Beispiel #1
0
 def test_wide_deep_model_with_sub_model_trained(self):
     linear_model = linear.LinearModel(units=1)
     dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)])
     wide_deep_model = wide_deep.WideDeepModel(
         linear.LinearModel(units=1),
         sequential.Sequential([core.Dense(units=1, input_dim=3)]),
     )
     linear_inp = np.random.uniform(low=-5.0, high=5.0, size=(64, 2))
     dnn_inp = np.random.uniform(low=-5.0, high=5.0, size=(64, 3))
     inputs = [linear_inp, dnn_inp]
     output = 0.3 * linear_inp[:, 0] + 0.2 * dnn_inp[:, 1]
     linear_model.compile(
         optimizer="sgd",
         loss="mse",
         metrics=[],
         run_eagerly=test_utils.should_run_eagerly(),
     )
     dnn_model.compile(
         optimizer="adam",
         loss="mse",
         metrics=[],
         run_eagerly=test_utils.should_run_eagerly(),
     )
     linear_model.fit(linear_inp, output, epochs=50)
     dnn_model.fit(dnn_inp, output, epochs=50)
     wide_deep_model.compile(
         optimizer=["sgd", "adam"],
         loss="mse",
         metrics=[],
         run_eagerly=test_utils.should_run_eagerly(),
     )
     wide_deep_model.fit(inputs, output, epochs=50)
Beispiel #2
0
    def test_wide_deep_model(self, distribution, use_dataset_creator, data_fn):
        if (not use_dataset_creator) and isinstance(
                distribution,
                tf.distribute.experimental.ParameterServerStrategy):
            self.skipTest(
                "Parameter Server strategy requires dataset creator to be used in "
                "model.fit.")
        if (not tf.__internal__.tf2.enabled() and use_dataset_creator
                and isinstance(
                    distribution,
                    tf.distribute.experimental.ParameterServerStrategy)):
            self.skipTest(
                "Parameter Server strategy with dataset creator needs to be run when "
                "eager execution is enabled.")
        with distribution.scope():
            linear_model = linear.LinearModel(units=1)
            dnn_model = sequential.Sequential([core.Dense(units=1)])
            wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model)
            linear_opt = gradient_descent.SGD(learning_rate=0.05)
            dnn_opt = adagrad.Adagrad(learning_rate=0.1)
            wide_deep_model.compile(optimizer=[linear_opt, dnn_opt],
                                    loss="mse")

            if use_dataset_creator:
                x = dataset_creator.DatasetCreator(dataset_fn)
                hist = wide_deep_model.fit(x,
                                           epochs=3,
                                           steps_per_epoch=INPUT_SIZE)
            else:
                if data_fn == "numpy":
                    inputs, output = get_numpy()
                    hist = wide_deep_model.fit(inputs, output, epochs=3)
                else:
                    hist = wide_deep_model.fit(get_dataset(), epochs=3)
            self.assertLess(hist.history["loss"][2], 0.2)
Beispiel #3
0
 def test_wide_deep_model_backprop(self):
     with self.cached_session():
         linear_model = linear.LinearModel(units=1,
                                           kernel_initializer="zeros")
         dnn_model = sequential.Sequential(
             [core.Dense(units=1, kernel_initializer="zeros")])
         wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model)
         linear_inp = np.array([[1.0]])
         dnn_inp = np.array([[1.0]])
         inputs = [linear_inp, dnn_inp]
         output = linear_inp + 2 * dnn_inp
         linear_opt = gradient_descent.SGD(learning_rate=0.1)
         dnn_opt = gradient_descent.SGD(learning_rate=0.3)
         wide_deep_model.compile(
             optimizer=[linear_opt, dnn_opt],
             loss="mse",
             metrics=[],
             run_eagerly=test_utils.should_run_eagerly(),
         )
         self.evaluate(tf.compat.v1.global_variables_initializer())
         wide_deep_model.fit(inputs, output, epochs=1)
         self.assertAllClose(
             [[0.6]],
             self.evaluate(
                 wide_deep_model.linear_model.dense_layers[0].kernel),
         )
         self.assertAllClose(
             [[1.8]],
             self.evaluate(wide_deep_model.dnn_model.layers[0].kernel),
         )
Beispiel #4
0
 def test_wide_deep_model_with_two_feature_columns(self):
     vocab_list = ["alpha", "beta", "gamma"]
     vocab_val = [0.4, 0.6, 0.9]
     data = np.random.choice(vocab_list, size=256)
     y = np.zeros_like(data, dtype=np.float32)
     for vocab, val in zip(vocab_list, vocab_val):
         indices = np.where(data == vocab)
         y[indices] = val + np.random.uniform(
             low=-0.01, high=0.01, size=indices[0].shape)
     cat_column = tf.feature_column.categorical_column_with_vocabulary_list(
         key="symbol", vocabulary_list=vocab_list)
     ind_column = tf.feature_column.indicator_column(cat_column)
     emb_column = tf.feature_column.embedding_column(cat_column,
                                                     dimension=5)
     linear_feature_layer = dense_features_v2.DenseFeatures([ind_column])
     linear_model = linear.LinearModel(use_bias=False,
                                       kernel_initializer="zeros")
     combined_linear = sequential.Sequential(
         [linear_feature_layer, linear_model])
     dnn_model = sequential.Sequential([core.Dense(units=1)])
     dnn_feature_layer = dense_features_v2.DenseFeatures([emb_column])
     combined_dnn = sequential.Sequential([dnn_feature_layer, dnn_model])
     wide_deep_model = wide_deep.WideDeepModel(combined_linear,
                                               combined_dnn)
     opt = gradient_descent.SGD(learning_rate=0.1)
     wide_deep_model.compile(opt,
                             "mse", [],
                             run_eagerly=test_utils.should_run_eagerly())
     wide_deep_model.fit(x={"symbol": data}, y=y, batch_size=32, epochs=10)
Beispiel #5
0
 def test_wide_deep_model_as_layer(self):
     linear_model = linear.LinearModel(units=1)
     dnn_model = sequential.Sequential([core.Dense(units=1)])
     linear_input = input_layer.Input(shape=(3, ), name="linear")
     dnn_input = input_layer.Input(shape=(5, ), name="dnn")
     wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model)
     wide_deep_output = wide_deep_model((linear_input, dnn_input))
     input_b = input_layer.Input(shape=(1, ), name="b")
     output_b = core.Dense(units=1)(input_b)
     model = training.Model(
         inputs=[linear_input, dnn_input, input_b],
         outputs=[wide_deep_output + output_b],
     )
     linear_input_np = np.random.uniform(low=-5.0, high=5.0, size=(64, 3))
     dnn_input_np = np.random.uniform(low=-5.0, high=5.0, size=(64, 5))
     input_b_np = np.random.uniform(low=-5.0, high=5.0, size=(64, ))
     output_np = (linear_input_np[:, 0] + 0.2 * dnn_input_np[:, 1] +
                  input_b_np)
     model.compile(
         optimizer="sgd",
         loss="mse",
         metrics=[],
         run_eagerly=test_utils.should_run_eagerly(),
     )
     model.fit([linear_input_np, dnn_input_np, input_b_np],
               output_np,
               epochs=5)
Beispiel #6
0
 def test_config(self):
     linear_model = linear.LinearModel(units=1)
     dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)])
     wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model)
     config = wide_deep_model.get_config()
     cloned_wide_deep_model = wide_deep.WideDeepModel.from_config(config)
     self.assertEqual(linear_model.units,
                      cloned_wide_deep_model.linear_model.units)
     self.assertEqual(dnn_model.layers[0].units,
                      cloned_wide_deep_model.dnn_model.layers[0].units)
Beispiel #7
0
 def test_wide_deep_model_with_single_input(self):
     linear_model = linear.LinearModel(units=1)
     dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)])
     wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model)
     inputs = np.random.uniform(low=-5., high=5., size=(64, 3))
     output = .3 * inputs[:, 0]
     wide_deep_model.compile(optimizer=['sgd', 'adam'],
                             loss='mse',
                             metrics=[],
                             run_eagerly=test_utils.should_run_eagerly())
     wide_deep_model.fit(inputs, output, epochs=5)
Beispiel #8
0
    def test_config_with_custom_objects(self):
        def my_activation(x):
            return x

        linear_model = linear.LinearModel(units=1)
        dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)])
        wide_deep_model = wide_deep.WideDeepModel(linear_model,
                                                  dnn_model,
                                                  activation=my_activation)
        config = wide_deep_model.get_config()
        cloned_wide_deep_model = wide_deep.WideDeepModel.from_config(
            config, custom_objects={"my_activation": my_activation})
        self.assertEqual(cloned_wide_deep_model.activation, my_activation)
Beispiel #9
0
 def test_wide_deep_model(self):
     linear_model = linear.LinearModel(units=1)
     dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)])
     wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model)
     linear_inp = np.random.uniform(low=-5., high=5., size=(64, 2))
     dnn_inp = np.random.uniform(low=-5., high=5., size=(64, 3))
     inputs = [linear_inp, dnn_inp]
     output = .3 * linear_inp[:, 0] + .2 * dnn_inp[:, 1]
     wide_deep_model.compile(optimizer=['sgd', 'adam'],
                             loss='mse',
                             metrics=[],
                             run_eagerly=test_utils.should_run_eagerly())
     wide_deep_model.fit(inputs, output, epochs=5)
     self.assertTrue(wide_deep_model.built)
Beispiel #10
0
    def test_wide_deep_model_with_multi_outputs(self):
        inp = input_layer.Input(shape=(1, ), name="linear")
        l = linear.LinearModel(units=2, use_bias=False)(inp)
        l1, l2 = tf.split(l, num_or_size_splits=2, axis=1)
        linear_model = training.Model(inp, [l1, l2])
        linear_model.set_weights([np.asarray([[0.5, 0.3]])])
        h = core.Dense(units=2, use_bias=False)(inp)
        h1, h2 = tf.split(h, num_or_size_splits=2, axis=1)
        dnn_model = training.Model(inp, [h1, h2])
        dnn_model.set_weights([np.asarray([[0.1, -0.5]])])
        wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model)
        inp_np = np.asarray([[1.0]])
        out1, out2 = wide_deep_model(inp_np)
        # output should be (0.5 + 0.1), and (0.3 - 0.5)
        self.assertAllClose([[0.6]], out1)
        self.assertAllClose([[-0.2]], out2)

        wide_deep_model = wide_deep.WideDeepModel(linear_model,
                                                  dnn_model,
                                                  activation="relu")
        out1, out2 = wide_deep_model(inp_np)
        # output should be relu((0.5 + 0.1)), and relu((0.3 - 0.5))
        self.assertAllClose([[0.6]], out1)
        self.assertAllClose([[0.0]], out2)
Beispiel #11
0
 def test_wide_deep_model_with_single_feature_column(self):
     vocab_list = ['alpha', 'beta', 'gamma']
     vocab_val = [0.4, 0.6, 0.9]
     data = np.random.choice(vocab_list, size=256)
     y = np.zeros_like(data, dtype=np.float32)
     for vocab, val in zip(vocab_list, vocab_val):
         indices = np.where(data == vocab)
         y[indices] = val + np.random.uniform(
             low=-0.01, high=0.01, size=indices[0].shape)
     cat_column = tf.feature_column.categorical_column_with_vocabulary_list(
         key='symbol', vocabulary_list=vocab_list)
     ind_column = tf.feature_column.indicator_column(cat_column)
     dense_feature_layer = dense_features_v2.DenseFeatures([ind_column])
     linear_model = linear.LinearModel(use_bias=False,
                                       kernel_initializer='zeros')
     dnn_model = sequential.Sequential([core.Dense(units=1)])
     wide_deep_model = wide_deep.WideDeepModel(linear_model, dnn_model)
     combined = sequential.Sequential(
         [dense_feature_layer, wide_deep_model])
     opt = gradient_descent.SGD(learning_rate=0.1)
     combined.compile(opt,
                      'mse', [],
                      run_eagerly=test_utils.should_run_eagerly())
     combined.fit(x={'symbol': data}, y=y, batch_size=32, epochs=10)