def todo_vs_gamma(): with open('csv/todo2.csv', 'w') as f: f.write('hitrate,precision,componentes') f.write('\n') for g in [100, 120]: kfold.generate(g) r = execute(1) m = confusion_matrix(r) hr, pr = stats_avg(m) f.write('{},{},{}'.format(hr, pr, g)) f.write('\n')
def gamma_vs_k(): with open('csv/hitrates.csv', 'w') as f: f.write('hitrate,componentes,k') f.write('\n') for g in [1, 5, 10, 15]: for k in np.arange(1, 20, 2): kfold.generate(g) r = execute(k) m = confusion_matrix(r) hr, pr = stats_avg(m) f.write('{},{},{}'.format(hr, g, k)) f.write('\n')
def gamma_vs_time(): with open('csv/times.csv', 'w') as f: f.write('time,componentes') f.write('\n') for g in np.arange(1, 40, 4): kfold.generate(g) r = execute(1) start = time.time() list(r) end = time.time() f.write('{},{}'.format(end - start, g)) f.write('\n')
def stats_precision(): with open('csv/precision.csv', 'w') as f: f.write('precision,componentes,k') f.write('\n') diag = np.arange(personas) for g in [15, 25, 35]: for k in [1, 5, 10]: kfold.generate(g) r = execute(k) m = confusion_matrix(r) precision = m[diag, diag] / np.sum(m, axis=1) for p in precision: f.write('{},{},{}'.format(p, g, k)) f.write('\n')
def stats_hitrate(): diag = np.arange(personas) with open('csv/hitrate_ambos.csv', 'w') as f: f.write('imagenes,hitrate,componentes,k') f.write('\n') diag = np.arange(personas) for g in [15, 25, 35]: for k in [1, 5, 10]: kfold.generate(g) r = execute(k) m = confusion_matrix(r) hitrate = m[diag, diag] / imagenes for h in hitrate: f.write('{},{},{},{}'.format(imagenes - fold_size, h, g, k)) f.write('\n')