def build_model_combine_features(self, load_weight=False):
        cnn_branch = Sequential()
        cnn_branch.add(
            Conv2D(filters=16, kernel_size=5, strides=1, padding='valid', activation='relu', input_shape=(11, 11, 3),
                   name='Conv1'))
        cnn_branch.add(Conv2D(filters=24, kernel_size=3, strides=1, padding='same', activation='relu', name='Conv2'))
        cnn_branch.add(Conv2D(filters=32, kernel_size=3, strides=1, padding='same', activation='relu', name='Conv3'))
        cnn_branch.add(MaxPooling2D(pool_size=(3, 3), strides=2))
        cnn_branch.add(Conv2D(filters=64, kernel_size=3, strides=1, padding='same', activation='relu', name='Conv4'))
        cnn_branch.add(MaxPooling2D(pool_size=(3, 3), strides=2))
        cnn_branch.add(Conv2D(filters=96, kernel_size=3, strides=1, padding='same', activation='relu', name='Conv5'))
        cnn_branch.add(Flatten())

        location_branch = Sequential()
        location_branch.add(Dense(2, input_shape=(2,), activation='relu'))

        model = Concatenate([location_branch, cnn_branch])
        model.add(Dense(500, activation='relu'))
        model.add(Dense(2, activation='softmax'))
        model.compile(optimizer=Adam(lr=self.lr), loss='categorical_crossentropy', metrics=['accuracy'])

        if load_weight:
            print("Loading weight...")
            model.load_weight(WEIGHT_DIR + "")
            print("Weight loaded.")

        return model
Beispiel #2
0
    def build_model_combine_features(self, load_weight=False):
        cnn_branch = Sequential()
        cnn_branch.add(
            Conv2D(filters=16,
                   kernel_size=5,
                   strides=1,
                   padding='valid',
                   activation='relu',
                   input_shape=(11, 11, 3),
                   name='Conv1'))
        cnn_branch.add(
            Conv2D(filters=24,
                   kernel_size=3,
                   strides=1,
                   padding='same',
                   activation='relu',
                   name='Conv2'))
        cnn_branch.add(
            Conv2D(filters=32,
                   kernel_size=3,
                   strides=1,
                   padding='same',
                   activation='relu',
                   name='Conv3'))
        cnn_branch.add(MaxPooling2D(pool_size=(3, 3), strides=2))
        cnn_branch.add(
            Conv2D(filters=64,
                   kernel_size=3,
                   strides=1,
                   padding='same',
                   activation='relu',
                   name='Conv4'))
        cnn_branch.add(MaxPooling2D(pool_size=(3, 3), strides=2))
        cnn_branch.add(
            Conv2D(filters=96,
                   kernel_size=3,
                   strides=1,
                   padding='same',
                   activation='relu',
                   name='Conv5'))
        cnn_branch.add(Flatten())

        location_branch = Sequential()
        location_branch.add(Dense(2, input_shape=(2, ), activation='relu'))

        model = Concatenate([location_branch, cnn_branch])
        model.add(Dense(500, activation='relu'))
        model.add(Dense(2, activation='softmax'))
        model.compile(optimizer=Adam(lr=self.lr),
                      loss='categorical_crossentropy',
                      metrics=['accuracy'])

        if load_weight:
            print("Loading weight...")
            model.load_weight(WEIGHT_DIR + "")
            print("Weight loaded.")

        return model
    def build_base_network(self, X):
        input = Input(shape=X.T.shape, name='image_input')

        # VGG Layer
        vgg = VGG16(weights='imagenet', include_top=False)

        # can be removed
        vgg.add(Dense(4096))

        # Shallow Layers
        shallow_1 = Sequential()
        shallow_1.add(MaxPooling2D(pool_size=4, strides=8, name='subsample_1'))
        shallow_1.add(
            Conv2D(96,
                   kernel_size=8,
                   strides=4,
                   activation='relu',
                   name='conv1'))
        shallow_1.add(LRN(name='conv1_norm'))  # ??
        shallow_1.add(
            MaxPooling2D(pool_size=7,
                         strides=4,
                         border_mode='valid',
                         name='pool1'))
        shallow_1.add(Flatten())

        shallow_2 = Sequential()
        shallow_2.add(MaxPooling2D(pool_size=8, strides=8, name='subsample_2'))
        shallow_2.add(
            Conv2D(96,
                   kernel_size=8,
                   strides=4,
                   activation='relu',
                   name='conv2'))
        shallow_2.add(LRN(name='conv2_norm'))  # ??
        shallow_2.add(MaxPooling2D(pool_size=3, strides=2, name='pool2'))
        shallow_2.add(Flatten())

        # concatenated shallow layer
        shallow = Concatenate([shallow_1, shallow_2])

        # TODO
        # combine VGG16  and shallow layer output
        shallow.add(Dense(4096))

        shallow.add(LRN(name='shallow_norm', alpha=8191, n=8191, beta=0.5))

        return model
Beispiel #4
0
def Discriminator(d):
	dx = Discriminator_x(d)
	dz = Discriminator_z()
	combined_tensor = Concatenate([dx, dz])
	combined_tensor.add(Dropout(0.2))
	combined_tensor.add(LeakyReLU(alpha = 0.1))
	combined_tensor.add(Dense(units = 1, activation = 'linear'))
	return combined_tensor
Beispiel #5
0
import numpy as np

x = np.array([1,2,3])
y = np.array([1,2,3])

first = Sequential()
first.add(Dense(1, input_shape=(1,), activation='sigmoid'))

second = Sequential()
second.add(Dense(1, input_shape=(1,), activation='sigmoid'))

# result = Sequential()
merged = Concatenate([first, second])
# ada_grad = Adagrad(lr=0.1, epsilon=1e-08, decay=0.0)
# result.add(merged)
# result.compile(optimizer=ada_grad, loss=_loss_tensor, metrics=['accuracy'])

# merged.summary()

merged.add(Dense(2, activation="relu"))
merged.add(Dense(1, activation="linear"))
merged.summary()

# result.compile(optimizer='adam', loss='mse', metrics=['accuracy'])

# result.fit([x, x],[y, y], epochs=100, batch_size=1)

# loss, acc = result.evaluate([x, x],[y, y], batch_size=1)
# print("acc : ", acc)