Beispiel #1
0
def main(_):
    # Parse and override hparams
    config = hparams_config.get_detection_config(FLAGS.model_name)
    config.override(FLAGS.hparams)
    if FLAGS.num_epochs:  # NOTE: remove this flag after updating all docs.
        config.num_epochs = FLAGS.num_epochs

    # Parse image size in case it is in string format.
    config.image_size = utils.parse_image_size(config.image_size)

    if FLAGS.use_xla and FLAGS.strategy != 'tpu':
        tf.config.optimizer.set_jit(True)
        for gpu in tf.config.list_physical_devices('GPU'):
            tf.config.experimental.set_memory_growth(gpu, True)

    if FLAGS.debug:
        tf.config.experimental_run_functions_eagerly(True)
        tf.debugging.set_log_device_placement(True)
        os.environ['TF_DETERMINISTIC_OPS'] = '1'
        tf.random.set_seed(FLAGS.tf_random_seed)
        logging.set_verbosity(logging.DEBUG)

    if FLAGS.strategy == 'tpu':
        tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
            FLAGS.tpu, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
        tf.config.experimental_connect_to_cluster(tpu_cluster_resolver)
        tf.tpu.experimental.initialize_tpu_system(tpu_cluster_resolver)
        ds_strategy = tf.distribute.TPUStrategy(tpu_cluster_resolver)
        logging.info('All devices: %s', tf.config.list_logical_devices('TPU'))
    elif FLAGS.strategy == 'gpus':
        ds_strategy = tf.distribute.MirroredStrategy()
        logging.info('All devices: %s', tf.config.list_physical_devices('GPU'))
    else:
        if tf.config.list_physical_devices('GPU'):
            ds_strategy = tf.distribute.OneDeviceStrategy('device:GPU:0')
        else:
            ds_strategy = tf.distribute.OneDeviceStrategy('device:CPU:0')

    steps_per_epoch = FLAGS.num_examples_per_epoch // FLAGS.batch_size
    params = dict(profile=FLAGS.profile,
                  model_name=FLAGS.model_name,
                  iterations_per_loop=FLAGS.iterations_per_loop,
                  model_dir=FLAGS.model_dir,
                  steps_per_epoch=steps_per_epoch,
                  strategy=FLAGS.strategy,
                  batch_size=FLAGS.batch_size,
                  tf_random_seed=FLAGS.tf_random_seed,
                  debug=FLAGS.debug,
                  val_json_file=FLAGS.val_json_file,
                  eval_samples=FLAGS.eval_samples,
                  num_shards=ds_strategy.num_replicas_in_sync)
    config.override(params, True)
    # set mixed precision policy by keras api.
    precision = utils.get_precision(config.strategy, config.mixed_precision)
    policy = tf.keras.mixed_precision.experimental.Policy(precision)
    tf.keras.mixed_precision.experimental.set_policy(policy)

    def get_dataset(is_training, config):
        file_pattern = (FLAGS.training_file_pattern
                        if is_training else FLAGS.val_file_pattern)
        if not file_pattern:
            raise ValueError('No matching files.')

        return dataloader.InputReader(
            file_pattern,
            is_training=is_training,
            use_fake_data=FLAGS.use_fake_data,
            max_instances_per_image=config.max_instances_per_image,
            debug=FLAGS.debug)(config.as_dict())

    with ds_strategy.scope():
        if config.model_optimizations:
            tfmot.set_config(config.model_optimizations.as_dict())
        model = setup_model(config)
        if FLAGS.pretrained_ckpt:
            ckpt_path = tf.train.latest_checkpoint(FLAGS.pretrained_ckpt)
            util_keras.restore_ckpt(model, ckpt_path)
        init_experimental(config)
        val_dataset = get_dataset(False, config).repeat()
        model.fit(get_dataset(True, config),
                  epochs=config.num_epochs,
                  steps_per_epoch=steps_per_epoch,
                  callbacks=train_lib.get_callbacks(config.as_dict(),
                                                    val_dataset),
                  validation_data=val_dataset,
                  validation_steps=(FLAGS.eval_samples // FLAGS.batch_size))
    model.save_weights(os.path.join(FLAGS.model_dir, 'ckpt-final'))
Beispiel #2
0
def main(_):
  # Parse and override hparams
  config = hparams_config.get_detection_config(FLAGS.model_name)
  config.override(FLAGS.hparams)
  if FLAGS.num_epochs:  # NOTE: remove this flag after updating all docs.
    config.num_epochs = FLAGS.num_epochs

  # Parse image size in case it is in string format.
  config.image_size = utils.parse_image_size(config.image_size)

  if FLAGS.use_xla and FLAGS.strategy != 'tpu':
    tf.config.optimizer.set_jit(True)
    for gpu in tf.config.list_physical_devices('GPU'):
      tf.config.experimental.set_memory_growth(gpu, True)

  if FLAGS.debug:
    tf.config.run_functions_eagerly(True)
    tf.debugging.set_log_device_placement(True)
    os.environ['TF_DETERMINISTIC_OPS'] = '1'
    tf.random.set_seed(FLAGS.tf_random_seed)
    logging.set_verbosity(logging.DEBUG)

  if FLAGS.strategy == 'tpu':
    tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
        FLAGS.tpu, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
    tf.config.experimental_connect_to_cluster(tpu_cluster_resolver)
    tf.tpu.experimental.initialize_tpu_system(tpu_cluster_resolver)
    ds_strategy = tf.distribute.TPUStrategy(tpu_cluster_resolver)
    logging.info('All devices: %s', tf.config.list_logical_devices('TPU'))
  elif FLAGS.strategy == 'gpus':
    ds_strategy = tf.distribute.MirroredStrategy()
    logging.info('All devices: %s', tf.config.list_physical_devices('GPU'))
  else:
    if tf.config.list_physical_devices('GPU'):
      ds_strategy = tf.distribute.OneDeviceStrategy('device:GPU:0')
    else:
      ds_strategy = tf.distribute.OneDeviceStrategy('device:CPU:0')

  steps_per_epoch = FLAGS.num_examples_per_epoch // FLAGS.batch_size
  params = dict(
      profile=FLAGS.profile,
      model_name=FLAGS.model_name,
      steps_per_execution=FLAGS.steps_per_execution,
      model_dir=FLAGS.model_dir,
      steps_per_epoch=steps_per_epoch,
      strategy=FLAGS.strategy,
      batch_size=FLAGS.batch_size,
      tf_random_seed=FLAGS.tf_random_seed,
      debug=FLAGS.debug,
      val_json_file=FLAGS.val_json_file,
      eval_samples=FLAGS.eval_samples,
      num_shards=ds_strategy.num_replicas_in_sync)
  config.override(params, True)
  # set mixed precision policy by keras api.
  precision = utils.get_precision(config.strategy, config.mixed_precision)
  policy = tf.keras.mixed_precision.Policy(precision)
  tf.keras.mixed_precision.set_global_policy(policy)

  def get_dataset(is_training, config):
    file_pattern = (
        FLAGS.train_file_pattern
        if is_training else FLAGS.val_file_pattern)
    if not file_pattern:
      raise ValueError('No matching files.')

    return dataloader.InputReader(
        file_pattern,
        is_training=is_training,
        use_fake_data=FLAGS.use_fake_data,
        max_instances_per_image=config.max_instances_per_image,
        debug=FLAGS.debug)(
            config.as_dict())

  with ds_strategy.scope():
    if config.model_optimizations:
      tfmot.set_config(config.model_optimizations.as_dict())
    if FLAGS.hub_module_url:
      model = train_lib.EfficientDetNetTrainHub(
          config=config, hub_module_url=FLAGS.hub_module_url)
    else:
      model = train_lib.EfficientDetNetTrain(config=config)
    model = setup_model(model, config)
    if FLAGS.pretrained_ckpt and not FLAGS.hub_module_url:
      ckpt_path = tf.train.latest_checkpoint(FLAGS.pretrained_ckpt)
      util_keras.restore_ckpt(model, ckpt_path, config.moving_average_decay)
    init_experimental(config)
    if 'train' in FLAGS.mode:
      val_dataset = get_dataset(False, config) if 'eval' in FLAGS.mode else None
      model.fit(
          get_dataset(True, config),
          epochs=config.num_epochs,
          steps_per_epoch=steps_per_epoch,
          callbacks=train_lib.get_callbacks(config.as_dict(), val_dataset),
          validation_data=val_dataset,
          validation_steps=(FLAGS.eval_samples // FLAGS.batch_size))
    else:
      # Continuous eval.
      for ckpt in tf.train.checkpoints_iterator(
          FLAGS.model_dir, min_interval_secs=180):
        logging.info('Starting to evaluate.')
        # Terminate eval job when final checkpoint is reached.
        try:
          current_epoch = int(os.path.basename(ckpt).split('-')[1])
        except IndexError:
          current_epoch = 0

        val_dataset = get_dataset(False, config)
        logging.info('start loading model.')
        model.load_weights(tf.train.latest_checkpoint(FLAGS.model_dir))
        logging.info('finish loading model.')
        coco_eval = train_lib.COCOCallback(val_dataset, 1)
        coco_eval.set_model(model)
        eval_results = coco_eval.on_epoch_end(current_epoch)
        logging.info('eval results for %s: %s', ckpt, eval_results)

        try:
          utils.archive_ckpt(eval_results, eval_results['AP'], ckpt)
        except tf.errors.NotFoundError:
          # Checkpoint might be not already deleted by the time eval finished.
          logging.info('Checkpoint %s no longer exists, skipping.', ckpt)

        if current_epoch >= config.num_epochs or not current_epoch:
          logging.info('Eval epoch %d / %d', current_epoch, config.num_epochs)
          break