def smooth_resize(img, n_rows, n_cols, smooth_type): ##----CAUTION--- ## THIS FUNCTION DOES NOT UPSCALE ON ONE AXIS AND DOWNSCALE IN THE OTHER # smooth_type= gaussian, bilinear interpolation, median or whatever # flag: 0 down else up if n_rows==img.shape[0]: return img if n_cols==img.shape[1]: return img flag = n_rows > img.shape[0] ratio_rows = (n_rows)*1.0 / img.shape[0] ratio_cols = (n_cols)*1.0 / img.shape[1] if flag: kernel_size = (math.ceil((ratio_rows + ratio_cols) / 2))*2-1 else: kernel_size = (math.ceil(math.log(math.ceil((math.pow(ratio_rows,-1) + math.pow(ratio_cols,-1)) / 2),2)))* 2 + 1 resized_img = Sampling.simple_resize(img, n_rows, n_cols) if flag else Sampling.simple_resize(img, n_rows, n_cols) if smooth_type == Sampling.FILTER_MEDIAN: return conv.median_filter_nd(resized_img, kernel_size) elif smooth_type == Sampling.FILTER_BILINEAR_INTERPOLATION: return conv.convolution_nd(resized_img, ker.bilinear_interpolation(kernel_size)) elif smooth_type == Sampling.FILTER_GAUSSIAN: return conv.convolution_nd(resized_img, ker.gaussian(kernel_size))
def addmoney(): kernel=Kernel() role=chkroleloggedin('adult') if request.method=="POST": if role != "!!": if role: child=request.form["child"] sqlstr='select * from users' cur=conn.execute(sqlstr) rows=cur.fetchall() nowdollar=kernel.getmoney(child) if nowdollar == "D": flash("The child account you entered either is not an valid account or is not a child.") return redirect(url_for("addmoney")) else: enckey=EncryptPass() addmoney1=request.form["dollars"] session["add"]=enckey.encrypt(sessionid[session["sessionid"]],str(addmoney1)) session["child"]=enckey.encrypt(sessionid[session["sessionid"]],child) session["cm"]=enckey.encrypt(sessionid[session["sessionid"]],nowdollar) session["notes"]=enckey.encrypt(sessionid[session["sessionid"]],request.form["notes"]) #print(session["add"]) #flash("Success!") return redirect(url_for("add_now")) else: flash(lang["msg6"]) return redirect(url_for("home")) else: return redirect(url_for("logout")) else: if role != "!!": return render_template("nano/add.html",productname=productname,year=year,action="Add") else: flash(lang["msg7"]) return redirect(url_for("logout"))
def __init__(self, name, assignable_names, kernel_func_rgb, kernel_func_of, kernel_func_depth, kernel_func_concatenate, C_mkl, C_rgb=None, C_of=None, C_depth=None, C_concatenate=None, lam_mkl=None): self.name = name self.assignable_names = [ assignable_name.lower() for assignable_name in assignable_names ] self.kernel_rgb = Kernel(kernel_func_rgb, name, 'rgb') self.kernel_of = Kernel(kernel_func_of, name, 'of') self.kernel_depth = Kernel(kernel_func_depth, name, 'depth') self.kernel_concatenate = Kernel(kernel_func_concatenate, name, ['(rgb-of)', '(rgb-of-depth)']) self.C_mkl = C_mkl self.C_rgb = C_rgb if C_rgb is not None else C_mkl self.C_of = C_of if C_of is not None else C_mkl self.C_depth = C_depth if C_depth is not None else C_mkl self.C_concatenate = C_concatenate if C_concatenate is not None else C_mkl self.lam_mkl = lam_mkl
def test_grid_shape(self): """ Make sure the grid shapes of the exec configs are correct. """ tot_threads = lambda gs, bs: (gs[0] * bs[0], gs[1] * bs[1]) for case in self.cases: space.initialize_space(case['shape']) z = Out(case['dtype']) fun = Kernel('', ('z', 'out', z.dtype)) for cfg in fun.exec_configs: for ind in range(2): self.assertTrue(cfg['grid_shape'][ind] * \ cfg['block_shape'][ind] >= \ case['shape'][ind+1]) self.assertTrue((cfg['grid_shape'][ind]-1) * \ cfg['block_shape'][ind] < \ case['shape'][ind+1]) # One padded case. fun = Kernel('', ('z', 'out', z.dtype), padding=(1, 2, 3, 4)) pad = [3, 7] for cfg in fun.exec_configs: for ind in range(2): self.assertTrue(cfg['grid_shape'][ind] * \ (cfg['block_shape'][ind]-pad[ind]) >= \ case['shape'][ind+1]) self.assertTrue((cfg['grid_shape'][ind]-1) * \ (cfg['block_shape'][ind]-pad[ind]) < \ case['shape'][ind+1])
def new_kernels(teacher, record, kernel_n, alpha=opt.co_alpha, beta=opt.co_beta, gamma=opt.co_gamma): start_time = time.time() kernels = [] for i in range(kernel_n): kernel = Kernel(teacher.rep, 0.0) indices = [] for j in range(record.n): if random.random() < gamma: indices.append(j) if len(indices) > 0: x = [record.x[i] for i in indices] indices = torch.tensor(indices, dtype=torch.long, device=opt.device) y = torch.index_select(record.y, 0, indices) kernel.add_batch(x, y) ma = 0.0 for j in range(100): ll = kernel.opt_step() opt.writer.add_scalar( 'step_%d/kernel_%d_loglikelihood' % (opt.i, i), ll, j) ma = (alpha * ll + (1 - alpha) * ma) if j > 0 else ll if j > 5 and abs(ma - ll) < beta: break kernels.append(kernel) opt.writer.add_scalar('compression/kernel_time', time.time() - start_time, opt.i) return kernels
class Fib: """ A simple FIB. """ def __init__(self): self.routes = {} self.kernel = Kernel() def put_route(self, rte): if self._is_route_different(rte): fib_route = FibRoute(rte.prefix, rte.next_hops) self.routes[rte.prefix] = fib_route self.kernel.put_route(fib_route.prefix, fib_route.next_hops) def delete_route(self, prefix): del self.routes[prefix] self.kernel.delete_route(prefix) def _is_route_different(self, rte): if rte.prefix not in self.routes: return True return rte.next_hops != self.routes[rte.prefix].next_hops def __str__(self): repr_str = "" for prefix in self.routes: repr_str += "%s\n" % self.routes[prefix] return repr_str def __repr__(self): return str(self)
def train(self, dataSet, C, toler, kernel = kernel_func): '''用smo算法求拉格朗日乘算子''' Kernel.clearCache()#清空缓存 smo = SMOAlgorithm(dataSet, C, toler, kernel) self.alphas = smo.run() self.kernel = smo.kernel self.dataSet = dataSet #计算b的值 b_array = [] for j in range(len(self.alphas)): alphaj = self.alphas[j] assert 0 <= alphaj and alphaj <= C #先则0 < alpha < c的正分量 if alphaj == 0 or alphaj == C: continue yj = dataSet.getLabel(j) b = 0.0 for i in range(len(self.alphas)): alphai = self.alphas[i] yi = dataSet.getLabel(i) kij = self.kernel.compute(i, j) b += alphai * yi * kij b = yj - b b_array.append(b) self.b = numpy.array(b_array).mean() return self.alphas, self.b
def experiment_anomaly_detection(train, test, comb, num_train, anom_prob, labels): phi = calc_feature_vecs(comb.X) print phi.size # bayes classifier (DIMS, N) = phi.size w_bayes = co.matrix(1.0, (DIMS, 1)) pred = w_bayes.trans()*phi[:,num_train:] (fpr, tpr, thres) = metric.roc_curve(labels[num_train:], pred.trans()) bayes_auc = metric.auc(fpr, tpr) # train one-class svm kern = Kernel.get_kernel(phi[:,0:num_train], phi[:,0:num_train]) ocsvm = OCSVM(kern, C=1.0/(num_train*anom_prob)) ocsvm.train_dual() kern = Kernel.get_kernel(phi, phi) (oc_as, foo) = ocsvm.apply_dual(kern[num_train:,ocsvm.get_support_dual()]) (fpr, tpr, thres) = metric.roc_curve(labels[num_train:], oc_as) base_auc = metric.auc(fpr, tpr) if (base_auc<0.5): base_auc = 1.0-base_auc # train structured anomaly detection #sad = StructuredOCSVM(train, C=1.0/(num_train*anom_prob)) sad = StructuredOCSVM(train, C=1.0/(num_train*0.5)) (lsol, lats, thres) = sad.train_dc(max_iter=50) (pred_vals, pred_lats) = sad.apply(test) (fpr, tpr, thres) = metric.roc_curve(labels[num_train:], pred_vals) auc = metric.auc(fpr, tpr) if (auc<0.5): auc = 1.0-auc return (auc, base_auc, bayes_auc)
def main(): print('Starting main...') print('Instantiating world...') mundo = Mundo() print('Done instatiating world') k = Kernel() k.loop() print('Kernel started')
def __init__(self, p, sigma=1): Kernel.__init__(self, p) Freezeable.__init__( self, 'sigma', ) self.sigma = sigma
def __init__(self, k1, k2, *args, **kwargs): self.k1 = k1 self.k2 = k2 assert self.k1.p == self.k2.p Kernel.__init__(self, self.k1.p, *args, **kwargs) Freezeable.__init__(self, 'k1', 'k2')
def __init__(self, features=[], target_value=0.0): self.features = copy.deepcopy(features) # 样本的特征向量 self.target_value = target_value # e.g. +1, -1 self.label = target_value # e.g. +1, -1, 0, 2, 3, (使用多分类) self.alpha_value = 0.0 self.error_value = 0.0 self.tolerance_error = 0.001 self.index = 0 # Outside index number within samples of parent-class self.kernel = Kernel(Method.Linear) # 预设使用线性分割(Linear)
def __init__(self, db, ratio_split, lbd, kernel="raw_kernel", k=None, C=1, nkp=False): self.n = int(len(db)*ratio_split) self.lbd = lbd self.k = Kernel(self.lbd,k) self.ker = getattr(self.k, kernel) self.X, self.y = db[:,0], db[:,1]#shuffle(db[:,0], db[:,1]) self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(db[:,0], db[:,1], train_size=ratio_split, random_state=42, stratify=db[:,1]) self.svc = SVC(kernel='precomputed', C=1) self.nkp = nkp
def test_create_kernel(): _kernel_1 = Kernel(simulated_interfaces=False, log=None, log_id="", table_name="main") _kernel_2 = Kernel(simulated_interfaces=False, log=None, log_id="", table_name=3)
def get_kernel(self): if self._kernel_opt[0] == "rbf": return Kernel.gaussian(self._kernel_opt[1]) elif self._kernel_opt[0] == "linear": return Kernel.linear() elif self._kernel_opt[0] == "poly": return Kernel._polykernel(self._kernel_opt[1], self._kernel_opt[2]) else: return 0
def login(): global conn stmt = """SELECT count(*) FROM sqlite_master WHERE type='table' AND name='users';""" cur=conn.execute(stmt) result = cur.fetchone() if result[0] == 0: flash("Your Server Haven't Been Setup Yet.") return redirect(url_for("oobe.start")) else: #print(chklogin("a","a")) #Kernel Module Implemented cor=False if request.method == "POST": #hasher=Hashing() #session.permanent = True user = request.form["nm"] passwd = request.form["pass"] kernel=Kernel() if user == "" or passwd=="": flash(lang["msg12"]) return redirect(url_for("login")) if kernel.checkuser(user,passwd)[0]==True: session["user"] = user session["role"] = kernel.checkuser(user,passwd)[1][2] gensession() flash(lang["msg2"]) return redirect(url_for("home")) #sqlstr='select * from users' #tmp=conn.execute(sqlstr) #print(tmp) #rows=tmp.fetchall() #print(rows) #print(rows[5][0]) #for row in rows: #print('!') #if hasher.check(passwd,row[1]) and user == row[0]: #else: #session["user"] = user #session["role"] = row[2] #gensession() #cor=True #flash(lang["msg2"]) #return redirect(url_for("home")) #else: #pass else: flash(lang["msg1"]) return redirect(url_for("login")) else: if "role" in session: user = session["user"] flash(lang["msg3"]) return redirect(url_for("home")) else: return render_template("nano/login.html",productname=productname,year=year)
def predict(self, Y): # build test kernel kernel = Kernel.get_kernel(Y, self.X[:, self.svs], self.kernel, self.kparam) # kernel = Kernel.get_kernel(Y, self.X, self.kernel, self.kparam) # for svdd we need the data norms additionally norms = Kernel.get_diag_kernel(Y, self.kernel) # number of training examples res = self.cTc - 2. * kernel.dot(self.get_support()).T + norms # res = self.cTc - 2. * kernel.dot(self.alphas).T + norms return res.reshape(Y.shape[1]) - self.radius2
def __init__(self, k1, k2, *args, **kwargs): self.k1 = k1 self.k2 = k2 # params = [] # for k in [self.k1,self.k2]: # params.extend([v for k,v in k.parameters.items()]) assert self.k1.p == self.k2.p Kernel.__init__(self, self.k1.p, *args, **kwargs) Freezeable.__init__(self, 'k1', 'k2')
def testDiffuseKernel(self): correct_heats, s = parseHeats(TEST_DIFFUSED_SOLN) input_heats, input_signs = parseHeats(TEST_INPUT) diffuser = Kernel(TEST_KERNEL) diffused = diffuser.diffuse(input_heats, reverse=False) for (key, val) in diffused.iteritems(): if val < 1: self.assertAlmostEqual(val, correct_heats[key], places=5) else: self.assertAlmostEqual(val, correct_heats[key], places=3)
def test_put_del_route_errors(): kern = Kernel(simulated_interfaces=False, log=None, log_id="", table_name="main") if not kern.platform_supported: return # Attempt to add route with nonsense next-hop interface prefix = make_ip_prefix("99.99.99.99/32") nhops = [NextHop(False, "nonsense", None, None)] rte = FibRoute(prefix, nhops) assert not kern.put_route(rte)
def example(num_samples=100, num_features=2, grid_size=200, filename="svm.pdf"): samples = np.array(np.random.normal(size=num_samples * num_features) .reshape(num_samples, num_features)) labels = 2 * (samples.sum(axis=1) > 0) - 1.0 clf = SVM(Kernel.rbf(0.1), 0.1) clf.fit(samples, labels) plot(clf, samples, labels, grid_size, "svm1.pdf") clf = SVM(Kernel.linear(), 0.1) clf.fit(samples, labels) plot(clf, samples, labels, grid_size, "svm2.pdf")
def remove_now2(): #Remove Now! kernel=Kernel() if request.method == "POST": if "add" in session and "child" in session and "cm" in session and "notes" in session: #session["add"] if chkroleloggedin(None) == "!!": return redirect(url_for("logout")) enckey=EncryptPass() if enckey.decrypt(sessionid[session["sessionid"]],session["step"]) !="2": return redirect(url_for('removemoney')) else: chklogin1=kernel.checkuser(request.form['nm'],request.form['pass']) if chklogin1[0]: if chklogin1[1][2] == "child" and request.form['nm'] == enckey.decrypt(sessionid[session["sessionid"]],session["child"]): #PREP THE COMMAND #enckey=EncryptPass() child=enckey.decrypt(sessionid[session["sessionid"]],session["child"]) adder=enckey.decrypt(sessionid[session["sessionid"]],session["add"]) nowdollar=enckey.decrypt(sessionid[session["sessionid"]],session["cm"]) notes=enckey.decrypt(sessionid[session["sessionid"]],session["notes"]) popadds() #Remake KEY regen() #cmd='UPDATE users SET "Money" = "'+str(int(nowdollar)-int(adder))+'" WHERE Name="'+child+'"' #curs = conn.cursor() #curs.execute(cmd) #conn.commit() #History Module #Coming Soon :> kernel.removemoney(child,session["user"],session["role"],adder,notes) flash(lang["success"]) return redirect(url_for("home")) else: popadds() flash(lang["msg1"]+"/"+lang["msg8"]+"/ Your User is not the specified user.") return redirect(url_for("home")) else: flash(lang["msg1"]+"/"+lang["msg8"]+"/ Your User is not the specified user.") popadds() return redirect(url_for("home")) else: flash("Unknown Error.") popadds() return redirect(url_for("removemoney")) else: if "add" in session and "child" in session and "cm" in session and "step" in session: flash(lang["msg11"]) return render_template("nano/login.html",productname=productname,year=year) else: flash(lang["msg10"]) popadds() return redirect(url_for("logout"))
def learn(self, source_data, target_data, kernel=None): """Launch learning process.""" if kernel is None: kernel = Kernel(kernel_str='linear') if self.verbose: print('Building kernel matrix.') data_matrix = np.vstack(( source_data.X, target_data.X) ) label_vector = np.hstack(( source_data.Y, np.zeros(target_data.get_nb_examples()) )) kernel_matrix = kernel.create_matrix(data_matrix) alpha_vector = self.learn_on_kernel_matrix(kernel_matrix, label_vector) return KernelClassifier(kernel, data_matrix, alpha_vector)
def handle(self): self.kernel = Kernel() sock = self.request.makefile(mode='rw') self.console = Console(self.kernel, sock, sock) self.kernel.start() self.console.start() try: self.kernel.join() except KeyboardInterrupt: self.kernel.shutdown() self.kernel.join(1.0) self.console.join(1.0)
def __copy_first_boot_files_to_system_image(self): log.info('Copy boot files to system image') kernel = Kernel(self.boot_image_task.boot_root_directory) if kernel.get_kernel(): log.info('--> boot image kernel as first boot linux.vmx') kernel.copy_kernel( self.root_dir, '/boot/linux.vmx' ) else: raise KiwiDiskBootImageError( 'No kernel in boot image tree %s found' % self.boot_image_task.boot_root_directory ) if self.machine and self.machine.get_domain() == 'dom0': if kernel.get_xen_hypervisor(): log.info('--> boot image Xen hypervisor as xen.gz') kernel.copy_xen_hypervisor( self.root_dir, '/boot/xen.gz' ) else: raise KiwiDiskBootImageError( 'No hypervisor in boot image tree %s found' % self.boot_image_task.boot_root_directory ) log.info('--> initrd archive as first boot initrd.vmx') Command.run( [ 'mv', self.boot_image_task.initrd_filename, self.root_dir + '/boot/initrd.vmx' ] )
def learn(self, source_data, target_data, kernel=None): """Launch learning process.""" if kernel is None: kernel = Kernel(kernel_str='linear') if self.verbose: print('Building kernel matrix.') data_matrix = np.vstack((source_data.X, target_data.X)) label_vector = np.hstack( (source_data.Y, np.zeros(target_data.get_nb_examples()))) kernel_matrix = kernel.create_matrix(data_matrix) alpha_vector = self.learn_on_kernel_matrix(kernel_matrix, label_vector) return KernelClassifier(kernel, data_matrix, alpha_vector)
def __create_iso_install_kernel_and_initrd(self): boot_path = self.media_dir + '/boot/x86_64/loader' Path.create(boot_path) kernel = Kernel(self.boot_image_task.boot_root_directory) if kernel.get_kernel(): kernel.copy_kernel(boot_path, '/linux') else: raise KiwiInstallBootImageError( 'No kernel in boot image tree %s found' % self.boot_image_task.boot_root_directory ) if self.machine and self.machine.get_domain() == 'dom0': if kernel.get_xen_hypervisor(): kernel.copy_xen_hypervisor(boot_path, '/xen.gz') else: raise KiwiInstallBootImageError( 'No hypervisor in boot image tree %s found' % self.boot_image_task.boot_root_directory ) self.boot_image_task.create_initrd(self.mbrid) Command.run( [ 'mv', self.boot_image_task.initrd_filename, boot_path + '/initrd' ] )
def test_init(self): """ Just make sure we can initialize the kernel. """ for case in self.cases: # Form data to work on. space.initialize_space(case['shape']) x_np = np.random.randn(*case['shape']).astype(case['dtype']) x = Grid(x_np) fun = Kernel('', ('x', 'grid', x.dtype)) fun = Kernel('', ('x', 'grid', x.dtype), shape_filter='all') fun = Kernel('', ('x', 'grid', x.dtype), shape_filter='skinny') fun = Kernel('', ('x', 'grid', x.dtype), shape_filter='square') self.assertRaises(TypeError, Kernel, '', ('x', 'grid', x.dtype), \ shape_filter1='all') self.assertRaises(TypeError, Kernel, '', ('x', 'grid', x.dtype), \ shape_filter='blah')
class Sample: def __init__(self, features=[], target_value=0.0): self.features = copy.deepcopy(features) # 样本的特征向量 self.target_value = target_value # e.g. +1, -1 self.label = target_value # e.g. +1, -1, 0, 2, 3, (使用多分类) self.alpha_value = 0.0 self.error_value = 0.0 self.tolerance_error = 0.001 self.index = 0 # Outside index number within samples of parent-class self.kernel = Kernel(Method.Linear) # 预设使用线性分割(Linear) # return BOOL, 检查目前的样本点是否符合 KKT条件 def is_confom_kkt(self, samples=[], bias=0.0, const_value=0.0): sum_x = -bias for sample_x in samples: if sample_x.alpha_value != 0: sum_x += sample_x.alpha_value * sample_x.target_value * self.kernel.calculate( sample_x.features, self.features) kkt_value = self.target_value * (sum_x) # 进行KKT 条件判断(有3个KKT满足条件) alpha_value = self.alpha_value tolerance_error = self.tolerance_error is_conformed = True if alpha_value == 0.0 and (kkt_value + tolerance_error) >= 1.0: pass elif alpha_value == const_value and (kkt_value - tolerance_error) <= 1.0: pass elif alpha_value > 0.0 and alpha_value < const_value and abs( kkt_value - 1.0) <= tolerance_error: pass else: is_conformed = False return is_conformed
class Convolute: def __init__(self, image_name, kernel_type): self.image = cv2.imread(image_name, cv2.IMREAD_GRAYSCALE) self.kernel = Kernel(kernel_type) self.kernel = self.kernel.getKernel() self.kernel_size = 3 self.type = kernel_type def convolution(self): padded_image = np.zeros((self.kernel_size - 1 + len(self.image), self.kernel_size - 1 + len(self.image[0]))) for x in range(len(self.image)): for y in range(len(self.image[0])): padded_image[int(self.kernel_size / 2) + x][int(self.kernel_size / 2) + y] = self.image[x][y] mod_image = np.zeros((len(self.image), len(self.image[0]))) for i in range(len(self.image)): for j in range(len(self.image[0])): val = 0 for x in range(-1 * int((self.kernel_size - 1) / 2), int((self.kernel_size - 1) / 2) + 1): for y in range(-int((self.kernel_size - 1) / 2), int((self.kernel_size - 1) / 2) + 1): val += padded_image[x + i][y + j] * self.kernel[ x + int(self.kernel_size / 2)][y + int(self.kernel_size / 2)] mod_image[i][j] = val return mod_image
def __init__(self, dataset, labels, C=1.0, tolerance=1e-4, maxIter=10000, kernelTup=('linear', )): self.dataset = dataset self.labels = labels self.C = C self.tolerance = tolerance self.maxIter = maxIter self.kern = Kernel(kernelTup=kernelTup) self.m = len(dataset) self.alphaArr = np.zeros((self.m, 1)) self.b = 0
def build_histograms(data, phi, num_train, bins=2, ord=2): # first num_train phis are used for estimating # histogram boundaries. N = len(data) (F, LEN) = data[0].size max_phi = np.max(phi[:, :num_train]) min_phi = np.min(phi[:, :num_train]) print("Build histograms with {0} bins.".format(bins)) print(max_phi, min_phi) thres = np.linspace(min_phi, max_phi + 1e-8, bins + 1) print(max_phi, min_phi) hist = co.matrix(0.0, (F * bins, 1)) phi_hist = co.matrix(0.0, (F * bins, N)) for i in xrange(N): for f in xrange(F): phi_hist[0 + f * bins, i] = np.where(np.array(data[i][f, :]) < thres[0])[0].size for b in range(1, bins - 1): cnt = np.where((np.array(data[i][f, :]) >= thres[b]) & ( np.array(data[i][f, :]) < thres[b + 1]))[0].size phi_hist[b + f * bins, i] = float(cnt) phi_hist[bins - 1 + f * bins, i] = np.where( np.array(data[i][f, :]) >= thres[bins - 1])[0].size phi_hist[:, i] /= np.linalg.norm(phi_hist[:, i], ord=ord) hist += phi_hist[:, i] / float(N) print('Histogram:') print hist.trans() kern = Kernel.get_kernel(phi_hist, phi_hist) return kern, phi_hist
def add_now(): #Add Now! kernel=Kernel() if request.method == "POST": if "add" in session and "child" in session and "cm" in session and "notes" in session: #session["add"] if chkroleloggedin(None) == "!!": return redirect(url_for("logout")) else: chklogin1=chklogin(request.form['nm'],request.form['pass']) if chklogin1[0]: if chklogin1[2] == "adult": #PREP THE COMMAND enckey=EncryptPass() child=enckey.decrypt(sessionid[session["sessionid"]],session["child"]) adder=enckey.decrypt(sessionid[session["sessionid"]],session["add"]) nowdollar=enckey.decrypt(sessionid[session["sessionid"]],session["cm"]) notes=enckey.decrypt(sessionid[session["sessionid"]],session["notes"]) popadds() #cmd='UPDATE users SET "Money" = "'+str(int(nowdollar)+int(adder))+'" WHERE Name="'+child+'"' #curs = conn.cursor() #curs.execute(cmd) #conn.commit() kernel.addmoney(child,session["user"],session["role"],adder,notes) #Remake KEY #History Module #Coming Soon :> regen() flash(lang["success"]) return redirect(url_for("home")) else: popadds() flash(lang["msg1"]+"/"+lang["msg8"]) return redirect(url_for("home")) else: popadds() return redirect(url_for("addmoney")) else: #Get if "add" in session and "child" in session and "cm" in session and "notes" in session: flash(lang["msg9"]) return render_template("nano/login.html",productname=productname,year=year) else: flash(lang["msg10"]) return redirect(url_for("logout"))
def __create_live_iso_kernel_and_initrd(self): boot_path = self.media_dir + '/boot/x86_64/loader' Path.create(boot_path) kernel = Kernel(self.boot_image_task.boot_root_directory) if kernel.get_kernel(): kernel.copy_kernel(boot_path, '/linux') else: raise KiwiLiveBootImageError( 'No kernel in boot image tree %s found' % self.boot_image_task.boot_root_directory ) if self.machine and self.machine.get_domain() == 'dom0': if kernel.get_xen_hypervisor(): kernel.copy_xen_hypervisor(boot_path, '/xen.gz') else: raise KiwiLiveBootImageError( 'No hypervisor in boot image tree %s found' % self.boot_image_task.boot_root_directory ) self.boot_image_task.create_initrd(self.mbrid) Command.run( [ 'mv', self.boot_image_task.initrd_filename, boot_path + '/initrd' ] )
class KernelTest(unittest.TestCase): def setUp(self): self.IO = Mock() self.clock = Mock() self.sem = Mock() self.kernel = Kernel(1000) self.kernel.disc = Mock() self.kernel.memory = Mock() self.kernel.scheduler = Mock() self.kernel.handler = Mock() self.kernel.cpu = Mock() self.kernel.clock = Mock() def test_startUp(self): self.kernel.startUp() verify(self.kernel.clock,times(1)).startUp() def test_getProgramasDelDisco(self): self.program = Mock() when(self.kernel.disc).getProgram("program").thenReturn(self.program) self.kernel.getProgramasDelDisco("program") verify(self.kernel.disc,times(1)).getProgram("program") assert (self.kernel.getProgramasDelDisco("program") == self.program) def test_run(self): self.kernel.run("program") verify(self.kernel.handler,times(1)).newIrq("program")
def experiment_anomaly_detection(train, test, comb, num_train, anom_prob, labels): # train one-class svm phi = calc_feature_vecs(comb.X) kern = Kernel.get_kernel(phi[:,0:num_train], phi[:,0:num_train]) ocsvm = OCSVM(kern, C=1.0/(num_train*anom_prob)) ocsvm.train_dual() kern = Kernel.get_kernel(phi, phi) (oc_as, foo) = ocsvm.apply_dual(kern[num_train:,ocsvm.get_support_dual()]) (fpr, tpr, thres) = metric.roc_curve(labels[num_train:], oc_as) base_auc = metric.auc(fpr, tpr) # train structured anomaly detection sad = StructuredOCSVM(train, C=1.0/(num_train*anom_prob)) (lsol, lats, thres) = sad.train_dc(max_iter=40) (pred_vals, pred_lats) = sad.apply(test) (fpr, tpr, thres) = metric.roc_curve(labels[num_train:], pred_vals) auc = metric.auc(fpr, tpr) return (auc, base_auc)
def __init__(self, dataSet, C, toler, kernel_func = kernel_func): self.C = C self.toler = toler self.dataSet = dataSet self.row, self.dim = self.dataSet.shape() self.alphas = numpy.array([0 for i in range(self.row)], dtype=float) #格朗日乘算子 self.b = 0 self.kernel = Kernel(dataSet, kernel_func) #核函数 self.EiCache = numpy.array([float('inf') for i in range(self.row)], dtype = float) #初始化Ei缓存,q正无穷
def train_dc(self, max_iter=200): """ Solve the LatentSVDD optimization problem with a sequential convex programming/DC-programming approach: Iteratively, find the most likely configuration of the latent variables and then, optimize for the model parameter using fixed latent states. """ N = self.sobj.get_num_samples() DIMS = self.sobj.get_num_dims() # intermediate solutions # latent variables latent = [0]*N #sol = 1.0*uniform(DIMS,1)-0.5 sol = matrix(0.0, (DIMS,1)) psi = matrix(0.0, (DIMS,N)) # (dim x exm) old_psi = matrix(0.0, (DIMS,N)) # (dim x exm) threshold = 0 obj = -1 iter = 0 # terminate if objective function value doesn't change much while iter<max_iter and (iter<3 or sum(sum(abs(np.array(psi-old_psi))))>=0.001): print('Starting iteration {0}.'.format(iter)) print(sum(sum(abs(np.array(psi-old_psi))))) iter += 1 old_psi = matrix(psi) latent_old = list(latent) # 1. linearize # for the current solution compute the # most likely latent variable configuration for i in range(N): # min_z ||sol - Psi(x,z)||^2 = ||sol||^2 + min_z -2<sol,Psi(x,z)> + ||Psi(x,z)||^2 # Hence => ||sol||^2 - max_z 2<sol,Psi(x,z)> - ||Psi(x,z)||^2 (foo, latent[i], psi[:,i]) = self.sobj.argmax(sol, i) # 2. solve the intermediate convex optimization problem kernel = Kernel.get_kernel(psi,psi) svdd = SVDD(kernel, self.C) svdd.train_dual() threshold = svdd.get_threshold() inds = svdd.get_support_dual() alphas = svdd.get_support_dual_values() sol = psi[:,inds]*alphas #print alphas self.sol = sol self.latent = latent return (sol, latent, threshold)
def setUp(self): self.IO = Mock() self.clock = Mock() self.sem = Mock() self.kernel = Kernel(1000) self.kernel.disc = Mock() self.kernel.memory = Mock() self.kernel.scheduler = Mock() self.kernel.handler = Mock() self.kernel.cpu = Mock() self.kernel.clock = Mock()
def main(argv): import os import config from interface import InteractiveTerminalInterface, DumbTerminalInterface from kernel import Kernel try: os.ttyname(1) terminal = InteractiveTerminalInterface(sys.stdout, config.TERMINAL_CHARSET) except OSError: terminal = DumbTerminalInterface(sys.stdout, config.TERMINAL_CHARSET) kernel = Kernel(terminal) try: shell = ShalingShell(terminal, kernel) if len(argv) < 2: shell.cmdloop() else: (cmd, args) = (argv[1], argv[2:]) shell.execute(cmd, [ terminal.from_terminal(x) for x in args ]) finally: kernel.close() return
def __init__(self): self.mykernel = Kernel(self, self.debug) self.__loadOutput__() self.__loadInput__() self.mykernel.setInputPlugins(self.input_modules_object) self.mykernel.setOutputPlugins(self.output_modules_object) if self.debug: self.mykernel.sendToDebug(str(self.output_modules_object)) self.mykernel.sendToDebug(str(self.input_modules_object)) # Tell the kernel to get started! self.mykernel.start()
def load(self, name): '''加载训练的中间结果''' with open('{0}.json'.format(name)) as f: json_dict = json.load(f) self.b = json_dict['b'] alphas_list = json_dict['alphas'] self.alphas = numpy.array(alphas_list) from dataset import DigitDataSet dataSet = DigitDataSet() #note,可以考虑把dataSet类型信息加入到json信息里,待完善 dataSet.load('{0}.csv'.format(name)) self.dataSet = dataSet self.kernel = Kernel(dataSet, kernel_func) #note,可以考虑把kernel类型信息加入到json信息里,待完善
class Jarvis: debug = True mykernel = '' def __init__(self): self.mykernel = Kernel(self, self.debug) self.__loadOutput__() self.__loadInput__() self.mykernel.setInputPlugins(self.input_modules_object) self.mykernel.setOutputPlugins(self.output_modules_object) if self.debug: self.mykernel.sendToDebug(str(self.output_modules_object)) self.mykernel.sendToDebug(str(self.input_modules_object)) # Tell the kernel to get started! self.mykernel.start() def __loadInput__(self): self.input_modules_object = [] files = os.listdir(os.getcwd() + "/input") for file_to_load in files: if (file_to_load.find("__init") == -1 and file_to_load.find('.pyc') < 0): exec "from input import " + file_to_load.replace(".py","") + " as first" obj = first.Plugin(self.mykernel) if obj.getType()['type'] == "input": self.input_modules_object.append(obj) def __loadOutput__(self): # Time to get stuff loading self.output_modules_object = [] # Fetch the files in the output folder files = os.listdir(os.getcwd() + "/output") for file_to_load in files: if (file_to_load.find("__init") == -1 and file_to_load.find('.pyc')<0): # We have a file, load it! exec "from output import " + file_to_load.replace(".py","") + " as first" obj = first.Plugin(self.mykernel) if obj.getType()['type'] == "output": self.output_modules_object.append(obj) # Add the object to our list
def test_Kernel(self): return d = DigitDataSet() data_path = os.path.join('..','data', 'sample') d.load(data_path) m, n = d.shape() p = 0 n = 0 el = 0 k = Kernel(d, kernel_func) for i in range(m): for j in range(m): v = k.compute(i, j) if v == 0: n += 1 elif v == 1: p +=1 else: el +=1 print('p', p) print('n', n) print('el',el)
def __create_pxe_install_kernel_and_initrd(self): kernel = Kernel(self.boot_image_task.boot_root_directory) if kernel.get_kernel(): kernel.copy_kernel(self.pxe_dir, "/pxeboot.kernel") else: raise KiwiInstallBootImageError( "No kernel in boot image tree %s found" % self.boot_image_task.boot_root_directory ) if self.machine and self.machine.get_domain() == "dom0": if kernel.get_xen_hypervisor(): kernel.copy_xen_hypervisor(self.pxe_dir, "/pxeboot.xen.gz") else: raise KiwiInstallBootImageError( "No hypervisor in boot image tree %s found" % self.boot_image_task.boot_root_directory ) self.boot_image_task.create_initrd(self.mbrid) Command.run(["mv", self.boot_image_task.initrd_filename, self.pxe_dir + "/pxeboot.initrd.xz"])
def __create_iso_install_kernel_and_initrd(self): boot_path = self.media_dir + "/boot/x86_64/loader" Path.create(boot_path) kernel = Kernel(self.boot_image_task.boot_root_directory) if kernel.get_kernel(): kernel.copy_kernel(boot_path, "/linux") else: raise KiwiInstallBootImageError( "No kernel in boot image tree %s found" % self.boot_image_task.boot_root_directory ) if self.machine and self.machine.get_domain() == "dom0": if kernel.get_xen_hypervisor(): kernel.copy_xen_hypervisor(boot_path, "/xen.gz") else: raise KiwiInstallBootImageError( "No hypervisor in boot image tree %s found" % self.boot_image_task.boot_root_directory ) self.boot_image_task.create_initrd(self.mbrid) Command.run(["mv", self.boot_image_task.initrd_filename, boot_path + "/initrd"])
def train_dc(self, max_iter=50, hotstart=matrix([])): """ Solve the optimization problem with a sequential convex programming/DC-programming approach: Iteratively, find the most likely configuration of the latent variables and then, optimize for the model parameter using fixed latent states. """ N = self.sobj.get_num_samples() DIMS = self.sobj.get_num_dims() # intermediate solutions # latent variables latent = [0.0]*N #setseed(0) sol = self.sobj.get_hotstart_sol() #sol[0:4] *= 0.01 if hotstart.size==(DIMS,1): print('New hotstart position defined.') sol = hotstart psi = matrix(0.0, (DIMS,N)) # (dim x exm) old_psi = matrix(0.0, (DIMS,N)) # (dim x exm) threshold = 0 obj = -1 iter = 0 allobjs = [] # terminate if objective function value doesn't change much while iter<max_iter and (iter<3 or sum(sum(abs(np.array(psi-old_psi))))>=0.001): print('Starting iteration {0}.'.format(iter)) print(sum(sum(abs(np.array(psi-old_psi))))) iter += 1 old_psi = matrix(psi) old_sol = sol # 1. linearize # for the current solution compute the # most likely latent variable configuration for i in range(N): (foo, latent[i], psi[:,i]) = self.sobj.argmax(sol, i, add_prior=True) norm = np.linalg.norm(psi[:,i],2) psi[:,i] /= norm #if i>10: # (foo, latent[i], psi[:,i]) = self.sobj.argmax(sol,i) #else: # psi[:,i] = self.sobj.get_joint_feature_map(i) # latent[i] = self.sobj.y[i] # 2. solve the intermediate convex optimization problem psi_star = matrix(psi) #psi_star[0:7,:] *= 4.0 #psi_star[0:3,:] *= 0.01 #psi_star[0,:] *= 1.2 #psi_star[2,:] *= 2.4 kernel = Kernel.get_kernel(psi_star, psi_star) svm = OCSVM(kernel, self.C) svm.train_dual() threshold = svm.get_threshold() #inds = svm.get_support_dual() #alphas = svm.get_support_dual_values() #sol = phi[:,inds]*alphas #inds = svm.get_support_dual() #alphas = svm.get_support_dual_values() sol = psi_star*svm.get_alphas() print matrix([sol.trans(), old_sol.trans()]).trans() # calculate objective slacks = [max([0.0, np.single(threshold - sol.trans()*psi[:,i]) ]) for i in xrange(N)] obj = 0.5*np.single(sol.trans()*sol) - np.single(threshold) + self.C*sum(slacks) print("Iter {0}: Values (Threshold-Slacks-Objective) = {1}-{2}-{3}".format(int(iter),np.single(threshold),np.single(sum(slacks)),np.single(obj))) allobjs.append(float(np.single(obj))) print '+++++++++' print threshold print slacks print obj print '+++++++++' print allobjs print(sum(sum(abs(np.array(psi-old_psi))))) print '+++++++++ SAD END' self.sol = sol self.latent = latent return (sol, latent, threshold)
import pylab as pl from bdd import BDD from kernel import Kernel import cvxopt as co if __name__ == '__main__': kparam = 2.1 ktype = 'rbf' # generate raw training data Dtrain1 = co.normal(2,100)*0.2 Dtrain2 = co.normal(2,100)*0.3 + 0.8 Dtrain = co.matrix([Dtrain1.trans(), Dtrain2.trans()]).trans() # build kernel kernel = Kernel.get_kernel(Dtrain,Dtrain,ktype,kparam) # train bdd bdd = BDD(kernel) # print bdd bdd.train_BDD() # generate test data grid delta = 0.1 x = np.arange(-4.0, 4.0, delta) y = np.arange(-4.0, 4.0, delta) X, Y = np.meshgrid(x, y) (sx,sy) = X.shape Xf = np.reshape(X,(1,sx*sy)) Yf = np.reshape(Y,(1,sx*sy)) Dtest = np.append(Xf,Yf,axis=0)
import numpy as np import pylab as pl import matplotlib.pyplot as plt from svdd import SVDD from kernel import Kernel if __name__ == '__main__': # kernel parameter and type kparam = 0.1 ktype = 'rbf' # generate raw training data Dtrain = co.normal(2,100) # build kernel kernel = Kernel.get_kernel(Dtrain,Dtrain,ktype,kparam) # train svdd svdd = SVDD(kernel,0.9) svdd.train_dual() # generate test data grid delta = 0.1 x = np.arange(-4.0, 4.0, delta) y = np.arange(-4.0, 4.0, delta) X, Y = np.meshgrid(x, y) (sx,sy) = X.shape Xf = np.reshape(X,(1,sx*sy)) Yf = np.reshape(Y,(1,sx*sy)) Dtest = np.append(Xf,Yf,axis=0) print(Dtest.shape)
plt.figure() scores = [] for i in range(train.samples): LENS = len(train.y[i]) (anom_score, scores_exm) = train.get_scores(lsol, i, lats[i]) scores.append(anom_score) plt.plot(range(LENS),scores_exm.trans() + i*8,'-g') plt.plot(range(LENS),train.y[i].trans() + i*8,'-b') plt.plot(range(LENS),lats[i].trans() + i*8,'-r') if i==0: plt.plot(range(LENS),train.X[i][0,:].trans() + i*8,'-k') (fpr, tpr, thres) = metric.roc_curve(label, co.matrix(scores)) auc = metric.auc(fpr, tpr) print auc # train one-class svm kern = Kernel.get_kernel(phi, phi) ocsvm = OCSVM(kern, C=1.0/(EXMS_TRAIN*0.1)) ocsvm.train_dual() (oc_as, foo) = ocsvm.apply_dual(kern[:,ocsvm.get_support_dual()]) (fpr, tpr, thres) = metric.roc_curve(label[0:EXMS_TRAIN], oc_as) base_auc = metric.auc(fpr, tpr) print base_auc plt.show() print('finished')
Dtrainu = co.normal(2,N_unl)*0.4 Dtrainn = co.normal(2,N_neg)*0.3 Dtrain21 = Dtrainn-1 Dtrain21[0,:] = Dtrainn[0,:]+1 Dtrain22 = -Dtrain21 # 1.3. concatenate training data Dtrain = co.matrix([[Dtrainp], [Dtrainu], [Dtrainn+1.0], [Dtrainn-1.0], [Dtrain21], [Dtrain22]]) # 1.4. build the training kernels: # - same training sample for each kernel = they have the same size # - each kernel captures a feature representation of the samples Dtrain # e.g., kernel1 is a BOW kernel, kernel2 a Lexical Diversity kernel # here: kernel1 und kernel2 are Gaussian kernels with different shape parameters # and kernel3 is a simple linear kernel kernel1 = Kernel.get_kernel(Dtrain, Dtrain, type='rbf', param=1.0) kernel2 = Kernel.get_kernel(Dtrain, Dtrain, type='rbf', param=1.0/50.0) kernel3 = Kernel.get_kernel(Dtrain, Dtrain, type='rbf', param=1.0/100.0) kernel4 = Kernel.get_kernel(Dtrain, Dtrain, type='linear') # MKL: (default) use SSAD ad = SSAD([],Dy,1.0,1.0,1.0/(N_unl*0.05),1.0) #ad = OCSVM(kernel1,C=0.02) # 2. STEP: TRAIN WITH A LIST OF KERNELS ssad = MKLWrapper(ad,[kernel1,kernel2,kernel3,kernel4],Dy,P_NORM) ssad.train_dual() # 3. TEST THE TRAINING DATA (just because we are curious) # 3.1. build the test kernel kernel1 = Kernel.get_kernel(Dtrain, Dtrain[:,ssad.get_support_dual()], type='rbf', param=1.0)
def create(self): log.info('Creating PXE root filesystem image') self.filesystem.create() self.image = self.filesystem.filename if self.compressed: log.info('xz compressing root filesystem image') compress = Compress(self.image) compress.xz() self.image = compress.compressed_filename log.info('Creating PXE root filesystem MD5 checksum') self.filesystem_checksum = self.filesystem.filename + '.md5' checksum = Checksum(self.image) checksum.md5(self.filesystem_checksum) # prepare boot(initrd) root system log.info('Creating PXE boot image') self.boot_image_task.prepare() # export modprobe configuration to boot image self.system_setup.export_modprobe_setup( self.boot_image_task.boot_root_directory ) # extract kernel from boot(initrd) root system kernel = Kernel(self.boot_image_task.boot_root_directory) kernel_data = kernel.get_kernel() if kernel_data: self.kernel_filename = ''.join( [self.image_name, '-', kernel_data.version, '.kernel'] ) kernel.copy_kernel( self.target_dir, self.kernel_filename ) else: raise KiwiPxeBootImageError( 'No kernel in boot image tree %s found' % self.boot_image_task.boot_root_directory ) # extract hypervisor from boot(initrd) root system if self.machine and self.machine.get_domain() == 'dom0': kernel_data = kernel.get_xen_hypervisor() if kernel_data: self.hypervisor_filename = ''.join( [self.image_name, '-', kernel_data.name] ) kernel.copy_xen_hypervisor( self.target_dir, self.hypervisor_filename ) self.result.add( 'xen_hypervisor', self.hypervisor_filename ) else: raise KiwiPxeBootImageError( 'No hypervisor in boot image tree %s found' % self.boot_image_task.boot_root_directory ) # create initrd for pxe boot self.boot_image_task.create_initrd() self.result.add( 'kernel', self.kernel_filename ) self.result.add( 'initrd', self.boot_image_task.initrd_filename ) self.result.add( 'filesystem_image', self.image ) self.result.add( 'filesystem_md5', self.filesystem_checksum ) if self.pxedeploy: log.warning( 'Creation of client config file from pxedeploy not implemented' ) return self.result
import numpy as np import pylab as pl import matplotlib.pyplot as plt from ocsvm import OCSVM from kernel import Kernel if __name__ == '__main__': # kernel parameter and type kparam = 0.1 ktype = 'rbf' # generate raw training data Dtrain = co.normal(2,100) # build kernel kernel = Kernel.get_kernel(Dtrain,Dtrain,ktype,kparam) # train svdd svm = OCSVM(kernel,0.1) svm.train_dual() delta = 0.07 x = np.arange(-4.0, 4.0, delta) y = np.arange(-4.0, 4.0, delta) X, Y = np.meshgrid(x, y) (sx,sy) = X.shape Xf = np.reshape(X,(1,sx*sy)) Yf = np.reshape(Y,(1,sx*sy)) Dtest = np.append(Xf,Yf,axis=0) print(Dtest.shape) print('halloooo')
parser.add_argument('method', help='Calculation method') parser.add_argument('dimension', type=int, help='Space dimension') parser.add_argument('nsample1', type=int, help='Size of the first sample') parser.add_argument('nsample2', type=int, help='Size of the second sample') parser.add_argument('--p1', type=float, default=1.1, help='Initialization parameter #1') parser.add_argument('--p2', type=float, default=1.2, help='Initialization parameter #2') parser.add_argument('--p3', type=float, default=1.3, help='Initialization parameter #3') parser.add_argument('--warming_time', type=float, default=1., help='Minimal warming time') parser.add_argument('--run_time', type=float, default=10., help='Minimal run time') parser.add_argument('--min_run', type=int, default=3, help='Minimal number of kernel execution') args = parser.parse_args() # Kernel initialization sys.path.append(args.problem + '/' + args.method) from kernel import Kernel kernel = Kernel(args.dimension, args.nsample1, args.nsample2) kernel.init(args.p1, args.p2, args.p3) # Runs nrun = 0 is_warming = True total_duration = 0. tic = time.time() while True: kernel.run() total_duration = time.time() - tic # Managing warming and run time
from killroutine import KillRoutine from logicalMemory import LogicalMemory from mainmemory import MainMemory from memoryManager import MemoryManager from newroutine import NewRoutine from pcb import Pcb from priorityQueue import PriorityQueue from program import Program from routines import Routines from setting import Setting from status import Status from timeoutroutine import TimeOutRoutine memorySize = 4 kernel = Kernel(memorySize) #kernel.getScheduler().setPriorityMode() ######################################### ######################################### instruction1 = Instruction("{Programa 1} primera instruccion",False,False) instruction2 = Instruction("{Programa 1} segunda instruccion",False,True) instruction3 = Instruction("{Programa 2} primera instruccion",True,False) instruction4 = Instruction("{Programa 2} segunda instruccion",False,True) instruction5 = Instruction("{Programa 3} primera instruccion",False,False) instruction6 = Instruction("{Programa 3} segunda instruccion",False,True) instruction7 = Instruction("{Programa 4} primera instruccion",False,False) instruction8 = Instruction("{Programa 4} segunda instruccion",False,True)
def test_clear(self): Kernel.clearCache() print(Kernel.cacheMatrix)
Dy = co.matrix([[yp], [yu], [yn], [yn], [yn], [yn]]) # generate training data co.setseed(11) Dtrainp = co.normal(2,N_pos)*0.4 Dtrainu = co.normal(2,N_unl)*0.5 Dtrainn = co.normal(2,N_neg)*0.3 Dtrain21 = Dtrainn-1 Dtrain21[0,:] = Dtrainn[0,:]+1 Dtrain22 = -Dtrain21 # training data Dtrain = co.matrix([[Dtrainp], [Dtrainu], [Dtrainn+1.0], [Dtrainn-1.0], [Dtrain21], [Dtrain22]]) # build the training kernel kernel = Kernel.get_kernel(Dtrain, Dtrain, type=k_type, param=k_param) # use SSAD ssad = SSAD(kernel,Dy,1.0,1.0,1.0/(N_unl*0.1),1.0) ssad.train_dual() # build the test kernel kernel = Kernel.get_kernel(Dtrain, Dtrain[:,ssad.get_support_dual()], type=k_type, param=k_param) thres = np.array(ssad.get_threshold())[0,0] (pred,MSG) = ssad.apply_dual(kernel) pred = np.array(pred) pred = pred.transpose() # generate test data from a grid for nicer plots delta = 0.1