Beispiel #1
0
nt = 10  # num of time steps

layer_loss_weights = Variable(
    torch.FloatTensor([[1.], [0.], [0.], [0.]]).cuda())
time_loss_weights = 1. / (nt - 1) * torch.ones(nt, 1)
time_loss_weights[0] = 0
time_loss_weights = Variable(time_loss_weights.cuda())

DATA_DIR = 'kitti_data_raw'

train_file = os.path.join(DATA_DIR, 'X_train.hkl')
train_sources = os.path.join(DATA_DIR, 'sources_train.hkl')
val_file = os.path.join(DATA_DIR, 'X_val.hkl')
val_sources = os.path.join(DATA_DIR, 'sources_val.hkl')

kitti_train = KITTI(train_file, train_sources, nt)
kitti_val = KITTI(val_file, val_sources, nt)

train_loader = DataLoader(kitti_train, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(kitti_val, batch_size=batch_size, shuffle=True)

model = PredNet(R_channels, A_channels, output_mode='error')
if torch.cuda.is_available():
    print('Using GPU.')
    model.cuda()

optimizer = torch.optim.Adam(model.parameters(), lr=lr)


def lr_scheduler(optimizer, epoch):
    if epoch < num_epochs // 2:
Beispiel #2
0
    from PIL import Image
    im = Image.fromarray(np.rollaxis(tensor.numpy(), 0, 3))
    im.save(filename)
from scipy.misc import imshow, imsave

batch_size = 16
A_channels = (3, 48, 96, 192)
R_channels = (3, 48, 96, 192)

DATA_DIR = '/media/lei/000F426D0004CCF4/datasets/kitti_data'
test_file = os.path.join(DATA_DIR, 'X_test.hkl')
test_sources = os.path.join(DATA_DIR, 'sources_test.hkl')

nt = 10

kitti_test = KITTI(test_file, test_sources, nt)

test_loader = DataLoader(kitti_test, batch_size=batch_size, shuffle=False)

model = PredNet(R_channels, A_channels, output_mode='prediction')
model.load_state_dict(torch.load('training.pt'))

if torch.cuda.is_available():
    print('Using GPU.')
    model.cuda()

for i, inputs in enumerate(test_loader):
    inputs = inputs.permute(0, 1, 4, 2, 3) # batch x time_steps x channel x width x height
    inputs = Variable(inputs.cuda())
    origin = inputs.data.cpu().byte()[:, nt-1]
    print('origin:')
nt = args.nt  # num of time steps
if args.grayscale:  # grayscale 1 channel
    A_channels = (1, 24, 48, 96)
    R_channels = (1, 24, 48, 96)
else:  # RGB 3 channels
    A_channels = (3, 48, 96, 192)
    R_channels = (3, 48, 96, 192)

DATA_DIR = args.data_dir  #'kitti_data'
TRAIN_DIR = 'trained'
RESULTS_DIR = 'results'

test_file = os.path.join(DATA_DIR, 'X_test.hkl')
test_sources = os.path.join(DATA_DIR, 'sources_test.hkl')

kitti_test = KITTI(test_file, test_sources, nt, sequence_start_mode='unique')
test_loader = DataLoader(kitti_test, batch_size=batch_size, shuffle=False)

model = PredNet(R_channels,
                A_channels,
                output_mode='prediction',
                gpu_id=args.gpu_id)
model.load_state_dict(
    torch.load(os.path.join(TRAIN_DIR, 'training.pt'),
               map_location=lambda storage, loc: storage))

if args.et > 0 and args.et < args.nt:
    model.set_extrap_start_time(extrap_start_time=args.et)

if args.gpu_id >= 0 and torch.cuda.is_available():
    print(' Using GPU.')
                                                     [0.]]))  #.cuda())  # L_0
    #layer_loss_weights = Variable(torch.FloatTensor([[1.], [1.], [1.], [1.]])) #.cuda())  # L_all
    time_loss_weights = 1. / (nt - 1) * torch.ones(nt, 1)
    time_loss_weights[0] = 0
    time_loss_weights = Variable(time_loss_weights)  #.cuda())

DATA_DIR = args.data_dir  #'kitti_data'
TRAIN_DIR = 'trained'

train_file = os.path.join(DATA_DIR, 'X_train.hkl')
train_sources = os.path.join(DATA_DIR, 'sources_train.hkl')
val_file = os.path.join(DATA_DIR, 'X_val.hkl')
val_sources = os.path.join(DATA_DIR, 'sources_val.hkl')

if args.gpu_id >= 0:
    kitti_train = KITTI(train_file, train_sources, nt)
    kitti_val = KITTI(val_file, val_sources, nt, N_seq=N_seq_val)
else:
    kitti_train = KITTI(train_file, train_sources, nt, N_seq=500)
    print(
        'WARNNING:  possible_starts is set to 500. Data volume is short for train.'
    )  # if not limit 500, memory will be over > 8G...
    kitti_val = KITTI(val_file, val_sources, nt, N_seq=N_seq_val)

train_loader = DataLoader(kitti_train, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(kitti_val, batch_size=batch_size, shuffle=True)

model = PredNet(R_channels,
                A_channels,
                output_mode='error',
                gpu_id=args.gpu_id)