = AtrousConv2D(128, 3, 3, atrous_rate=(2,2), activation='relu', border_mode='same', name='block2_conv2')(x)
    #x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)

    # Block 3
    x = AtrousConv2D(256, 3, 3, atrous_rate=(4,4), activation='relu', border_mode='same', name='block3_conv1')(x)
    x = AtrousConv2D(256, 3, 3, atrous_rate=(4,4), activation='relu', border_mode='same', name='block3_conv2')(x)
    x = AtrousConv2D(256, 3, 3, atrous_rate=(4,4), activation='relu', border_mode='same', name='block3_conv3')(x)
    x = AtrousConv2D(256, 3, 3, atrous_rate=(4,4), activation='relu', border_mode='same', name='block3_conv4')(x)
    #x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)

    # Block 4
    x = AtrousConv2D(512, 3, 3, atrous_rate=(8,8), activation='relu', border_mode='same', name='block4_conv1')(x)
    x = AtrousConv2D(512, 3, 3, atrous_rate=(8,8), activation='relu', border_mode='same', name='block4_conv2')(x)
    x = AtrousConv2D(512, 3, 3, atrous_rate=(8,8), activation='relu', border_mode='same', name='block4_conv3')(x)
    x = AtrousConv2D(512, 3, 3, atrous_rate=(8,8), activation='relu', border_mode='same', name='block4_conv4')(x)
    #x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)

    # Block 5
    x = AtrousConv2D(512, 3, 3, atrous_rate=(16,16), activation='relu', border_mode='same', name='block5_conv1')(x)
    x = AtrousConv2D(512, 3, 3, atrous_rate=(16,16), activation='relu', border_mode='same', name='block5_conv2')(x)
    x = AtrousConv2D(512, 3, 3, atrous_rate=(16,16), activation='relu', border_mode='same', name='block5_conv3')(x)
    x = AtrousConv2D(512, 3, 3, atrous_rate=(16,16), activation='relu', border_mode='same', name='block5_conv4')(x)
    #x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)

    # Create model
    model = Model(img_input, x)

    # load weights
    if weights == 'imagenet':
        print('K.image_dim_ordering:', K.image_dim_ordering())
        if K.image_dim_ordering() == 'th':
            weights_path = get_file('vgg19_weights_th_dim_ordering_th_kernels_notop.h5',
                                    TH_WEIGHTS_PATH_NO_TOP,
                                    cache_subdir='models')
            model.load_weights(weights_path)
            if K.backend() == 'tensorflow':
                warnings.warn('You are using the TensorFlow backend, yet you '
                              'are using the Theano '
                              'image dimension ordering convention '
                              '(`image_dim_ordering="th"`). '
                              'For best performance, set '
                              '`image_dim_ordering="tf"` in '
                              'your Keras config '
                              'at ~/.keras/keras.json.')
                convert_all_kernels_in_model(model)
        else:
            weights_path = get_file('vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5',
                                    TF_WEIGHTS_PATH_NO_TOP,
                                    cache_subdir='models')
            model.load_weights(weights_path)
            if K.backend() == 'theano':
                convert_all_kernels_in_model(model)
    return model