Beispiel #1
0
    def test_compile_pipeline_with_misused_inputvalue_should_raise_error(self):

        upstream_op = components.load_component_from_text("""
        name: upstream compoent
        outputs:
        - {name: model, type: Model}
        implementation:
          container:
            image: dummy
            args:
            - {outputPath: model}
        """)
        downstream_op = components.load_component_from_text("""
        name: compoent with misused placeholder
        inputs:
        - {name: model, type: Model}
        implementation:
          container:
            image: dummy
            args:
            - {inputValue: model}
        """)

        @dsl.pipeline(name='test-pipeline', pipeline_root='dummy_root')
        def my_pipeline():
            downstream_op(model=upstream_op().output)

        with self.assertRaisesRegex(
                TypeError,
                ' type "Model" cannot be paired with InputValuePlaceholder.'):
            compiler.Compiler().compile(
                pipeline_func=my_pipeline, package_path='output.json')
Beispiel #2
0
  def test_compile_pipeline_with_dsl_condition_should_raise_error(self):

    flip_coin_op = components.load_component_from_text("""
      name: flip coin
      inputs:
      - {name: name, type: String}
      outputs:
      - {name: result, type: String}
      implementation:
        container:
          image: gcr.io/my-project/my-image:tag
          args:
          - {inputValue: name}
          - {outputPath: result}
      """)

    print_op = components.load_component_from_text("""
      name: print
      inputs:
      - {name: name, type: String}
      - {name: msg, type: String}
      implementation:
        container:
          image: gcr.io/my-project/my-image:tag
          args:
          - {inputValue: name}
          - {inputValue: msg}
      """)

    @dsl.pipeline()
    def flipcoin():
      flip = flip_coin_op('flip')

      with dsl.Condition(flip.outputs['result'] == 'heads'):
        flip2 = flip_coin_op('flip-again')

        with dsl.Condition(flip2.outputs['result'] == 'tails'):
          print_op('print1', flip2.outputs['result'])

      with dsl.Condition(flip.outputs['result'] == 'tails'):
        print_op('print2', flip2.outputs['results'])

    with self.assertRaisesRegex(
        NotImplementedError,
        'dsl.Condition is not yet supported in KFP v2 compiler.'):
      compiler.Compiler().compile(
          pipeline_func=flipcoin,
          pipeline_root='dummy_root',
          output_path='output.json')
Beispiel #3
0
    def test_passing_concrete_artifact_to_input_expecting_generic_artifact(
            self):

        producer_op1 = components.load_component_from_text("""
      name: producer compoent
      outputs:
      - {name: output, type: Dataset}
      implementation:
        container:
          image: dummy
          args:
          - {outputPath: output}
      """)

        @dsl.component
        def producer_op2(output: dsl.Output[dsl.Model]):
            pass

        consumer_op1 = components.load_component_from_text("""
      name: consumer compoent
      inputs:
      - {name: input1, type: Artifact}
      implementation:
        container:
          image: dummy
          args:
          - {inputPath: input1}
      """)

        @dsl.component
        def consumer_op2(input1: dsl.Input[dsl.Artifact]):
            pass

        @dsl.pipeline(name='test-pipeline')
        def my_pipeline():
            consumer_op1(input1=producer_op1().output)
            consumer_op1(input1=producer_op2().output)
            consumer_op2(input1=producer_op1().output)
            consumer_op2(input1=producer_op2().output)

        try:
            tmpdir = tempfile.mkdtemp()
            target_json_file = os.path.join(tmpdir, 'result.json')
            compiler.Compiler().compile(
                pipeline_func=my_pipeline, package_path=target_json_file)

            self.assertTrue(os.path.exists(target_json_file))
        finally:
            shutil.rmtree(tmpdir)
Beispiel #4
0
    def test_compile_simple_pipeline(self):

        tmpdir = tempfile.mkdtemp()
        try:
            producer_op = components.load_component_from_text("""
      name: producer
      inputs:
      - {name: input_param, type: String}
      outputs:
      - {name: output_model, type: Model}
      - {name: output_value, type: Integer}
      implementation:
        container:
          image: gcr.io/my-project/my-image:tag
          args:
          - {inputValue: input_param}
          - {outputPath: output_model}
          - {outputPath: output_value}
      """)

            consumer_op = components.load_component_from_text("""
      name: consumer
      inputs:
      - {name: input_model, type: Model}
      - {name: input_value, type: Integer}
      implementation:
        container:
          image: gcr.io/my-project/my-image:tag
          args:
          - {inputPath: input_model}
          - {inputValue: input_value}
      """)

            @dsl.pipeline(name='test-pipeline')
            def simple_pipeline(pipeline_input: str = 'Hello KFP!'):
                producer = producer_op(input_param=pipeline_input)
                consumer = consumer_op(
                    input_model=producer.outputs['output_model'],
                    input_value=producer.outputs['output_value'])

            target_json_file = os.path.join(tmpdir, 'result.json')
            compiler.Compiler().compile(
                pipeline_func=simple_pipeline, package_path=target_json_file)

            self.assertTrue(os.path.exists(target_json_file))
            with open(target_json_file, 'r') as f:
                print(f.read())
        finally:
            shutil.rmtree(tmpdir)
Beispiel #5
0
    def test_compile_pipeline_with_bool(self):

        tmpdir = tempfile.mkdtemp()
        try:
            predict_op = components.load_component_from_text("""
      name: predict
      inputs:
      - {name: generate_explanation, type: Boolean, default: False}
      implementation:
        container:
          image: gcr.io/my-project/my-image:tag
          args:
          - {inputValue: generate_explanation}
      """)

            @dsl.pipeline(name='test-boolean-pipeline')
            def simple_pipeline():
                predict_op(generate_explanation=True)

            target_json_file = os.path.join(tmpdir, 'result.json')
            compiler.Compiler().compile(pipeline_func=simple_pipeline,
                                        package_path=target_json_file)

            self.assertTrue(os.path.exists(target_json_file))
            with open(target_json_file, 'r') as f:
                print(f.read())
        finally:
            shutil.rmtree(tmpdir)
Beispiel #6
0
    def test_passing_arbitrary_artifact_to_input_expecting_concrete_artifact(
            self):

        producer_op1 = components.load_component_from_text("""
      name: producer compoent
      outputs:
      - {name: output, type: SomeArbitraryType}
      implementation:
        container:
          image: dummy
          args:
          - {outputPath: output}
      """)

        @dsl.component
        def consumer_op(input1: dsl.Input[dsl.Dataset]):
            pass

        @dsl.pipeline(name='test-pipeline')
        def my_pipeline():
            consumer_op(input1=producer_op1().output)
            consumer_op(input1=producer_op2().output)

        with self.assertRaisesRegex(
                type_utils.InconsistentTypeException,
                'Incompatible argument passed to the input "input1" of component'
                ' "Consumer op": Argument type "SomeArbitraryType" is'
                ' incompatible with the input type "Dataset"'):
            compiler.Compiler().compile(
                pipeline_func=my_pipeline, package_path='result.json')
Beispiel #7
0
    def test_compile_pipeline_with_dsl_exithandler_should_raise_error(self):

        gcs_download_op = components.load_component_from_text("""
      name: GCS - Download
      inputs:
      - {name: url, type: String}
      outputs:
      - {name: result, type: String}
      implementation:
        container:
          image: gcr.io/my-project/my-image:tag
          args:
          - {inputValue: url}
          - {outputPath: result}
      """)

        echo_op = components.load_component_from_text("""
      name: echo
      inputs:
      - {name: msg, type: String}
      implementation:
        container:
          image: gcr.io/my-project/my-image:tag
          args:
          - {inputValue: msg}
      """)

        @dsl.pipeline(name='pipeline-with-exit-handler')
        def download_and_print(
                url='gs://ml-pipeline/shakespeare/shakespeare1.txt'):
            """A sample pipeline showing exit handler."""

            exit_task = echo_op('exit!')

            with dsl.ExitHandler(exit_task):
                download_task = gcs_download_op(url)
                echo_task = echo_op(download_task.outputs['result'])

        with self.assertRaisesRegex(
                NotImplementedError,
                'dsl.ExitHandler is not yet supported in KFP v2 compiler.'):
            compiler.Compiler().compile(pipeline_func=download_and_print,
                                        pipeline_root='dummy_root',
                                        output_path='output.json')
Beispiel #8
0
  def test_compile_pipeline_with_inputpath_should_warn(self):

    with self.assertWarnsRegex(
        UserWarning, 'Local file paths are currently unsupported for I/O.'):
      component_op = components.load_component_from_text("""
          name: compoent use inputPath
          inputs:
          - {name: data, type: Datasets}
          implementation:
            container:
              image: dummy
              args:
              - {inputPath: data}
          """)
Beispiel #9
0
  def test_compile_pipeline_with_importer_on_inputpath_should_raise_error(self):

    # YAML componet authoring
    component_op = components.load_component_from_text("""
        name: compoent with misused placeholder
        inputs:
        - {name: model, type: Model}
        implementation:
          container:
            image: dummy
            args:
            - {inputPath: model}
        """)

    @dsl.pipeline(name='my-component')
    def my_pipeline(model):
      component_op(model=model)

    with self.assertRaisesRegex(
        TypeError,
        'Input "model" with type "Model" is not connected to any upstream '
        'output. However it is used with InputPathPlaceholder.'):
      compiler.Compiler().compile(
          pipeline_func=my_pipeline,
          pipeline_root='dummy',
          output_path='output.json')

    # Python function based component authoring
    def my_component(datasets: components.InputPath('Datasets')):
      pass

    component_op = components.create_component_from_func(my_component)

    @dsl.pipeline(name='my-component')
    def my_pipeline(datasets):
      component_op(datasets=datasets)

    with self.assertRaisesRegex(
        TypeError,
        'Input "datasets" with type "Datasets" is not connected to any upstream '
        'output. However it is used with InputPathPlaceholder.'):
      compiler.Compiler().compile(
          pipeline_func=my_pipeline,
          pipeline_root='dummy',
          output_path='output.json')
Beispiel #10
0
def random_num_op(low, high):
    """Generate a random number between low and high."""
    return components.load_component_from_text("""
      name: Generate random number
      outputs:
      - {name: output, type: Integer}
      implementation:
        container:
          image: python:alpine3.6
          command:
          - sh
          - -c
          args:
          - mkdir -p "$(dirname $2)" && python -c "import random; print(random.randint($0, $1), end='')" | tee $2
          - "%s"
          - "%s"
          - {outputPath: output}
      """ % (low, high))
Beispiel #11
0
    def _create_a_container_based_component(self) -> callable:
        """Creates a test container based component factory."""

        return components.load_component_from_text("""
name: ContainerComponent
inputs:
- {name: input_text, type: String, description: "Represents an input parameter."}
outputs:
- {name: output_value, type: String, description: "Represents an output paramter."}
implementation:
  container:
    image: google/cloud-sdk:latest
    command:
    - sh
    - -c
    - |
      set -e -x
      echo "$0, this is an output parameter"
    - {inputValue: input_text}
    - {outputPath: output_value}
""")
Beispiel #12
0
    def test_compile_pipeline_with_misused_outputuri_should_raise_error(self):

        component_op = components.load_component_from_text("""
        name: compoent with misused placeholder
        outputs:
        - {name: value, type: Integer}
        implementation:
          container:
            image: dummy
            args:
            - {outputUri: value}
        """)

        @dsl.pipeline(name='test-pipeline', pipeline_root='dummy_root')
        def my_pipeline():
            component_op()

        with self.assertRaisesRegex(
                TypeError,
                ' type "Integer" cannot be paired with OutputUriPlaceholder.'):
            compiler.Compiler().compile(
                pipeline_func=my_pipeline, package_path='output.json')
Beispiel #13
0
    def test_compile_pipeline_with_misused_inputuri_should_raise_error(self):

        component_op = components.load_component_from_text("""
        name: compoent with misused placeholder
        inputs:
        - {name: value, type: Float}
        implementation:
          container:
            image: dummy
            args:
            - {inputUri: value}
        """)

        def my_pipeline(value):
            component_op(value=value)

        with self.assertRaisesRegex(
                TypeError,
                ' type "Float" cannot be paired with InputUriPlaceholder.'):
            compiler.Compiler().compile(pipeline_func=my_pipeline,
                                        pipeline_root='dummy',
                                        output_path='output.json')
Beispiel #14
0
    def test_compile_pipeline_with_misused_inputpath_should_raise_error(self):

        component_op = components.load_component_from_text("""
        name: compoent with misused placeholder
        inputs:
        - {name: text, type: String}
        implementation:
          container:
            image: dummy
            args:
            - {inputPath: text}
        """)

        @dsl.pipeline(name='test-pipeline', pipeline_root='dummy_root')
        def my_pipeline(text: str):
            component_op(text=text)

        with self.assertRaisesRegex(
                TypeError,
                ' type "String" cannot be paired with InputPathPlaceholder.'):
            compiler.Compiler().compile(
                pipeline_func=my_pipeline, package_path='output.json')
Beispiel #15
0
    def test_use_task_final_status_in_non_exit_op_yaml(self):

        print_op = components.load_component_from_text("""
name: Print Op
inputs:
- {name: message, type: PipelineTaskFinalStatus}
implementation:
  container:
    image: python:3.7
    command:
    - echo
    - {inputValue: message}
""")

        @dsl.pipeline(name='test-pipeline')
        def my_pipeline(text: bool):
            print_op()

        with self.assertRaisesRegex(
                ValueError,
                'PipelineTaskFinalStatus can only be used in an exit task.'):
            compiler.Compiler().compile(pipeline_func=my_pipeline,
                                        package_path='result.json')
Beispiel #16
0
    def test_passing_string_parameter_to_artifact_should_error(self):

        component_op = components.load_component_from_text("""
      name: compoent
      inputs:
      - {name: some_input, type: , description: an uptyped input}
      implementation:
        container:
          image: dummy
          args:
          - {inputPath: some_input}
      """)

        @dsl.pipeline(name='test-pipeline', pipeline_root='gs://path')
        def my_pipeline(input1: str):
            component_op(some_input=input1)

        with self.assertRaisesRegex(
                TypeError,
                'Passing PipelineParam "input1" with type "String" \(as "Parameter"\) '
                'to component input "some_input" with type "None" \(as "Artifact"\) is '
                'incompatible. Please fix the type of the component input.'):
            compiler.Compiler().compile(pipeline_func=my_pipeline,
                                        package_path='output.json')
Beispiel #17
0
    def test_passing_string_parameter_to_artifact_should_error(self):

        component_op = components.load_component_from_text("""
      name: compoent
      inputs:
      - {name: some_input, type: , description: an uptyped input}
      implementation:
        container:
          image: dummy
          args:
          - {inputPath: some_input}
      """)

        @dsl.pipeline(name='test-pipeline', pipeline_root='gs://path')
        def my_pipeline(input1: str):
            component_op(some_input=input1)

        with self.assertRaisesRegex(
                type_utils.InconsistentTypeException,
                'Incompatible argument passed to the input "some_input" of '
                'component "compoent": Argument type "STRING" is incompatible '
                'with the input type "Artifact"'):
            compiler.Compiler().compile(
                pipeline_func=my_pipeline, package_path='output.json')
component_op_1 = components.load_component_from_text("""
name: upstream
inputs:
- {name: input_1, type: String}
- {name: input_2, type: Float}
- {name: input_3, type: String}
- {name: input_4, type: String}
outputs:
- {name: output_1, type: Integer}
- {name: output_2, type: Model}
- {name: output_3}
- {name: output_4, type: Model}
- {name: output_5, type: Datasets}
- {name: output_6, type: Some arbitrary type}
- {name: output_7, type: {GcsPath: {data_type: TSV}}}
- {name: output_8, type: HTML}
- {name: output_9, type: google.BQMLModel}
implementation:
  container:
    image: gcr.io/image
    args:
    - {inputValue: input_1}
    - {inputValue: input_2}
    - {inputValue: input_3}
    - {inputValue: input_4}
    - {outputPath: output_1}
    - {outputUri: output_2}
    - {outputPath: output_3}
    - {outputUri: output_4}
    - {outputUri: output_5}
    - {outputPath: output_6}
    - {outputPath: output_7}
    - {outputPath: output_8}
""")
Beispiel #19
0
import unittest

from absl.testing import parameterized
from kfp.v2 import components
from kfp.v2 import compiler
from kfp.v2 import dsl
from kfp.v2.components.types import type_utils

VALID_PRODUCER_COMPONENT_SAMPLE = components.load_component_from_text("""
    name: producer
    inputs:
    - {name: input_param, type: String}
    outputs:
    - {name: output_model, type: Model}
    - {name: output_value, type: Integer}
    implementation:
      container:
        image: gcr.io/my-project/my-image:tag
        args:
        - {inputValue: input_param}
        - {outputPath: output_model}
        - {outputPath: output_value}
    """)


class CompilerTest(parameterized.TestCase):

    def test_compile_simple_pipeline(self):

        tmpdir = tempfile.mkdtemp()
        try:
from kfp.v2 import components
from kfp.v2.dsl import component, Input, Output
from kfp.v2 import compiler
from kfp.v2 import dsl


class VertexModel(dsl.Artifact):
    TYPE_NAME = 'google.VertexModel'


producer_op = components.load_component_from_text("""
name: producer
outputs:
  - {name: model, type: google.VertexModel}
implementation:
  container:
    image: dummy
    command:
    - cmd
    args:
    - {outputPath: model}
""")


@component
def consumer_op(model: Input[VertexModel]):
    pass


@dsl.pipeline(name='pipeline-with-gcpc-types')
def my_pipeline():
    consumer_op(model=producer_op().outputs['model'])
Beispiel #21
0
          - -c
          args:
          - mkdir -p "$(dirname $2)" && python -c "import random; print(random.randint($0, $1), end='')" | tee $2
          - "%s"
          - "%s"
          - {outputPath: output}
      """ % (low, high))


flip_coin_op = components.load_component_from_text("""
      name: Flip coin
      outputs:
      - {name: output, type: String}
      implementation:
        container:
          image: python:alpine3.6
          command:
          - sh
          - -c
          args:
          - mkdir -p "$(dirname $0)" && python -c "import random; result = \'heads\' if random.randint(0,1) == 0 else \'tails\'; print(result, end='')" | tee $0
          - {outputPath: output}
      """)

print_op = components.load_component_from_text("""
      name: Print
      inputs:
      - {name: msg, type: String}
      implementation:
        container:
          image: python:alpine3.6
          command:
Beispiel #22
0

@component
def print_env_op():
    import os
    print(os.environ['ENV1'])


print_env_2_op = components.load_component_from_text("""
name: Print env
implementation:
  container:
    image: alpine
    commands:
    - sh
    - -c
    - |
      set -e -x
      echo "$ENV2"
      echo "$ENV3"
    env:
      ENV2: val0
""")


@dsl.pipeline(name='pipeline-with-env', pipeline_root='dummy_root')
def my_pipeline():
    print_env_op().set_env_variable(name='ENV1', value='val1')
    print_env_2_op().set_env_variable(
        name='ENV2', value='val2').set_env_variable(name='ENV3', value='val3')
# limitations under the License.
"""Pipeline using ExitHandler with PipelineTaskFinalStatus (YAML)."""

from kfp.v2 import components
from kfp.v2 import dsl
from kfp.v2 import compiler
from kfp.v2.dsl import component

exit_op = components.load_component_from_text("""
name: Exit Op
inputs:
- {name: user_input, type: String}
- {name: status, type: PipelineTaskFinalStatus}
implementation:
  container:
    image: python:3.7
    command:
    - echo
    - "user input:"
    - {inputValue: user_input}
    - "pipeline status:"
    - {inputValue: status}
""")

print_op = components.load_component_from_text("""
name: Print Op
inputs:
- {name: message, type: String}
implementation:
  container:
    image: python:3.7
Beispiel #24
0
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Two step v2-compatible pipeline with URI placeholders."""
import kfp
from kfp.v2 import components, dsl

write_to_gcs_op = components.load_component_from_text("""
name: write-to-gcs
inputs:
- {name: msg, type: String, description: 'Content to be written to GCS'}
outputs:
- {name: artifact, type: Artifact, description: 'GCS file path'}
implementation:
  container:
    image: google/cloud-sdk:slim
    command:
    - sh
    - -c
    - |
      set -e -x
      echo "$0" | gsutil cp - "$1"
    - {inputValue: msg}
    - {outputUri: artifact}
""")

read_from_gcs_op = components.load_component_from_text("""
name: read-from-gcs
inputs:
- {name: artifact, type: Artifact, description: 'GCS file path'}
implementation:
  container:
Beispiel #25
0
import pathlib

from kfp.v2 import components
from kfp.v2 import dsl
import kfp.v2.compiler as compiler

component_op_1 = components.load_component_from_text("""
name: Write to GCS
inputs:
- {name: text, type: String, description: 'Content to be written to GCS'}
outputs:
- {name: output_gcs_path, type: GCSPath, description: 'GCS file path'}
implementation:
  container:
    image: google/cloud-sdk:slim
    command:
    - sh
    - -c
    - |
      set -e -x
      echo "$0" | gsutil cp - "$1"
    - {inputValue: text}
    - {outputUri: output_gcs_path}
""")

component_op_2 = components.load_component_from_text("""
name: Read from GCS
inputs:
- {name: input_gcs_path, type: GCSPath, description: 'GCS file path'}
implementation:
  container:
component_op = components.load_component_from_text('''
name: Component with optional inputs
inputs:
- {name: required_input, type: String, optional: false}
- {name: optional_input_1, type: String, optional: true}
- {name: optional_input_2, type: String, optional: true}
implementation:
  container:
    image: gcr.io/google-containers/busybox
    command:
    - echo
    args:
    - --arg0
    - {inputValue: required_input}
    - if:
        cond:
          isPresent: optional_input_1
        then:
          - --arg1
          - {inputValue: optional_input_1}
    - if:
        cond:
          isPresent: optional_input_2
        then:
          - --arg2
          - {inputValue: optional_input_2}
        else:
          - --arg2
          - 'default value'
''')
Beispiel #27
0
# Simple two-step pipeline with 'producer' and 'consumer' steps
from kfp.v2 import components
from kfp.v2 import compiler
from kfp.v2 import dsl

producer_op = components.load_component_from_text(
    """
name: Producer
inputs:
- {name: input_text, type: String, description: 'Represents an input parameter.'}
outputs:
- {name: output_value, type: String, description: 'Represents an output paramter.'}
implementation:
  container:
    image: google/cloud-sdk:latest
    command:
    - sh
    - -c
    - |
      set -e -x
      echo "$0, this is an output parameter" | gsutil cp - "$1"
    - {inputValue: input_text}
    - {outputPath: output_value}
"""
)

consumer_op = components.load_component_from_text(
    """
name: Consumer
inputs:
- {name: input_value, type: String, description: 'Represents an input parameter. It connects to an upstream output parameter.'}
Beispiel #28
0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from kfp.v2 import components
from kfp.v2 import dsl
import kfp.v2.compiler as compiler

component_op = components.load_component_from_text("""
name: Component with concat placeholder
inputs:
- {name: input_one, type: String}
- {name: input_two, type: String}
implementation:
  container:
    image: gcr.io/google-containers/busybox
    command:
    - sh
    - -ec
    args:
    - echo "$0" > /tmp/test && [[ "$0" == 'one+two=three' ]]
    - concat: [{inputValue: input_one}, '+', {inputValue: input_two}, '=three']
""")


@dsl.pipeline(name='one-step-pipeline-with-concat-placeholder')
def pipeline_with_concat_placeholder():
    component = component_op(input_one='one', input_two='two')
Beispiel #29
0
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from kfp.v2 import components
from kfp.v2 import dsl
import kfp.v2.compiler as compiler

component_op = components.load_component_from_text("""
name: Print Text
inputs:
- {name: text, type: String}
implementation:
  container:
    image: alpine
    command:
    - sh
    - -c
    - |
      set -e -x
      echo "$0"
    - {inputValue: text}
""")


@dsl.pipeline(name='pipeline-with-after')
def my_pipeline():
    task1 = component_op(text='1st task')
    task2 = component_op(text='2nd task').after(task1)
    task3 = component_op(text='3rd task').after(task1, task2)